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Nonlinear propagation of an optical speckle field

Stanislav Derevyanko*

Nonlinearity and Complexity Research Group, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom

Eran Small
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

(Received 27 February 2012; published 14 May 2012)

We provide a theoretical explanation of the results on the intensity distributions and correlation functions
obtained from a random-beam speckle field in nonlinear bulk waveguides reported in the recent publication by
Bromberg et al. [Nat. Photonics 4, 721 (2010)]. We study both the focusing and defocusing cases and in the
limit of small speckle size (short-correlated disordered beam) provide analytical asymptotes for the intensity
probability distributions at the output facet. Additionally we provide a simple relation between the speckle sizes
at the input and output of a focusing nonlinear waveguide. The results are of practical significance for nonlinear
Hanbury Brown and Twiss interferometry in both optical waveguides and Bose-Einstein condensates.
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I. INTRODUCTION

Extreme events play an important part in many areas
of physics. In turbulence they determine the non-Gaussian
statistics of the tails of the probability distribution functions
for the properties of random flow [1], and in the linear theory
of random-wave localization the momenta non-self-averaging
quantities, such as, e.g., wave transmissivity, are determined by
rare nontypical realizations rather than the typical (localized)
ones [2,3].

In the context of nonlinear optics the study of extreme
events has recently drawn attention in the context of optical
rogue waves [4]—emerging dynamical objects of very high
amplitude and short lifetime. Closely related topics are extreme
statistics in Raman amplification [5] and supercontinuum
generation [6]. The appearance of the rogue waves in optical
fibers is not necessarily a nonlinear effect and can be observed
in the linear regime as well [7]. Finally the statistics of
rare events (extreme outages) also determines the probability
of errors in fiber-optical communications with distributed-
amplifier spontaneous emission [8].

Most of the applications above pertain to the field of nonlin-
ear fiber optics. Here we study the emergence of high-power
optical pulses in the context of nonlinear Hanbury Brown and
Twiss (HBT) interferometry. The goal of this paper is to explain
theoretically recent experimental results reported in Ref. [9] on
the nonexponential tails of the probability distributions of the
intensity of disordered optical fields propagating in nonlinear
bulk waveguides. The linear HBT method was first proposed
in the 1950s in astronomy as a means of measuring the size of
a distance light source (e.g., a star) by measuring the intensity
correlation radius of the received light [10]. The latter is the
the typical size of an optical speckle (i.e., bright area) observed
when multiple waves emitted from a thermal source interfere
constructively [11]. The problem allows classical treatment,
and when the propagation is linear one can infer that at a
distance Z from a source of diameter L the size of the speckle
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S is given by the simple relation S = Zλ/L, where λ is the
wavelength of emitted light [9].

Reference [9] was the first publication to our knowledge
where HBT interferometry in nonlinear light propagation and
the resulting speckle distribution were studied in bulk AlGaAs
waveguides. The system is effectively described by the
nonlinear Schrödinger equation (NLSE), which paves the way
to application of nonlinear HBT interferometry not only in the
field of optics but in weakly interacting Bose-Einstein conden-
sates as well [12]. Two principal findings of Ref. [9] were that
the tail of the intensity distribution P (I ) of the speckled field
is nonexponential (unlike in linear diffraction [11]) and that
the intensity correlation radius (speckle size) depends on the
magnitude of the focusing nonlinearity. The first observation
signifies the fact that the statistics of the optical field after
nonlinear propagation is no longer Gaussian (or, equivalently,
the amplitude of the field no longer follows the Rayleigh
distribution). This effect is also known to occur in linear
systems when a linear wave propagates through a disordered
medium [13]. Here however we deal with a different type of
setup where not only is nonlinearity present but also the disor-
der is only in the initial conditions (incident beam) and not in
the medium itself. For the focusing nonlinearity in an important
two-dimensional (2D) configuration of the system (commonly
known as 1 + 1 geometry), this phenomenon was correctly
attributed by the authors of Ref. [9] to generation of bright
spatial soliton beamlets [14] that now play the role of observed
speckles. The tails of the intensity distribution are determined
by extremely rare events when an extremely high-power (and
narrow) soliton is created from a random beam of finite waist
and intensity. Note that the propagation of incoherent fields
in nonlinear optics has been studied previously in various
contexts (see, e.g., Refs. [15,16]), but the specific problem of
intensity tails and the correlation functions of the nonlinear
HBT interferometer had not been properly studied (either
experimentally or theoretically) before the publication of [9].

Our paper seeks to explain theoretically the profile and
shape of the tails of the intensity probability density functions
(PDFs) in the 1 + 1 geometry using the inverse scattering
technique (IST) for the NLSE [17]. The paper is organized as
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follows: In Sec. II we introduce the NLSE model and the model
for disorder. Then in Sec. III we first construct a semiempirical
theory of a HBT interferometer in the high-power regime
where the field is dominated by its soliton component. In
Sec. IV this theory is corroborated by the results obtained
analytically from the IST in the limit of a short-correlated
source field. Section V is dedicated to theoretical results in the
case of a defocusing nonlinearity where no bright solitons are
observed, and we summarize our findings in the Conclusion.
In all cases we perform full numerical simulations using
parameters close to those used in the experimental setup of
Ref. [9] to confirm our analytical predictions.

II. THE MODEL

The dynamics of beam propagation along the direction of
the z axis in the presence of diffraction and nonlinearity is
given by the nonlinear Schrödinger equation [14]:

∂E

∂z
= i

2β0

∂2E

∂x2
+ i

n2

n0
β0|E|2E, (1)

where E is the electrical field, x is the spatial transverse
coordinate, β0 = (2π/λ)n0 is the propagation constant, n0 is
the linear refractive index, and n2 is the nonlinear coefficient of
the medium. Here we will consider both the attractive (n2 > 0)
and repulsive (n2 < 0) cases. We will also be using dimen-
sionless soliton units ξ = x/L, where L is some characteristic
width, τ = z/Ld where Ld = L2β0 is the diffraction length
(Rayleigh range), and u is the dimensionless field E/

√
Ĩ with

Ĩ = (|n2|β0Ld/n0)−1. Then in the new dimensionless units we
have

∂u

∂τ
= i

2

∂2u

∂ξ 2
+ n2

|n2| i|u|2u. (2)

When choosing the model for the randomly disordered
input we opt for a form which mimics as closely as possible
the experimental setup and simulation data from Ref. [9].
The physical input is defined by two parameters: the initial
speckle size S0 and the aperture L (we also pick the latter
as the normalization width for the soliton units above).
In our numerical simulations the spatial resolution δx is
determined according to S0 to ensure sufficient sampling and
the width of the computational domain L′ is set large enough
to prevent folding during propagation. The input disordered
field is modeled in Fourier space by N random low-frequency
modes, where N = L′/S0. As for the complex amplitudes of
these random modes, an, we assume that these form a set
of of independent identical random variables each having a
uniformly distributed phase and an amplitude sampled from a
distribution with the average intensity a2. This pattern is then
filtered by the finite aperture L to manifest the disordered field
at the input facet of the nonlinear waveguide. As the number
of modes is large the central limit theorem applies so that the
field above, E0(x), can be considered Gaussian with zero mean
and the correlation function

〈E0(x)E∗
0 (x ′)〉 = a2 sin[π (x − x ′)N/L′]

sin[π (x − x ′)/L′]
. (3)

The field is of course nonzero only in the aperture window
[−L/2,L/2] so the formula above applies only to this region.

The averaged initial intensity is then I0 = 〈|E0(x)|2〉 = a2N .
Also, when S0 is the smallest length scale in the problem, we
will be using the δ-correlated approximation in which the right-
hand side (RHS) of Eq. (3) is substituted with 2D̃δ(x − x ′)
where D̃ = L′a2/2 = S0I0/2. This makes further analytical
treatment possible in some cases, and we will often use it in
the paper.

As for the intensity distribution P (I ), since the initial
field is Gaussian, the statistics of the propagated field in the
linear case (n2 = 0) will remain Gaussian. As the intensity
is the modulus squared of the complex Gaussian variate,
its normalized value I/〈I 〉 has an exponential distribution,
a fact which is well known in the linear theory of speckle
spectra [11]. Our main task in the subsequent sections will be
to determine the modified shapes of the intensity distribution
P (I ) in the presence of nonlinearity. Of particular interest is
the high-intensity tail of this distribution, determined by rare
fluctuations leading to field bursts.

III. THE PHENOMENOLOGICAL APPROACH

Let us consider the case of the focusing (n2 > 0) NLSE.
Then it is known that, given enough initial power, an
arbitrary initial condition E0(x) evolves into a combination
of hyperbolic secant constituents (each corresponding to an
individual bright soliton) and quasilinear radiation [17]. Here
we will adopt a phenomenological description of the intensity
distribution and the correlation properties of the output field
based on the prescribed form of the solution as the sum of
statistically independent soliton pulse shapes with prescribed
statistical properties.

The single-soliton solution of (2) in soliton units is given
by

us(τ,ξ ) = 2ηsech[4ηvτ + 2η(ξ − ξ0)]

× exp{−i[2vξ + 2τ (v2 − η2) − φ]}, (4)

where the parameters η and v are related to the soliton’s am-
plitude A and “velocity” (i.e., the angle of incidence θ ), while
the parameters ξ0 and φ are the soliton’s initial position and
global phase. The total power of an individual soliton (or rather
its transverse part in the x plane), P = ∫ |E|2dx, is simply
proportional to its amplitude: P = 4ηĨL = 4ηn0/|n2|β2

0L.
The justification for this approach is presented in the

following Sec. IV where a more rigorous IST-based analysis is
performed. It is these soliton constituents that contribute to the
tails of the intensity distribution P (I ) as the linear radiation
quickly disperses away from the aperture. Let us now assume
the regime where the density of solitons is not too high so that
the average minimal distance between the solitons is larger
than the average width of a soliton—a regime that can be called
an asymptotically free regime. Then each soliton contributes
independently to the intensity distribution (the interference
effects are neglected), and we may consider the contribution
from each individual soliton separately. For the single-soliton
solution of the NLSE (1) in real-world units the intensity at a
certain point x is given by

I (x; η,v,x0,τ ) = 4η2Ĩ sech2

[
2η

(
x − x0

L
+ 2vτ

)]
, (5)
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where 2η is the amplitude of the soliton in the dimensionless
soliton units, 2v is its velocity, and x0 is the intial position of
the soliton center (in micrometers). As the input is random,
the amplitude, velocity, and initial position of the soliton are
also random variables. As for their joint probability density
function P (v,x0,η), we shall make an assumption which is
supported both by numerical simulations and by the following
Zakharov-Shabat eigenvalue analysis (see below). Namely, we
assume that the soliton velocity parameter v is independent
of the other variables and its distribution is uniform over a
symmetric interval [−�v/2,�v/2]. This immediately means
that for a soliton emitted from the origin the position shift
due to the fluctuating velocity is also a uniformly distributed
random variable in the interval [−�̃/2,�̃/2], where �̃ =
2�vτL and τ = Z/Ld is the propagation distance in soliton
units.

The conditional probability density of having the value of
intensity in the vicinity of I given the amplitude of the soliton,
2η, is then given by

P (I |η; x,τ ) =
〈

1

�v

∫ �v/2

−�v/2
δ[I − I (x; η,v,x0,τ )]dv

〉
, (6)

where I (x; η,v,x0,τ ) is given by Eq. (5) and the angular
brackets denote additional averaging with respect to the
marginal PDF of the initial positions P (x0|η).

In order to perform the averaging analytically we will
consider only the high-intensity tails of the PDF when the
typical soliton width, L/2η, is much smaller than the width
of the position distribution, �̃. Additionally we will assume
that the propagation distance τ is large enough that �̃ � L,
and therefore the fluctuations in the soliton initial position
x0 are negligible when compared to those due to the random
velocity 2v. After all these assumptions the result of integration
of (6) can be presented as

P (I |η; x) = L

�̃

√
Ĩ

I
√

4η2Ĩ − I
θ [4η2Ĩ − I ], |x| < �̃/2, (7)

where η � L/2�̃ and I � 16η2Ĩ exp[−8η�vτ ].
If the number of produced solitons is n > 1 then it

is relatively straightforward to derive the average minimal
distance between neighboring solitons, which is given by
�̃/(n2 + 1). As we have assumed that the width of each soliton
is much smaller than the average minimal intersoliton distance,
this implies that the condition for the amplitude is in fact
η � L(n2 + 1)/2�̃.

Finally, to get the marginal intensity distribution P (I ), we
need to average Eq. (7) over all realizations of the soliton
amplitude 2η. Assuming that the marginal PDF Pη(η) is known
and is the same for all realizations with different soliton
numbers, the result reads

P (I ) = 〈n〉 1

4�vτ

1

I

∫ ∞

0
Pη(

√
I/4Ĩ cosh z)dz, (8)

where I � [Ĩ /(2�vτ )2](〈n〉2 + 1)2, the factor 〈n〉 takes into
account that for each realization all n solitons contribute
equally and independently to the intensity, and we neglect
the effects of interference and soliton collisions (i.e., overlap).

IV. IST-BASED ANALYSIS

Many properties of the evolving solution of the NLSE (2),
including the number of emerging solitons, their amplitudes,
energies, and velocities can be established by means of the
so-called Zakharov-Shabat spectral problem (ZSSP) [17]:

i
∂ψ1

∂ξ
+ uψ2 = ζψ1, − u∗ψ1 − i

∂ψ2

∂ξ
= ζψ2. (9)

Here the complex initial field u(0,ξ ) plays the role of the
“potential” while the complex eigenvalues ζ can have both
discrete and continuous values. It is the discrete spectrum ζn =
vn + iηn which determines the soliton part of the solution, and
in the case of the single-soliton solution the parameters v and
η are exactly the ones featured in Eq. (4).

We will start with numerical Monte Carlo simulations for
the number of emerging solitons as well as their amplitudes and
phases. In the Monte Carlo simulations we took 4000 runs with
the parameters of the random Zakharov-Shabat potential given
in Table I. Those were chosen to be close to the experimental
values of Ref. [9]. We used a well-documented method for
finding the discrete eigenvalues of (9) which relies on the fact
that these are the complex roots of the associated first Jost
coefficient a(ζ ) and can be found by recursive subdivision
of the complex space into rectangles and application of the
argument principle to each small rectangle (see Refs. [18]
for further details). We performed two runs with different
values of the initial average power P = a2NdL. The first
one corresponds to peak power of P = 1 kW and the second
to P = 5 kW, and we will refer to these as “low-power”
and “high-power” runs, respectively (keeping in mind that
these labels correspond to the power of the initial disordered
field). Other runs with different values of the input parameters
(like the initial power and the correlation length) were also
performed, but their results were qualitatively the same as in
the high-power or low-power runs so to keep the presentation
simple and illustrative we report only the results for these
two. Because the input is random the number of emerging
solitons will fluctuate around the mean. In Fig. 1 we present a
distribution of the number of emerging solitons for the values

TABLE I. The main parameters of the simulations for the focusing
case.

Parameter Value

Size of the aperture L (μm) 50
Thickness of the slab d (μm) 1.5
Size of the computational domain L′ (μm) 4096
Total number of points M ′ 8192
Number of points resolving the aperture M 100
Total number of random modes N 2048
Maximum propagation distance z (μm) 8000
Linear refractive index n0 3.3
Propagation constant β0 (μm−1) 12.61
Nonlinear coefficient n2 (cm2/GW) 1.67 × 10−4

Initial correlation length S0 (μm) 2
Diffraction length Ld (mm) 33.9
Normalization intensity Ĩ (GW/cm2) 0.05
Window used for collecting histograms � (μm) 1024
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(a) (b)

FIG. 1. (Color online) The distribution of the number of emerging
solitons for low-intensity (a) and high-intensity (b) regimes.

of parameters given in Table I, together with the corresponding
Poisson fits.

One can clearly see that the number of solitons does
approximately follow the Poisson distribution for low intensity
(small number of solitons) but this approximation breaks down
for the high-power run when the number of solitons is higher.
Similar results were reported earlier in Ref. [16] in the context
of nonlinear fiber optics.

Next, shown in Fig. 2 (as dashed and dotted lines) are the
numerical marginal PDFs for the real and imaginary parts of
the ZS eigenvalues Pv(v) and Pη(η) which are just the scaled
distributions for the soliton final position and amplitude. A

(a)

(b)

FIG. 2. (Color online) The marginal PDFs of the real (a) and
imaginary (b) parts of the ZSSP eigenvalues.

separate Monte Carlo run (not shown) has demonstrated that
the numerical joint distribution P (v,η) is indeed separable
so the marginal distributions are sufficient. One can see that
the PDF for the real part Pv(v) is close to uniform with
the width �v = 75.8, which supports the assumptions made
earlier in Sec. III. Indeed, assuming that solitons are created
in the area localized by the relative small aperture size L, it
follows that the uniform distribution of the real parts of the
eigenvalues with support �v yields a uniform distribution of
soliton positions at the output facet with the support �̃ =
2�v(L/Ld )z = 1788 μm for the values of parameters given
in Table I. Moreover our numerical data also show that the
support of the distribution � does not depend on the average
power P , but rather solely on the input correlation length S0,
where, as expected, shorter input correlation distances yield
broader distributions for v.

In the limit of a δ-correlated initial field the results above
can be confirmed analytically. Indeed, one can formally define
a 2D density of states (eigenvalues) of the non-Hermitian
ZSSP (9) as

ρ(v,η) = 1

L

∑
n

〈δ(v − vn)δ(η − ηn)〉, (10)

where the summation is performed over all discrete
eigenvalues for each realization and the averaging is
performed over all possible realizations. It is clear that the
density of states ρ(v,η) is (up to a normalization factor) the
probability density of having a level in the vicinity of point
(v,η). Therefore if one knows the density of states it is possible
in principle to determine the desired level distribution. In
Ref. [19] this quantity was obtained analytically in the limit
of the Stratonovich δ-correlated potential when the support of
the potential L is large. The result reads

ρ(v,η) = 1

πD

(η/D) coth(η/D) − 1

sinh2(η/D)
, D ≡ S0

L

I0

2Ĩ
. (11)

One can show [20] that in the strict mathematical limit of
Stratonovich white noise the result above is inapplicable, but
it holds for any physical process with a symmetric field corre-
lation function of finite but small radius, like, e.g., (3), when S0

is much less than the aperture length. One immediately notices
that the quantity ρ(v,η) does not depend on the real part of the
eigenvalue, v. Therefore the total number of states with a given
imaginary part η is infinite, i.e., the probability density function
P (v,η) is not normalizable in the v direction. This is again the
consequence of the idealized nature of the white noise, and
for systems with finite correlation radius all the quantities
in question are of course finite. This is indeed confirmed by
the numerical results discussed above—as we can see, the
marginal PDF Pv(v) is almost flat, it does not depend on the
value of the initial power, and its support diverges in the white-
noise limit. Thus the analytical result Eq. (11) in the short-
correlated limit explains both the separability of the eigenvalue
distribution and the flat marginal distribution P (v) observed
numerically. One can now immediately derive the analytical
expression for the normalized marginal probability Pη(η):

Pη(η) = 2

D

(η/D) coth(η/D) − 1

sinh2(η/D)
. (12)
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FIG. 3. (Color online) The PDF of the field intensity obtained
from the direct numerical simulations of Eq. (2) and the one
reconstructed from the IST theory via formula (13). The average
intensity was 〈I 〉 = 3.28 × 10−2 GW/cm2 (low power) and 〈I 〉 =
13.3 × 10−2 GW/cm2 (high power).

For the specific parameters of our numerical simulations the
last formula in Eq. (11) yields D = 0.61 for the low-power
run and D = 3.08 for the high-power run. The corresponding
analytical curves (12) are plotted as solid lines in Fig. 2(b) and
one can observe a rather good agreement with the numerics.

Plugging the amplitude PDF (12) into the expression (8),
one obtains

Pest(I ) = 〈n〉 L

2�̃D

1

I
f

(√
I

4ĨD2

)
,

(13)

f (x) = 2
∫ ∞

0

x cosh z coth(x cosh z) − 1

sinh2(x cosh z)
dx.

For large values of the argument x � 1 we have f (x) ≈
8xK1(2x) and we obtain the asymptote P (I ) ∝
I−3/4 exp[−(I/D2Ĩ )1/2] as the high-intensity tail of the
distribution. It turns out that Eq. (13) provides a remarkably
good approximation of the tails of the intensity PDFs—see
Fig. 3, where we compare it with the results of the direct
Monte Carlo simulations of the NLSE propagation (again
4000 realizations were used). One can see that our analytical
result works rather well for I > 10〈I 〉 = 0.328 GW/cm2

(low-power limit) and 1.33 GW/cm2 (high-power limit).
The discrepancies at low intensities are due to the fact
that (i) at low intensity the contribution of the radiation
(completely ignored in our semianalytical scheme) becomes
non-negligible and (ii) the dilute-soliton-gas approximation is
not valid for very low-power (and hence very wide) solitons
that overlap and interfere significantly, which violates the
assumptions used in deriving Eq. (13). For the overlapping
solitons the phase interference becomes an important
effect diminishing the soliton contribution to the intensity,
which explains why the analytical result overestimates the
probability of low-intensity events. One can also observe that
the numerical PDFs for both high- and lower-power values
have an interesting structure with an inflection point. This
inflection point corresponds to the crossover between the
regime of well-separated high-intensity pulses and that of

FIG. 4. (Color online) The intensity correlation function obtained
from the direct numerical simulations of Eq. (2).

broad, interfering low-intensity solitons. Finally we plot a
−3/2 slope line as a reference. In Ref. [9] it was suggested
that this slope is close to universal, which would imply some
universal power-law tails. Our results show that this is not so.
While it does work well as the best fit in the region around the
inflection point in the high-power case, it is well off the mark
in the low-power case. Also, for the high-power case one can
clearly see a crossover to the exponential tail as predicted by
Eq. (13). So we must conclude that there is no evidence of
a universal (i.e., independent of the initial power) power-law
asymptote which describes the whole tail of the intensity
distribution, as clearly seen from Fig. 3.

Following Ref. [9], we can also introduce a normalized
intensity autocorrelation function as

g(�x) =
∫ 〈I (x)I (x + �x)〉dx∫ 〈I (x)〉〈I (x + �x)〉dx

, (14)

where I (x) = |E(x)|2 is the fluctuating intensity of the beam.
For a linear medium it can be shown that g(0) = 2 and then
it falls to g(∞) = 1 over a characteristic length scale—the
intensity correlation length S (also called the “speckle size”).
In Fig. 4 we plot the correlation function g(�x) obtained
from the same numerical run as the other statistics. If we
compare the limiting values of the intensity correlation
function with the results of the Appendix, which were obtained
using only the soliton component of the solution, we can
see that the limiting value g(∞) is very close to unity
while theory gives the value 〈n2〉/〈n〉2 − 1/〈n〉 ≈ 0.92 (for
both high- and low-power runs), which is close. As for the
opposite limit, one can see from Fig. 4 that the limiting values
g(0) = 〈I 2〉/〈I 〉2 ≈ 2.85 (low power) and ≈18.5 (high power)
are far smaller than the predictions of Eq. (A6) [where the
moments of η were taken from the distribution (12)], g(0) ≈ 17
(low power) and g(0) ≈ 26.5 (high power). This discrepancy
can be easily explained when one looks at Fig. 3, where it is
clear that the first two moments of the intensity determining
g(0) are formed by the region I ∼ 〈I 〉, where the nonsoliton
part of the radiation is important and also soliton pulses are
wide enough to cover most of the sampling region. However,
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the analytical prediction of the Appendix for the correlation
length itself, S = L/2ση = L/2D ≈ 40 μm (low power) and
≈8 μm (high power) holds remarkably well. If we recall the
definition of the parameter D we get (in the short-correlated
limit) a simple relation between the observed correlation length
S, the initial correlation length S0, and the average initial
intensity I0:

S = L2Ĩ

S0I0
. (15)

So the observed correlation length is inversely proportional to
the initial correlation length and the initial average intensity
(or power). The latter fact confirms the experimental results of
Ref. [9]. Also, the correlation length in this regime does not
depend on the propagation distance τ (i.e., is saturated), which
together with the scaling law g(0) ∝ τ [see Eq. (A6)] coincide
with the results obtained in [9] by qualitative considerations.

V. DEFOCUSING CASE

Let us now turn attention to the defocusing case where
n2 < 0. The experimental results of [9] show qualitatively
different behavior of both the correlation function and the
intensity PDF. In particular, the correlation strength g(0) goes
down with the intensity of the initial speckle field (unlike in
the focusing case) and the intensity distributions also look
markedly different. Here we will again employ the inverse
scattering method to study the resulting intensity PDFs. A
similar problem for the defocusing case was studied previously
in [21] using the asymptotic far-field expansion developed by
Manakov [17,22]. The ZSSP for the focusing and defocusing
cases differ only by the sign of the potential in the second
equation, so that in the defocusing case one will have

i
∂ϕ1

∂ξ
+ uϕ2 = ζϕ1, u∗ϕ1 − i

∂ϕ2

∂ξ
= ζϕ2. (16)

If we assume zero boundary conditions at infinity for the
defocusing NLSE, no bright (or dark) solitons are formed and
the far field is formed solely by dispersive waves.

It is known that asymptotically at large z the field in-
tensity I (x,z) in real-world units is given by the following
formula [17,21,22]:

I (x,z) = ĨLD

2πz
ln

∣∣∣∣a
(

− LD

2L

x

z

)∣∣∣∣
2

, (17)

where a(ζ ) is determined via the particular solution of (16)
subject to the following boundary conditions [17]:

φ(0; ζ ) =
(

1
0

)
, φ(1; ζ ) =

(
a(ζ )e−iζ

b(ζ )eiζ

)
. (18)

Here the spectral parameter ζ is real and we have assumed
for definiteness that the initial support of the pulse is [0,L]
in real-world units. The coefficients a(ζ ) and b(ζ ) are called
the first and second Jost coefficients, respectively, and satisfy
the condition |a|2 − |b|2 = 1. Using the invariant imbedding
approach already developed for the focusing case (see,
e.g., [23]) we can introduce the functions a(ζ ; ξ ) = ϕ1(ξ )eiζξ ,
b(ζ ; ξ ) = ϕ2(ξ )e−iζ ξ , for which we will have the following

system of equations:

∂a(ζ,ξ )

∂ξ
= ib(ζ,ξ )e2iζ ξ u(ξ ), a(ζ ; 0) = 1,

(19)
∂b(ζ,ξ )

∂ξ
= −ia(ζ,ξ )e−2iζ ξ u∗(ξ ), b(ζ ; 0) = 0.

The Jost coefficients are recovered as a(ζ ) = a(ζ,1) and
b(ζ ) = b(ζ,1). Note that, as u(ξ ) may be considered Gaussian
with the correlation function given by (3) (in real-world units),
the phase factor exp(2iζ ξ ) can be absorbed into the definition
of the random field u(ξ ) so that the statistics of both Jost
coefficients become independent of the spectral parameter
ζ . From (17) it immediately follows that asymptotically the
values of the field intensity become uncorrelated, i.e., the
correlation function g(�x) tends to unity across the transverse
dimension of the beam as long as the distance z is large. Let us
parametrize |a| and |b| as cosh χ and sinh χ , respectively, and
introduce a phase difference between the two Jost coefficients:
ϕ = Arg[a] − Arg[b]. Then for these two real quantities one
obtains the system of equations

dχ

dξ
= −Im[e−iϕu(ξ )], χ (0) = 0,

(20)
dϕ

dξ
= 2 coth 2χRe[e−iϕu(ξ )],

where the value of the initial phase ϕ(0) is chosen so
that the derivative ϕ′(0) is finite (see, e.g., [23]). In the
δ-correlated limit we obtain from the system (20) (treated in
the Stratonovich sense) the following Fokker-Planck equation
for the joint PDF P (χ,ϕ; ξ ) [24]:

∂P

∂ξ
= −D

∂

∂χ
[coth(2χ )P ] + D

2

∂2P

∂χ2
+2D coth2(2χ )

∂2P

∂ϕ2
.

(21)

According to (17) and (18), the statistics of the intensity
is determined by the statistics of the quantity ln cosh χ at
ξ = 1 so we can integrate out the dependence on the angular
variable ϕ using the periodic boundary conditions and make
the substitution P (χ ; ξ ) = Y (χ ; ξ ) sinh 2χ for the resulting
marginal distribution of the random variable χ . The resulting
equation reads

∂Y

∂ξ
= (D/2)

sinh 2χ

∂

∂χ

[
sinh(2χ )

∂Y

∂χ

]
,

(22)
Y (χ ; 0) = δ(χ )/ sinh(2χ ).

This equation is known in the theory of stochastic processes
[2,25] and it has the solution in quadratures

Y (χ ; 1) =
√

1

πD3
e−D/2

∫ ∞

χ

χ ′ exp(−χ ′2/2D)√
cosh(2χ ′) − cosh(2χ )

dχ ′.

(23)

Finally, for the intensity PDF one has the following expression:

P (I ) = 2πz

ĨLD

exp

[
2πz

LD

I

Ĩ

]
Y

{
πz

LD

I

Ĩ

+ ln

[
1 +

√
1 − exp

(
− 2

πz

LD

I

Ĩ

)]
; 1

}
. (24)
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TABLE II. The main parameters of the simulations for the
defocusing case.

Parameter Value

Size of the aperture L (μm) 50
Thickness of the slab d (cm) 2
Size of the computational domain L′ (mm) 8.192
Total number of points M ′ 16384
Number of points resolving the aperture M 100
Total number of random modes N 4096
Linear refractive index n0 1.3
Propagation constant β0 (μm−1) 15.62
Nonlinear coefficient n2 (cm2/W) −2.6 × 10−8

Initial correlation length S0 (μm) 2
Diffraction length Ld (mm) 39.04
Normalization intensity Ĩ (W/cm2) 82.00
Window used for collecting histograms � (μm) 512

An interesting feature of the distribution above is that it is
self-similar in the propagation distance z, i.e., the PDF of the
quantity y ≡ zI/ĨLD is universal and depends only on the
disorder level D. The tail of this PDF is Gaussian,

P (y) =
√

y

D
e−D/2 e−y−y2/2D, y � 1. (25)

Also, as mentioned before, in this far-field limit the field values
at the different points are uncorrelated so that g(�x) ≡ 1, for
�x � S0.

To test the analytical result above, we again choose the
model parameters close to those considered in experiments [9].
Namely, we choose ethanol with an absorbing dye as a de-
focusing nonlinear medium at the wavelength of 552 nm and
assume the values of parameters given in Table II.

Although in the real experiments the pulse attenuation was
quite high at the length scale considered, we can still use
these parameters for illustrative purposes. In our simulations
we assumed a fixed averaged value of the input power, P =
6 W, which correspond to the effective nonlinear length LNL =
(|n2|β0I0/n0)−1 = 5.33 mm. The simulations were performed
for three values of the propagation distance z comparable to
the nonlinear length. The results are given in Fig. 5.

One can clearly see that, depending on the propagation
distance z, there are two regimes with two types of statistics.
When the propagation distance is smaller than the nonlinear
length LNL, the nonlinear term in Eq. (2) can be neglected,
i.e., the propagation is linear and as mentioned before the
intensity PDF is exponential. It easy to check that in terms of
the self-similar variable y the linear PDF is

Plin(y) = 1

2D
e−y/2D.

When the distance exceeds the nonlinear length the far-field
asymptotes (24) and (25) hold, and the shape of the PDF P (y)
becomes universal (with Gaussian tails). The intermediate
values of the propagation distance fill the gap between the
two limiting distributions (as clearly seen in Fig. 5).

FIG. 5. (Color online) The PDF of the self-similar variable y for
different values of the propagation distance.

VI. CONCLUSION

To conclude, we have studied both analytically and numer-
ically the statistics of the intensity distribution of a disordered
short-correlated pulse propagating in a nonlinear medium
under conditions close to those experimentally observed in
Ref. [9]. In the limit of the δ-correlated pulse, when the
initial correlation length (speckle size) is much smaller than
the aperture size, we provide analytical expressions for the
intensity distribution for both focusing and defocusing media.
It turns out that the power-law tails reported in [9] are not
universal and represent an approximate fit to a transitional
area followed by an exponential asymptote in the focusing
case and a Gaussian asymptote in the defocusing case. For the
latter a universal analytical formula for the intensity PDF is
given in the regime when the propagation length (the length
of the beam) is larger than the nonlinear length. Also, in the
focusing case, a simple expression is given for the intensity
correlation width S [formula (15)] which relates it to the initial
correlation width (speckle size) S0 and the average intensity of
the source I0, confirming the results of Ref. [9]. This formula
supplements the relation g(0)S = 2λz/L obtained in Ref. [9]
using quantitative arguments and thus allows one to estimate
not only the linear size of the object L, but also its average
intensity I0 and the correlation radius S0 (or rather the product
of the two) when the system is in the soliton regime (high
power, high number of speckle beamlets).
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APPENDIX: THE DERIVATION OF THE SOLITON
INTENSITY CORRELATION FUNCTION

For a single soliton with the intensity profile (5) and a
uniform position distribution, it is possible to calculate the
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intensity correlation function g1 provided that the typical
soliton amplitude ση is much greater than the ratio 1/(4�vτ ),
i.e., all typical soliton pulse realizations (as well as the
correlation function itself) have widths much smaller than the
size of the region where solitons are eventually distributed, �̃.
Then one obtains

〈I1(x)〉 = 〈I1(x + �x)〉 = 2Ĩ

�vτ
〈η〉 ≡ I1

and

〈I1(x)I1(x + �x)〉 = 16Ĩ 2

�vτ

〈
η3

sinh2 q
(q coth q − 1)

〉
,

where |x|,|x0|,�x  �̃ and q = 2η�x/L. So for the one-
soliton correlation function we obtain

g1(�x) = 4�vτ

〈
η3

sinh2 q
(q coth q − 1)

〉/
〈η〉2, (A1)

where the averaging in the RHS is performed over the ampli-
tude distribution. The relative strength of intensity fluctuations
for one soliton is given by

g1(0) = 4�vτ

3

〈η3〉
〈η〉2

. (A2)

Next, let us consider a train of n solitons with statistically
independent parameters and random, uniform phases. First
we consider realizations where exactly n solitons are created.
Then we have

〈I (x)〉 = n〈I1(x)〉 = nI1

and

〈I (x)I (x + �x)〉
= n(n − 1)〈I1(x)〉〈I1(x + �x)〉 + n〈I1(x)I1(x + �x)〉

+ n(n − 1)|〈E1(x)E∗
1 (x + �x)〉|2,

where E1(x) is the single-soliton field (4) in real-world units.
Performing additional averaging over all realizations with
different numbers of solitons as well as over the spatial
coordinate x (denoted by an overbar), we arrive at

g(�x) = 1

〈n〉 g1(�x) +
( 〈n2〉

〈n〉2
− 1

〈n〉
)

×
(

1 + |〈E1(x)E∗
1 (x + �x)〉|2
I 2

1

)
. (A3)

Again, if we assume that the typical width of a soliton is much
smaller than its positional support �̃, one can show that the

field correlation term is position independent and is given by

1

I 2
1

|〈E1(x)E∗
1 (x + �x)〉|2

=
∣∣∣∣
〈

η

2〈η〉
∫ ∞

−∞
sech[y]sech[y + q]e−i(q/4τη2)ydy

〉∣∣∣∣
2

(A4)

If additionally �x  min[4τ 〈η〉,Lτ 1/2] (i.e., the random
phase shift �φ = 2v�x/L can be neglected) the above
simplifies to

1

I 2
1

|〈E1(x)E∗
1 (x + �x)〉|2 =

〈
ηq

〈η〉 sinh q

〉2

. (A5)

The strength of fluctuations is given by

g(0) = 〈I 2〉
〈I 〉2

= 4�vτ

3〈n〉
〈η3〉
〈η〉2

+ 2

( 〈n2〉
〈n〉2

− 1

〈n〉
)

. (A6)

When the argument of the correlation function is large, i.e., the
inequality L/2�x  ση holds, the function being averaged in
Eq. (A1) decays much faster than the PDF Pη, which can be
used to obtain the following asymptote:

g1(�x) ≈ 3ζ (3)

8

�vτPη(0)

〈η〉2

(
L

�x

)4

, (A7)

where �x � L/2ση is assumed. For the full correla-
tion function, if one assumes additionally that �x �
L max[1/2ση,

√
τ ], the field correlation contribution (A4) con-

tains the prefactor (L/�x)4 multiplied by a highly oscillating
integral, so its contribution is neglected and one can write
down

g(�x) ≈ g(∞) + g1(�x)

〈n〉 (A8)

with g1(�x) given by Eq. (A7) above.
One can see that the correlation function reaches its asymp-

totic value g(∞) = 〈n2〉/〈n〉2 − 1/〈n〉 following a power
law. If the number of emerging solitons follows a Poisson
distribution (where the variance is equal to the mean) the
limiting value of the correlation function is g(∞) = 1, as in the
linear case. For the correlation radius S one gets the estimate
S ≈ L/2ση. The latter formula has a transparent physical
meaning: the correlation length S is a typical speckle size
in any optical system. In the regime considered here, bright
solitons play the role of “nonlinear speckles” so the typical
speckle size is the width of a typical soliton, which is given by
L/2ση.
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