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Asymmetric quantum dot in a microcavity as a nonlinear optical element
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We have investigated theoretically the interaction between individual quantum dot with broken inversion
symmetry and an electromagnetic field of a single-mode quantum microcavity. It is shown that in the strong-
coupling regime the system demonstrates nonlinear optical properties and can serve as emitter of the terahertz
radiation at Rabi frequency of the system. Analytical results for the simplest physical situations are obtained and
a numerical quantum approach for calculating an emission spectrum is developed.
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I. INTRODUCTION

Quantum microcavities provide a unique laboratory for
studies of strong light-matter coupling. First observed two
decades ago [1], the strong-coupling regime is now routinely
achieved in different kinds of microcavities [2]. From the
fundamental viewpoint, it is interesting as a basis to investigate
various collective phenomena in condensed-matter systems
such as Bose-Einstein condensation (BEC) [3] and superfluid-
ity [4]. From the viewpoint of applications, it opens a way to the
realization of optoelectonic devices of the new generation [5]:
room-temperature polariton lasers [6], polarization-controlled
optical gates [7], and others.

Several applications of the strong-coupling regime were
also proposed for quantum information processing [8–10]. In
this case, one should be able to tune the number of emitted
photons in controllable way. This is hard to achieve in planar
microcavities where the number of elementary excitations
is macroscopically large but is possible in microcavities
containing single quantum dots (QDs), where QD exciton can
be coupled to a confined electromagnetic mode provided by a
micropillar (etched planar cavity) [11], a defect of the photonic
crystal [12], or a whispering gallery mode [13].

Depending on the size of the QD, its elementary excitations
can behave as fermions (small QDs whose size is comparable
with exciton radius in the bulk material) [14], bosons (large
QDs whose size is much larger than exciton radius in the
bulk material) [15], or particles with intermediate statistics
(medium size QDs) [16]. In the current paper, we consider
a small single QD in a microcavity that corresponds to the
case of fermions. For symmetric QDs such system can be
described by the well-known Jaynes-Cummings Hamiltonian
[17], which predicts transformation of the Rabi doublet to the
Mollow triplet in the emission spectrum as intensity of the
external pump growth for both coherent [18] and incoherent
excitation schemes [19]. On the other hand, incorporation
of the asymmetry into the quantum system can radically
change its emission pattern and lead to the opening of optical
transitions which were forbidden in the symmetric case. In
particular, the breaking of inversion symmetry opens optical
transitions at the Rabi frequency at QDs placed in a strong
external laser field [20]. A similar effect occurs for asymmetric
quantum wells placed inside a planar microcavity [21,22]. In
this paper we consider a modification of the emission spectrum

of asymmetric QDs inside a single-mode microcavity using a
fully quantum approach.

The paper is organized as follows. In Sec. II we describe the
formalism and introduce the model Hamiltonian. In Sec. III
we obtain analytical solutions for important particular cases.
In Sec. IV we discuss the incorporation of pump and decay
terms into the Hamiltonian and present numerical calculations
of the emission spectrum. Section V contains discussions and
conclusions.

II. MODEL

We model the QD as a two-level quantum system with
the ground state |g〉 and excited state |e〉 with energies εg

and εe, respectively. The QD is placed inside a cavity and
interacts resonantly with confined electromagnetic mode of
the frequency ωc (Fig. 1). Since an electromagnetic field
can transfer an electron in the QD from the valence band
into the conduction band, the ground state |g〉 corresponds
to the absence of free carriers while the first excited state
|e〉 is the state with an electron in the conduction band and
a hole in the valence band. Therefore, the energy difference
� = εg − εe is approximately equal to the band gap of the QD
minus the excitonic correction accounting for the Coulomb
attraction between the electron and the hole.

The full Hamiltonian of the system can be represented as a
sum of three parts,

Ĥ = Ĥe + Ĥω + Ĥint , (1)

where

Ĥe = �

2
σz (2)

is the Hamiltonian of the single QD and σx,y,z are the Pauli
matrices acting in the space of the |e〉 and |g〉 states. The
Hamiltonian of the free electromagnetic field reads

Ĥω = h̄ωca
†a, (3)

where a,a† are the annihilation and creation operators for
cavity photons, respectively. The Hamiltonian Ĥint describes
the interaction of the QD with the electromagnetic field and
can be constructed as follows. The interaction of a classical
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FIG. 1. (Color online) Two-level quantum dot with the band gap
� in a single-mode microcavity with the frequency ωc.

dipole d with a classical external electric field E is given by the
expression Ĥint = −Ed. Within the quantum-field approach,
we have to replace the classical quantities d and E with the
corresponding operators,

Ê =
√

h̄ωc

2ε0V
(ea + e∗a†),

d̂ =
(

dee deg

dge dgg

)
= dee + dgg

2
I + dee − dgg

2
σz

+(degσ
+ + dgeσ

−), (4)

where e is the polarization vector of the cavity mode, ε0 is
the vacuum dielectric permittivity, dij = 〈i|d̂|j 〉 are dipole
matrix elements of the QD, I is the unity matrix, and
σ± = (σx ± iσy)/2. In the case of symmetric QD, the matrix
elements dee and dgg are zero. Due to the breaking of
inversion symmetry in asymmetric QDs, the dipole matrix
elements appear to be nonequivalent, dee �= dgg . This leads
to new physical effects discussed hereafter. The interaction
Hamiltonian can be written as

Ĥint = −d̂Ê = gR(a + a†)(σ+ + σ−) + gS(a + a†)(σz + I )

≈ gR(aσ+ + a†σ−) + gS(a + a†)(σz + I ). (5)

The coupling parameters gR = −(deg · e)
√

h̄ωc/2ε0V and
gS = −(dee · e)

√
h̄ωc/4ε0V describe the excitation-exchange

interaction and the symmetry-dependent interaction, respec-
tively. For definiteness, we assume them to be real. The
parameter V in the expressions above is the quantization
volume and can be estimated as V ≈ (λ/2)3, where λ =
c/2πωc is the characteristic wavelength corresponding to the
cavity mode. We also put dgg = 0, which can be justified
for nonferroelectric QDs. Indeed, asymmetry of such QDs
is provided by peculiar shape and/or an external electric field.
Due to this, the matrix element dgg is proportional to the size
of the elementary cell of the crystal lattice, while the matrix
element dee is proportional to the size of the QD. As a result,
in realistic QDs, one has dee � dgg . To pass from the first line
to the second line in Eq. (5), the rotating-wave approximation
[23,24] was applied and we dropped the antiresonant terms
proportional to a†σ+ and aσ−.

The full Hamiltonian of the system reads

Ĥ = h̄ωca
†a + �

2
σz + gR(aσ+ + a†σ−)

+ gS(a + a†) (σz + I ). (6)

In the case of a symmetric QD, the coupling parameter gS

equals zero. Equation (6) then reduces to the Hamiltonian of
the fully solvable Jaynes-Cummings model. Its eigenstates
correspond to electronic excitations dressed by the cavity
photons and can be expressed as∣∣ψ±(0)

n

〉 = A±
n |g,n〉 + B±

n |e,n − 1〉, (7)

where

A±
n = ε±(0)

n − h̄ωc(n − 1) − �/2√[
ε

±(0)
n − h̄ωc(n − 1) − �/2

]2 + g2
Rn

, (8)

B±
n = gR

√
n√[

ε
±(0)
n − h̄ωc(n − 1) − �/2

]2 + g2
Rn

, (9)

and the composite electron-photon states |g,n〉 = |g〉⊗ |n〉
and |e,n〉 = |e〉⊗ |n〉 describe both the QD state (the ground
state g or the excited state e) and the field state with n

cavity photons. It should be noted that the Jaynes-Cummings
Hamiltonian commutes with the excitation number operator

N̂ = a†a + (σz + I )/2, (10)

whose eigenstates correspond to the conserved number of total
electron-photon excitations in the system counted as number
of the excitations in QD (zero for the state |g〉, unity for the
state |e〉) plus number of the photons in the cavity mode. The
eigenenergies corresponding to the states (7) are given by

ε±(0)
n = h̄ωc

(
n − 1

2

)
±

√
(h̄ωc − �)2

4
+ g2

Rn. (11)

In order to obtain the emission spectrum of the system, we
need to analyze optical transitions between the eigenstates (7).
An emitted photon goes outside the system, and a pumped
photon appears in the system. Thus, there is an exchange
of photons between the coupled QD-microcavity system and
some external reservoir. Therefore, we can introduce the
Hamiltonian of the exchange of photons between cavity and
outside world,

Ĥex = h̄(
�ar† + 
a†r), (12)

where r†,r are creation and annihilation operators for the
external photons and 
 is the system-reservoir coupling
constant.

The probabilities (intensities) of transitions with emission
of photon from the cavity are proportional to the corresponding
matrix elements,

Iif ∼ |〈ψf ,1R|Ĥex|ψi,0R〉|2, (13)

where the symbols ψf ,ψi denote the final and initial eigen-
states of the Hamiltonian (7) and 0R and 1R describe zero- and
one-photon states of the reservoir. Substituting Eq. (12) into
Eq. (13), one gets

Iif ∼ |〈ψf |a|ψi〉|2

= (√
niA

±
nf

A±
ni

+ √
nf B±

nf
B±

ni

)2
δnf ,ni−1, (14)

where the states |ψi,f 〉 are defined by Eq. (7) and integers ni,nf

are initial and final numbers of electron-photon excitations in
the system, defined earlier [see Eq. (10)].
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The Kronecker δ in Eq. (14) means that only transitions
changing the number of excitations by 1 are allowed in a
system described by the Jaynes-Cummings Hamiltonian. It
follows from Eq. (11) that in the case of resonance (h̄ωc = �)
the optical spectrum contains peaks at the energies h̄ωc ±
gR(

√
n + 1 ± √

n), where n = 0,1,2, . . . . This leads to the
emission spectrum in the form of the Rabi doublet (for n = 0)
and the Mollow triplet (for n � 1) [19]. In the intermediate
regime more complicated multiplet structure can be observed
[14].

It should be noted that in symmetric QDs (gS = 0)
transitions at the Rabi frequency R = 2gR/h̄ are forbidden.
Indeed, the transitions would occur between electron-photon
states with the same number of excitations, nf = ni , which is
not allowed by Eq. (14). However, these transitions become
possible for asymmetric QDs, i.e., when the full Hamiltonian
(6) contains the term gS(a + a†)(σz + 1) [20]. Since for
realistic microcavities the frequency R

√
n lies in the terahertz

(THz) range, such transitions form the physical basis for using
the considered system as a tunable source of THz radiation. We
will consider these transitions in more detail in the following
sections.

III. ANALYTICAL SOLUTIONS

First, let us consider analytically the case of weak asym-
metry. The Hamiltonian (6) then can be represented as a sum
of two parts,

Ĥ = ĤJC + V̂ , (15)

where

ĤJC = h̄ωca
†a + �

2
σz + gR(aσ+ + a†σ−) (16)

is the Jaynes-Cummings Hamiltonian and

V̂ = gS(a + a†)(σz + I ) (17)

is the term arising from the asymmetry of the QD. Considering
the term (17) as a small perturbation and using the standard
first-order perturbation theory, the corrected wave functions of
the system can be written as

|ψ±
n 〉 = ∣∣ψ±(0)

n

〉 + ∑
m

∑
α=±

V ±α
nm

ε
±(0)
n − ε

α(0)
m

∣∣ψα(0)
m

〉
, (18)

where |ψ±(0)
n 〉 are the unperturbed eigenfunctions (7),

ε±(0)
n are the corresponding eigenenergies (11), and V ±α

nm =
〈ψ±(0)

n |V̂ |ψα(0)
m 〉 are the matrix elements of the perturbation

(17).
It is easy to see that these matrix elements differ from zero

only if m = n ± 1, and, thus, states with n,n − 1 and n + 1
excitations become mixed by the asymmetry of the QD. This
mixture leads to the opening of the optical transitions |ψ+

n 〉 →
|ψ−

n 〉 at the frequencies R

√
n. As well, transitions at double

frequencies of the cavity 2ωc ± R(
√

n + 1 ± √
n)/2 become

opened. The allowed transitions are shown schematically in
Fig. 2.

Since the frequency R

√
n can lie in the THz range, an

asymmetric QD-cavity system can be used as a nonlinear THz

FIG. 2. (Color online) Optical transitions in the asymmetrical QD
coupled with the cavity mode.

emitter. Using Eqs. (14) and (18), we obtain the intensity of
THz transitions as follows:

Iif ∼ |〈ψ−
n |a|ψ+

n 〉|2,
where

〈ψ−
n |a|ψ+

n 〉= V −+
n−1,n

ε
−(0)
n − ε

+(0)
n−1

(
√

nA+
n−1A

+
n + √

n − 1B+
n−1B

+
n )

+ V +−
n+1,n

ε
+(0)
n − ε

−(0)
n+1

(
√

n+1A−
n A−

n+1 + √
nB−

n B−
n+1).

with coefficients A±
n and B±

n given by expressions (8) and (9),
respectively.
One can also consider analytically another physical situation:
The asymmetry is no longer assumed to be a weak pertur-
bation, but photon occupation numbers are supposed to be
large, n � 1. This limiting case corresponds to the classical
electromagnetic field in the cavity. Let us represent the full
Hamiltonian (6) as a sum of the “diagonal” part,

Ĥd = h̄ωca
†a + �

2
σz + gS(a + a†)(σz + I ), (19)

and the “off-diagonal” part,

Ĥod = gR(aσ+ + a†σ−). (20)

The Hamiltonian (19) does not commute with the excitation
number operator (10) but does commute with the Pauli matrix
σz. This means that eigenstates of the Hamiltonian (19) can be
represented as ∣∣ψg

n

〉 =
∞∑

k=0

C
g

nk|g,k〉, (21)

∣∣ψe
n

〉 =
∞∑

k=0

Ce
nk|e,k〉. (22)

After substituting the expressions (21) and (22) into the
Schrödinger equation Ĥd |ψg,e

n 〉 = ε
g,e
n |ψg,e

n 〉 with the Hamil-
tonian (19), we obtain the system of algebraic equations for
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coefficients C
g,e

nk :[
h̄ωck − �/2 − εg

n

]
C

g

nk = 0 (23)

for k = 0,1,2, . . . ,[
h̄ωck + �/2 − εe

n

]
Ce

nk + 2gS

√
k + 1Ce

n,k+1 = 0 (24)

for k = 0,1,[
h̄ωck + �/2 − εe

n

]
Ce

nk

+ 2gS(
√

k + 1Ce
n,k+1 +

√
kCe

n,k−1) = 0 (25)

for k = 2,3,4, . . . .
The solutions of Eqs. (23) are evident,

εg
n = h̄ωcn − �

2
, C

g

nk = δnk. (26)

As for Eqs. (25), in the limiting case k � 1 they are similar
to the well-known recurrent expression for the Bessel function
of the first kind,

2mJm(x) = xJm−1(x) + xJm+1(x), (27)

where m is an integer and x is the argument of the Bessel
function of the first kind, Jm(x). Therefore, we can write the
solutions of Eqs. (25) for k � 1 as

εe
n = h̄ωcn + �

2
, Ce

nk = Jk−n(xk) , (28)

where xk = −4gS

√
k/h̄ωc. It should be noted that the solutions

(28) satisfy Eqs. (24) and (25) for small integers k ∼ 1 as well,
since

lim
n→±∞ Jn(x) = 0.

As a result, for large photon occupation numbers n the
eigenfunctions (21) and (22) take the form∣∣ψg

n

〉 = |g,n〉, (29)

∣∣ψe
n

〉 =
∞∑

k=0

Jk−n(xk)|e,k〉. (30)

Let us make n and V tend to infinity while keeping n/V

constant. This limiting case corresponds to the conventional
model of an intense laser-generated field [24]. Then xn =
(dee · e)En/h̄ωc, where En = √

2nh̄ωc/ε0V is the classical
amplitude of the field. Therefore, in the case of the most
relevant physical situation with xn � 1, the eigenfunctions
(30) can be estimated as |ψe

n〉 ≈ |e,n〉 since Jk−n(0) = δk,n.
This allows us to seek eigenfunctions of the full Hamiltonian
Ĥ = Ĥd + Ĥod as a superposition (linear combination) of
the functions (29) and (30). Substituting this superposition
ψ±

n into the Schrödinger equation Ĥ|ψ±
n 〉 = ε±

n |ψ±
n 〉, we can

find the energy spectrum ε±
n of the coupled electron-photon

system. Particularly for the resonance case (� = h̄ωc), this
linear combination is

|ψ±
n 〉 = 1√

2

(∣∣ψe
n

〉 ± ∣∣ψg

n+1

〉)
(31)

and the corresponding energies are

ε±
n = h̄ωcn + εe ± h̄′

R

2
, (32)

where ′
R = (deg · e)En/h̄ is the Rabi frequency for the

classically strong electromagnetic field. It follows from the ex-
pressions (29)–(31) that the states with all possible numbers of
excitations become intermixed. This means that all transitions
|ψ±

n 〉 → |ψ±
m 〉 are allowed and emission spectrum contains

frequencies (n − m)h̄ωc ± ′
R . However, the intensity of

the transitions decreases with increasing (n − m) because
of decreasing the Bessel functions Jk(x) with increasing k

[20]. Therefore, the most intensive ones correspond to those
depicted in Fig. 2. This agrees with the results obtained
above in the frameworks of perturbation theory for the weak
asymmetry case.

It should be noted that there is no analytical solution for
arbitrary photon occupation numbers of the cavity mode and
arbitrary asymmetry strength. To study physically relevant
situations outside the obtained analytical solutions as well as
to calculate the shape of the emission spectrum, we need to
apply the numerical approach discussed in the next section.

IV. NUMERICAL APPROACH

The discussion in the previous section was dedicated to
the analytical calculation of the energy spectrum of the
system. We were able to find the emission frequencies in two
limiting cases corresponding to weak asymmetry and large
photon occupation numbers. However, even in these cases,
our treatment did not allow us to calculate the shape of the
emission spectrum as a function of the intensity of the external
pump. In this section we calculate it numerically using the
approach based on the master equation techniques.

Let us assume that one has a QD embedded in a microcavity
and switches on incoherent pumping of the photonic mode.
After some time an equilibrium is established and steady state
(SS) is reached. This means that the increase of photon number
provided by external pumping is balanced by escape of photons
from the cavity. In this regime, one can measure the emission
spectrum, i.e., the intensity of the flux of the photons going
out from the cavity as a function of their frequency.

In quantum optics, the standard way to consider the
processes involving external pumping and decay is based on
using the master equation for the full density matrix of the
system ρ (see, e.g., Ref. [25]), which can be represented in the
following form:

∂tρ = 1

ih̄
[Ĥ; ρ] + Lρ. (33)

The first term on the right-hand side of the equation, Ĥ,
stands for the Hamiltonian describing coherent processes in the
system, and the symbol L denotes the Lindblad superoperator
accounting for pump and decay. In the case we consider, Ĥ is
given by the expression (6), while the Lindblad term reads

Lρ = P (aρa† + a†ρa − a†aρ − ρaa†)

+γph

2
(2aρa† − ρa†a − a†aρ)

+γQD

2
(2σρσ+ − ρσ+σ − σ+σρ). (34)

Here P is the intensity of the incoherent pump of the cavity
mode and γph and γQD are broadenings of photonic and
excitonic modes, respectively (the latter is taken to be zero
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in all calculations below). Equation (33) represents a set of
linear ordinary differential equations for matrix elements of
the density matrix ρ. In our numerical analysis we will use the
basis

|g,n〉,|e,n〉, (35)

which gives us the following system of equations, which can
be written briefly as

∂tρ
ab
ij =

∑
k,l;c,d

Mabcd
ijkl ρcd

kl , (36)

or, in the explicit form, as

∂tρ
ab
ij = h̄ωc(i − j )ρab

ij + �

2
[(−1)δag − (−1)δbg ]ρab

ij + gR

(√
i + 1δaeρ

ab
i+1,j +

√
iδagρ

ab
i−1,j −

√
jδbgρ

ab
i,j−1 −

√
j + 1δbeρ

ab
i,j+1

)
+ gS

(√
i + 1δaeρ

ab
i+1,j +

√
iδaeρ

ab
i−1,j −

√
jδbeρ

ab
i,j−1 −

√
j + 1δbeρ

ab
i,j+1

)
2

+P

2

[
2
√

(i + 1)(j + 1)ρab
i+1,j+1 + 2

√
ijρab

i−1,j−1 − (2i + 2j + 2)ρab
i,j

]
+γph

2

[
2
√

(i + 1)(j + 1)ρab
i+1,j+1 − (i + j )ρab

i,j

] + γQD

2

(
2ρab

i,j δagδbg − ρab
i,j δae − ρab

i,j δbe

)
. (37)

Here the superscripts a,b,c,d are either g or e (ground or
excited state of the QD) and the subscripts i,j,k,l correspond
to the number of the photons in a cavity. In principle, they can
take values from zero to infinity, but, for numerical analysis,
truncation of the matrix is needed. The stronger the pump,
the more states should be taken into account. The natural
way to control the accuracy of the truncation is to check the
conservation of the trace of the truncated density matrix.

A numerical solution of the system (36) allows us to
find the full density matrix of the system in stationary state,
ρ

ab(SS)
ij , which allows us to determine the probabilities of

the occupancies of different quantum states of the coupled
QD-cavity system as functions of the intensity of the external
pump. As well, it allows us to find the shape of the emission
spectrum of the system. To pursue this latter task, we will
use the two approaches. Let us start with the relatively simple
model based on the modified Fermi golden rule, considering
the isolated QD-cavity system. Its eigenstates can be found
by diagonalization of the Hamiltonian (6). This procedure was
performed analytically in the previous section for the cases
of weak asymmetry and large photonic occupation numbers.
However, in the general case, a numerical analysis is needed.
Let us suppose that we prepare a system in one of the
eigenstates of the Hamiltonian. Then, according to the Fermi
golden rule, we can estimate the emission spectrum as

S(ω) ∼
∑
if

|〈ψf ,1R|Ĥex|ψi,0R〉|2℘(ω)
γ 2

ph

(εf − εi−h̄ω)2+γ 2
ph

∼ |aif |2℘(ω)
γ 2

ph

(εf − εi − h̄ω)2 + γ 2
ph

, (38)

where the symbols ψf ,ψi denote the final and initial eigen-
states of the Hamiltonian (6), 0R and 1R describe zero- and
one-photon states of the reservoir, Ĥex is the Hamiltonian of the
coupling between the cavity and reservoir [see Eq. (12)], and
℘(ω) is the density of states in the reservoir, aif = 〈ψi |a|ψf 〉.
The Lorentzian factor accounts for the broadening of the state,
γph, provided by finite lifetime of cavity photons.

If the system is in the mixed state, the spectrum can be
estimated as a sum over all possible initial states taken with
corresponding probabilities Pi ,

S(ω) ∼ 2π

h̄

∑
if

Pi |af i |2℘(ω)
γ 2

ph

(εf − εi − h̄ω)2 + γ 2
ph

. (39)

Parameters Pi entering into the above expression are nothing
but diagonal matrix elements of the density matrix in the
stationary state written in the basis of eigenstates of the
Hamiltonian (6), Pi = ρ̃SS

ii . The matrix ρ̃SS can be found by a
unitary transformation of the stationary density matrix in the
basis (|e,n〉,|g,n〉) obtained from solution of Eqs. (36).

The described phenomenological approach for calculating
the emission spectrum has one substantial drawback, namely
we assume the peaks in the spectrum to be Lorentzians, which
is not always guaranteed [23,26,27]. In general, according
to the Wiener-Khintchine theorem [28], the spectrum of the
emission from the system can be calculated as a Fourier
transform of two-time correlator,

S(ω) ∼ lim
t→∞R

∫ ∞

0
〈a†(t + τ )a(τ )〉eiωτ dτ. (40)

The calculation of two-time correlators is a complicated
task which cannot be solved exactly. However, it is well
known from the literature [23,28] that using certain general
assumptions about the behavior of the system allows one to
reduce the calculation of two-time correlators to calculation
of one-time correlators within the framework of the quantum
regression theorem (QRT) [29]. This means that the spectrum
can be calculated straightforwardly from the density matrix of
the system in stationary state. For the system we consider in
the present paper, the approach based in QRT results in

S(ω) = 1

π
R

∑
i,j,k,l;a,b

[(M + ih̄ωI )−1]a,b
ij,kl

(
ρ

ab(SS)
km

)
almaji,

(41)
where M is the matrix defined in Eqs. (36) and (37) and I is
the unity matrix. It should be noted that the expression above
is valid for any choice of the basis.
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The shape of the emission spectrum of the system calculated
using the Fermi golden rule and QRT is analyzed in the
following section.

V. DISCUSSION

The emission spectrum of the system, calculated using the
phenomenological approach based on the Fermi golden rule,
is presented in Fig. 3.

One sees that in the region of the frequencies close to the
eigenfrequency of the cavity (coinciding with the frequency
of optical transition in QD, h̄ωc = �), the spectrum reveals a
quadruplet pattern. The appearance of the additional multiplets
is not visible in the linear scale but becomes apparent in
logarithmic scale as shown in Fig. 4. These results are in
good qualitative agreement with those obtained earlier for the
symmetric QDs in the strong-coupling regime [14]. This is not
surprising, since the main difference in the emission from the
symmetric and asymmetric QDs appears at the regions around
the Rabi frequency and the double frequency 2ωc.

The insets in Figs. 3 and 4 show the emission pattern
at the THz range about R . In full agreement with results
of Sec. II, one sees the appearance of the peaks in the
emission at frequencies ω = R

√
n with n = 1,2,3, . . . . It

should be noted that one should expect very low intensities
of THz emission as compared to the emission in the optical
diapason, since density of states of the photon reservoir scales
as ω3. However, the situation can be improved if the coupled
QD-cavity system is placed inside a bigger cavity tuned at
the THz range. In this case, the density of states has a sharp
peak around the eigenfrequency of the THz cavity and the rate
of spontaneous emission is dramatically increased due to the
Purcell effect [30]. The current state of technology allows us
to increase the emission rates in the THz regime by a factor of
10 in high-quality cavities [31].
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FIG. 3. (Color online) Emission spectrum of the asymmetric
QD-cavity system calculated using the Fermi golden rule. The
standard quadruplet structure is revealed in an optical diapason close
to the eigenfrequency of the cavity. An additional set of emission
peaks appears in the range of frequencies close to the Rabi frequency.
They are provided by the asymmetry of the QD and are absent
in a symmetric case. The parameters of the calculation are γph =
0.1 meV, γQD = 0, P ≈ 0.15 meV, h̄ωc = � = 1 eV, gR ≈ gS ≈
1 meV.
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FIG. 4. (Color online) Emission spectrum of the asymmetric
QD-cavity system calculated using the Fermi golden rule in a
logarithmic scale. The multiplet structure of the emission around
the eigenfrequency of the cavity becomes more visible than in the
linear scale. An additional set of emission peaks appears in the range
of the frequencies close to Rabi frequency. Parameters of the system
are the same as for Fig. 3.

The results of the calculation of the spectrum based on using
the quantum regression theorem are presented in Fig. 5. The
part of the spectrum corresponding to the optical diapason for
the frequencies about ω ≈ ωc is in good agreement with results
obtained by using the Fermi golden rule (Figs. 3 and 4). The
differences are that the side peaks in the QRT plots have lower
intensities, and the shape of the spectrum is more smooth, so
the multiplet pattern becomes invisible.

The changes in the THz part are more dramatic. Instead
of a series of narrow peaks, shown in the inset of Fig. 5, one
sees a formation of a single broad strongly asymmetric peak
centered at the frequency ω ≈ R . However, the qualitative
result remains the same: new optical transitions in the THz
range are opened by the asymmetry of the QD.

The important question is in regard to statistical properties
of the emitted THz light. As the emission spectrum we obtain is
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FIG. 5. (Color online) Emission spectrum of the asymmetric
QD-cavity system calculated using QRT. The standard quadruplet
structure is revealed in an optical diapason close to the eigenfrequency
of the cavity. A single broad asymmetric emission peak appears in the
range of the frequencies close to the Rabi frequency. The parameters
of the calculation are the same as described in the caption to Fig. 3.
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quite broad, and the efficiency of the THz emission is normally
suppressed as compared to the emission at optical frequencies,
one can expect that the emitted radiation will have thermal
statistics with second-order coherence g(2) ≈ 2. On the other
hand, placing the sample into a high-quality THz cavity can
lead to the selection of a more narrow region of the frequencies
of the emission. In this case, one can expect to achieve a THz
lasing regime with g(2) ≈ 1. Detailed consideration of this
situation, however, lies beyond the scope of the present paper.
As to detection of the emitted THz radiation, it can be achieved
by standard THz detectors (see, e.g., the review in Ref. [32]).

VI. CONCLUSIONS

In conclusion, we considered an asymmetric two-level
quantum system corresponding to a small asymmetric QD
interacting with an electric field of a single-mode microcavity.
We found analytical solutions for the eigenenergies of the
system for the cases of weak asymmetry and high photon

occupation numbers. We also developed a numerical approach
to calculate the emission spectrum under incoherent pumping.
It is shown that, in the regime of a strong pump, a new set
of peaks in the emission appears in the regions close to the
Rabi frequency and double transition frequency. This allows
one to use the proposed system as nonlinear optical element
and tunable source of the THz radiation.
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