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We study two-component solitons and their symmetry-breaking bifurcations (SBBs) in linearly coupled
photonic systems with a spatially inhomogeneous strength of the coupling. One system models an inverted virtual
photonic crystal, built by periodically doping the host medium with atoms implementing the electromagnetically
induced transparency (EIT). In this system, two soliton-forming probe beams with different carrier frequencies
are mutually coupled by the EIT-induced effective linear interconversion. The system is described by coupled
nonlinear Schrödinger (NLS) equations for the probes, with the linear-coupling constant periodically modulated
in space according to the density distribution of the active atoms. The type of the SBB changes from sub- to
supercritical with the increase of the total power of the probe beams, which does not occur in systems with constant
linear-coupling constants. Qualitatively similar results for the SBB of two-component solitons are obtained, in
an exact analytical form, in the model of a fused dual-core waveguide, with the linear coupling concentrated at a
point.
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I. INTRODUCTION

The effect of the spontaneous symmetry breaking of soli-
tons in two-component linearly coupled system was studied in
detail in nonlinear optics [1] and Bose-Einstein condensates
(BECs) [2,3]. The symmetry-breaking bifurcation (SBB)
occurs as a transition of a symmetric localized (solitonic)
ground states into an asymmetric one when the linear-coupling
constant drops below a critical value. In optics, the linear
coupling originates from the overlapping of evanescent fields
between adjacent waveguides, such as in dual-core fibers
[1,4,5] and arrays of such fibers [6,7], or from the linear mixing
of orthogonal polarizations induced by the twist or elliptic
deformation in bimodal fibers [8,9]. In binary BECs, a similar
effect originates from the interconversion between hyperfine
atomic states induced by a resonant electromagnetic wave, as
demonstrated theoretically in a variety of settings [10]. There
are two kinds of the SBBs, sub- and supercritical. In the case of
the subcritical symmetry breaking (which is tantamount to the
phase transition of the first kind), the system features branches
of asymmetric states which emerge as unstable ones, going
at first backward from the bifurcation point and undergoing
the stabilization after turning forward. In the case of the
supercritical SBB (it is tantamount to the phase transition of
the second kind), asymmetric branches emerge as stable ones
and immediately go in the forward direction. An interesting
problem is a possibility to control the type of the symmetry
breaking, and thus to switch between the respective phase
transitions of the two kinds. For example, the addition of a
periodic potential (optical lattice) acting in the unconfined
direction changes the character of the SBB from sub- to
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supercritical [3], and a similar effect is induced by rendering
interactions nonlocal [11].

One of versatile techniques for the control of transmission
properties of optical media is the electromagnetically induced
transparency (EIT) [12]. The EIT gives rise to a variety of
nonlinear features, which can be used for the making of single-
and multicomponent solitons, and thus, subsequently, for the
implementation of the symmetry breaking in solitons. These
features include the self-enhanced [13] and giant [14] Kerr
effects, as well as the enhanced frequency conversion [15–18].

The first aim of the present work is to study the SBB
for solitons in two-component photonic systems featuring
spatial modulations of the strength of the linear coupling
induced by the EIT-mediated frequency conversion. One such
system represents a virtual photonic crystal (PhC) formed by
a periodic modulation of the concentration of active atoms
doping a passive host medium. This technique has been
recently implemented in the fabrication of imaginary-part
PhCs by implanting atoms of RhB (Rhodamine B, a dye
manifesting saturable absorption) into the SU-8 polymer,
which is a commonly used transparent negative photoresist
[19]. The present model refers to another pair of the active
atoms and passive background, namely Pr3+ ions and the YSO
crystal, respectively.

The energy scheme of Pr3+ is displayed in Fig. 1, which is
a four-level energy system. Fields �1 and �2, which have
different carrier frequencies, represent two soliton-forming
beams. They induce resonant transitions from the same ground
state, that is, |1〉, to different excited states, |3〉 and |4〉, with
detuning �1 and �2, respectively. The resonant transitions
from a common metastable state |2〉 to the same pair of the
excited states (|3〉 and |4〉) are powered by pump (coupling)
fields �C1 and �C2, with detunings adjusted so that �C1 = �1

and �C2 = �2, which nullifies the two-photon detuning. The
four probe and pump fields involved into the scheme build a
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FIG. 1. (Color online) (a) The energy-level structure (the double-
� scheme) of the active dopants (Pr3+). (b) The periodic distribution
of the dopants (filling blue regions) against the background (gray
regions). The dopant density is represented by function R(x).

double-� scheme [18]. In this setting, the transitions driven
by coupling fields �C1 and �C2 give rise to the effective linear
mixing between fields ψ and φ, in the form of the induced
frequency conversion [17,18]. The latter feature places the
system into the class of the linearly coupled two-component
ones.

The periodic modulation of the dopant concentration, that
is, the structure function R(x), which represents the density
of the implanted ions in Fig. 1(b), turns the uniform medium
into a virtual PhC [20–23], so called because its properties are
controlled by the pump fields, rather than by a permanent
material structure (other well-known examples of virtual
structures are lattices optically induced in photorefractive
crystals [24]). The density-modulation pattern induces an
effective periodic linear potential, along with a spatially
periodic modulation of all local optical parameters, including
the strength of the linear interconversion and coefficients of
the self-phase modulation (SPM). The virtual PhC of this
type may be naturally called an inverted one, in comparison
with ordinary (material) PhCs built in self-focusing media:
While the ordinary PhC structures feature effective linear
and nonlinear potentials with coinciding local minima, in the
present setting minima of the local potential coincide with
maxima of its nonlinear counterpart, and vice versa. That is,
the nonlinear potential is inverted with respect to the linear
one [20–22]. Similar models with competing effective linear
and nonlinear potentials were introduced, in a different context,
in Ref. [25]. In fact, this setting may be considered as a
variety of the general concept of nonlinear lattices and mixed
linear-nonlinear ones [26].

The studies of the single-component model of the inverted
virtual PhC with the Kerr and saturable nonlinearities, reported
in Refs. [20] and [21], respectively, have revealed that the
stable location of the solitons in such systems is controlled by
the total power, with the low- and high-power solitons tending
to be pinned by minima of the linear and nonlinear potentials,
respectively. Transitions between the different positions of the
solitons were identified as supercritical SBBs.

The major objective of this work is to study two-component
solitons, supported by the EIT scheme, in the inverted crystals,
the main point being the SBBs of the solitons. In Sec. II we
derive the model by means of the semiclassical consideration
of the interaction of the electromagnetic fields with atoms.
Then, we focus on effects of the periodically modulated

linear coupling between the two components, which is the
main element of the model. In Sec. III we consider the
competition of the linear coupling and SPM nonlinearity. We
concentrate on the SBB specific to the two-component system,
and do not dwell on the above-mentioned breaking of the
spatial symmetry of the solitons, which can be adequately
studied in the single-component system [21,22]. A systematic
numerical analysis demonstrates a transition of the subcritical
SBB into a supercritical one with the increase of the soliton’s
total power, and a concomitant shrinkage of the soliton. In
Sec. IV, analytical results are presented for an allied model
of a dual-core fused [27] spatial coupler, with the tightly
concentrated linear coupling represented by the δ function
(in fact, the same system, but with a periodic array of coupled
sites, and a periodic modulation of the refractive index and
Kerr coefficient, may also represent the model of the virtual
PhC considered in Sec. II). In that model, the SBB of
two-component solitons can be studied in an exact analytical
form. The paper is concluded in Sec. V.

II. THE MODEL OF THE INVERTED NONLINEAR
PHOTONIC CRYSTAL

The atomic Hamiltonian corresponding to the configuration
shown in Fig. 1(a) is

H = h̄[δ|2〉〈2| + �1|3〉〈3| + �2|4〉〈4|] − h̄[�1|3〉〈1|
+�2|4〉〈1| + �C1|3〉〈2| + �C2|4〉〈2| + H.c.], (1)

where fields � and detunings �1,2 are defined as per the
figure, H.c. stands for the Hermitian-conjugate contribution,
and the two-photon detuning δ is set to be zero. Under
physically realistic conditions, spontaneous decay of the states
included into the scheme may be neglected. Furthermore, if the
dopant atoms are initially kept in the ground state, steady-state
solutions for density-matrix elements ρ31 and ρ41, which are
activated by the two soliton-forming probes, can be written as
follows:

ρ31 = −�2

�1

|�1|2
�2

C

�1 − |�2|2
�2

C

�1+ |�C2|2
�2

C

�1− �C1�
∗
C2

�2
C

�2,

ρ41 = −�1

�2

|�2|2
�2

C

�2− |�1|2
�2

C

�2+ |�C1|2
�2

C

�2 − �C2�
∗
C1

�2
C

�2,

(2)

where �2
C ≡ �2|�C1|2 + �1|�C2|2. The first (SPM) terms

on the right-hand sides of Eqs. (2) originate from the self-
enhanced Kerr effect [13], the second and the third (XPM)
terms represent the giant Kerr effect [14], and the fourth terms
represent the linear coupling between the soliton-forming
beams, which originate from the EIT-induced frequency
conversion [17].

The polarization experienced by the two probes in the
medium are [28]

P1(x) = 2N (x)℘31ρ31, P2(x) = 2N (x)℘41ρ41. (3)

Here, ℘31 and ℘41 (which are assumed real) are the matrix
elements of the dipole transitions |1〉 → |3〉 and |1〉 → |4〉. A
reasonable simplification of the model is attained by assuming
that ℘31 ≈ ℘41 ≡ ℘. The paraxial propagation equations for
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the slowly varying envelopes of the probe fields are

i∂z�j = − 1

2kj

∂xx�j − kj℘

2ε0h̄
Pj (x) [j = 1,2]. (4)

Substituting Eqs. (2) and (3) into Eq. (4), one arrives at coupled
nonlinear Schrödinger (NLS) equations,

i∂zψ = − 1
2∂xxψ + R(x)(V1ψ + σ1|ψ |2ψ + κ|φ|2ψ + C1φ),

i∂zφ = − 1
2∂xxφ + R(x)(V2φ + σ2|φ|2φ + κ|ψ |2φ + C2ψ),

(5)

where ψ = �1/γ , φ = �2/γ , R(x) = ℘2N (x)/ε0h̄γ 2, V1 =
−|�C2|2/�2

C , V2 = −|�C1|2/�2
C , σ1 = �2/�1�

2
C , σ2 =

�1/�2�
2
C , and κ = 1/�2

C . If we let �C1 and �C2 be
real, then coefficients C1 = C2 ≡ C = �C1�C2/�2

C account
for the EIT-induced linear mixing of the probe fields. The
effective linear-coupling coefficient CR(x) in Eqs. (5), which
is periodically modulated due to the distribution of the dopant
density, makes the system different from various previously
studied models of linearly coupled systems [1–6,9].

III. NUMERICAL RESULTS FOR THE MODEL
OF THE PHOTONIC CRYSTAL

To focus on effects of the periodically modulated linear
coupling competing with the SPM terms, we drop the XPM
interaction in Eqs. (5), and simplify Eqs. (5) to the following
form:

i∂zψ = − 1
2∂xxψ + V (x)(1 − |ψ |2)ψ − C(x)φ,

(6)
i∂zφ = − 1

2∂xxφ + V (x)(1 − |φ|2)φ − C(x)ψ.

These equations generalize those derived in Refs. [20,21] for
the inverted PhC with the π shift between the periodic linear
and nonlinear potentials, under the assumption that the deple-
tion of the coupling fields �C1 and �C2 [see Fig. 1(a)] may
be neglected. In this work we consider the density-distribution
profile in Fig. 1(b) corresponding to R(x) = cos2 x, that is,
V (x) = V0 cos2 x, C(x) = C0 cos2 x, the notation being fixed
by scaling the modulation period to be π . Generic results are
displayed below for amplitude V0 = 0.5 of the nonlinearity
modulation, while strength C0 of the linear coupling is varied.
As for the sign of C0, it may be fixed to be positive, as C0 < 0
can be transformed into C0 > 0 by the change of φ → −φ,
while the sign of ψ is not altered.

Stationary soliton solutions to Eqs. (6) were found in a
numerical form by means of the imaginary-time propagation
method [29], and their stability was subsequently tested by
direct simulations of the perturbed evolution in real time. The
solitons are characterized by the total power

P ≡ P1 + P2 =
∫ +∞

−∞
[|ψ(x)|2 + |φ(x)|2]dx. (7)

As expected, both symmetric and asymmetric soliton
modes, in terms of the coupled components, were found, see
Figs. 2 and 3. These examples display stable solitons, which are
broad in comparison with the underlying modulation pattern
at smaller values of P [Fig. 2], and narrower modes, with
the width comparable to the modulation period, at larger P

[Fig. 3].

FIG. 2. (Color online) Stationary profiles of the two components
of stable symmetric (a) and asymmetric (b) solitons, both found for
P = 4, C0 = 0.078. These solitons belong to the bifurcation diagram
displayed in Fig. 4(a). In this figure and below, the black solid
lines display the shape of the underlying modulation function R(x)
[see Fig. 1(b)].

The numerical results are summarized in the form of
bifurcation diagrams displayed in Fig. 4 at different fixed
values of the total power P . The bifurcations are driven by
the decrease of the coupling coupling C0. Unstable branches
of symmetric solitons, which should continue the stable
ones in all the panels, and narrow intermediate branches
of unstable asymmetric solitons in Fig. 4(a), are missing as
the imaginary-time integration method does not converge to
unstable solutions. The diagrams show the transition from
the subcritical SBB to the supercritical bifurcation with the
increase of P .

For broad solitons one may replace R(x) = cos2 x in
Eqs. (6) by its mean value 〈cos2 x〉 = 1/2, which reduces the
system to the one studied in earlier works [1], where the SBB
is subcritical, in accordance with Fig. 4(a). The new situation
is actually found here for narrow solitons, for which the SBB
turns out to be supercritical.

It is instructive to compare these results with those found
in a system where the linear and nonlinear potentials are the
same as in Eqs. (6), but the linear coupling is made constant
by replacing C0 cos2(x) → C0/2:

i∂zψ = − 1
2∂xxψ + V (x)(1 − |ψ |2)ψ − 1

2C0φ,
(8)

i∂zφ = − 1
2∂xxφ + V (x)(1 − |φ|2)φ − 1

2C0ψ.

Figure 5 demonstrates that the modified system does not give
rise to the transition of the subcritical SBB into the supercritical
type, even in the case when P is large and the solitons are

FIG. 3. (Color online) Examples of stable symmetric (a) and
asymmetric (b) solitons found for P = 10 and C0 = 2 (a) or C =
1.5 (b). These solitons belong to the bifurcation diagram displayed
in Fig. 4(d).
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(a) (b)

(c) (d)

FIG. 4. (Color online) The bifurcation diagrams for the two-
component solitons with different fixed values of the total power,
corresponding to the variation of strength C0 of the linear coupling.
(a) and (b) and (c) and (d) correspond to the bifurcations of the sub-
and supercritical types, respectively.

narrow. Thus, the periodic modulation of the linear coupling
is essential for this transition.

IV. ANALYTICAL RESULTS FOR THE FUSED COUPLER

Numerical finding presented in the previous section suggest
that the spatial modulation of the linear coupling is a crucial
factor which determines the kind of the phase transition (SBB)
in the system, and the possible change of the kind. In this
section we aim to illustrate the genericity of this rule by means
of exact analytical results, obtained in an allied system which
describes a fused dual-core nonlinear planar waveguide [27],
with the linear coupling tightly concentrated at x = 0:

i∂zψ = − 1
2∂xxψ − |ψ |2ψ − 2δ(x)φ,

(9)
i∂zφ = − 1

2∂xxφ − |φ|2φ − 2δ(x)ψ,

where δ(x) is the δ function. This system is a limit case of
Eqs. (6), with C(x) = 2δ(x) and V (x) ≡ 1 (in that case, the
constant linear potential is trivial in the present case and may

(a) (b)

FIG. 5. (Color online) The bifurcation diagrams for the two-
component solitons produced by modified system (8).

be dropped). Coefficients in the system can be fixed as in
Eqs. (9) by means of an obvious rescaling. It is relevant to
mention that symmetric and asymmetric solitons in a discrete
version of this system were recently studied in Ref. [7],
but the discrete system does not admit exact solutions. In
fact, the underlying system of Eqs. (6) may also be realized
in terms of the dual-core spatial coupler, with periodically
modulated strength of the coupling, refractive index, and Kerr
coefficient.

Stationary solutions to Eqs. (9) are sought for as {ψ,φ} =
exp(ikz) {u(x),v(x)} , with real functions u(x) and v(x) satis-
fying equations

ku = 1
2u′′ + u3 + 2δ(x)v,

(10)
kv = 1

2v′′ + v3 + 2δ(x)u.

Obviously, solutions to Eqs. (10) are subject to the following
boundary conditions, produced by the integration in an
infinitesimal vicinity of x = 0:

u′ (x = +0) − u′(x = −0) = −4v (x = 0) ,
(11)

v′ (x = +0) − v′(x = −0) = −4u (x = 0) .

Exact soliton solutions to Eqs. (10) are looked for as

{u(x),v(x)} =
√

2ksech[
√

2k(|x| + {ξ,η})], (12)

with ξ,η > 0. Symmetric and asymmetric solutions corre-
spond to ξ = η and ξ �= η, respectively (the present model
does not admit antisymmetric solutions). Total power (7) of
solutions (12) is

P = 2
√

2k[2 − tanh(
√

2kξ ) − tanh(
√

2kη)]. (13)

The substitution of expressions (12) into Eqs. (11) yields
the following equations which determine positive constants ξ

and η:√
k

2
sinh(

√
2k{ξ,η})sech2(

√
2k{ξ,η}) = sech(

√
2k{η,ξ}).

(14)
Using notation t1,2 ≡ tanh(

√
2k{ξ,η}), Eqs. (14) can be trans-

formed into the following form:

(t1 − t2)
(
t2
1 + t2

2 + t1t2 − 1
) = 0, (15)

t1t2 = 2/k, (16)

FIG. 6. (Color online) Asymmetry � vs total power P asymm, in
the solvable model based on Eqs. (9).
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where physical solutions are constrained to 0 < t1,2 < 1.
Equation (15) gives two solutions: t1 = t2, which corresponds
to symmetric solitons, and the other solution, which corre-
sponds to asymmetric ones:

t2
1 + t2

2 + t1t2 = 1. (17)

As it follows from Eq. (16), the symmetric solutions have

tanh(
√

2k{ξ,η}) =
√

2/k, (18)

hence they exist only for k > 2, the total power (13) of the
symmetric soliton being

Psymm = 4
√

2(
√

k −
√

2). (19)

The phase transition (SBB) occurs when the symmetric
solution t1 = t2 = √

2/k is simultaneously a solution to
Eq. (17), which yields

k = 6, tanh(2
√

3{ξ,η}) = 1√
3
, Psymm = 16√

3
. (20)

The solution for the asymmetric solitons, following from
Eqs. (17) and (16), is

tanh2(
√

2k{ξ,η}) = k − 2 ± √
k2 − 4k − 12

2k
, (21)

which exists exactly at k > 6 [cf. Eq. (20)]. Furthermore, the
total power (13) of the asymmetric soliton is

Pasymm = 2[2
√

2k − (

√
k − 2 +

√
k2 − 4k − 12 +

√
k − 2 −

√
k2 − 4k − 12)], (22)

and the relative asymmetry of the soliton is

� ≡ P1 − P2

P2 + P2
= ±

√
k − 2 + √

k2 − 4k − 12 −
√

k − 2 − √
k2 − 4k − 12

2
√

2k − (
√

k − 2 + √
k2 − 4k − 12 +

√
k − 2 − √

k2 − 4k − 12)
. (23)

Figure 6 plots asymmetry � versus Pasymm, as obtained from
Eqs. (23) and (22). The figure confirms that the SBB is indeed
of the supercritical type when the linear coupling is spatially
localized.

The model based on Eqs. (9) is solvable too in the case of
the self-defocusing nonlinearity, corresponding to the opposite
signs in front of the cubic terms. However, in that case the
model admits solely symmetric solutions, in the form of
u(x) = v(x) = √

2k/sinh[
√

2k (|x| + ξ )], with ξ determined
by equation tanh(

√
2kξ ) = √

k/2, which has solutions for
k < 2 [cf. Eqs. (12) and (18)].

V. CONCLUSIONS

The objective of this work is to study the SBBs (symmetry-
breaking bifurcations) of solitons in two-component systems
which, unlike previously studied models, include the spatial
modulation of the linear-coupling strength. To this end, two
photonic models were considered, namely the inverted virtual
PhC (photonic crystal), and the fused dual-core spatial coupler.
The former system is built as the periodic distribution of the

density of dopant atoms, activated by the EIT, which induces
the linear mixing between the two probe fields. The periodic
density modulation makes all parameters of the medium
periodic functions of the coordinate. Disregarding the XPM
terms, we have found that the type of the SBB changes from
sub- to supercritical with the increase of the total power of
the probe beams. In the model of the fused dual-core coupler,
the solutions for the two-component solitons were obtained in
the exact form, the corresponding SBB being supercritical.

The work can be naturally extended in other directions,
including the interplay with the spatial symmetry breaking,
and the consideration of higher-order solitons. A challenging
possibility is to develop a two-dimensional generalization of
the system.
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