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Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled
waveguide systems
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We have theoretically and numerically investigated an analog of electromagnetically induced transparency
(EIT) in plasmonic systems consisting of multiple cascaded nanodisk resonators, aperture-side-coupled to metal-
insulator-metal bus waveguides. A simplified theoretical model is established to study spectral features in the
plasmonic waveguide-resonator systems, and the calculated results are in good agreement with finite-difference
time-domain simulations. The main dependent factors of EIT-like spectral response, namely, the resonance
detuning, intrinsic Drude loss, and especially cavity-cavity separation, are discussed in detail. Similar to multiple
EIT in quantum systems, multiple induced-transparency peaks are found in the areas of strong dispersion
generated in our plasmonic system. The group indices and quality factors of transparency resonances with high
transmission can reach levels of ∼35 and ∼200, respectively. These results pave a way toward dynamic control
of light in the nanoscale domain, which can actualize some new devices for fundamental study and applications
of plasmonic nanostructures.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) is a special
and counterintuitive phenomenon which occurs in atomic
systems due to the quantum destructive interference between
the excitation pathways to the atomic upper level [1,2]. The
EIT effect has promising applications in nonlinear optical
processes, ultrafast switching, and optical data storage owing
to the strong dispersion in the transparency windows [3,4].
However, on-chip applications of the atomic EIT are severely
limited by the rigorous conditions such as low-temperature
environments and stable gas lasers [4]. Recently, theoretical
analysis and experimental observations demonstrate that a
novel phenomenon analogous to EIT can occur in the coupled
optical resonator systems due to the coherent interference
of coupled resonators, which is known as coupled-resonator
induced transparency (CRIT) [5–10]. The CRIT effect in
coupled resonator systems is remarkably analogous to the
conventional EIT in atomic systems [10]. For example, Xu
et al. first reported the experimental observation of the
EIT-like spectrum in integrated optical resonator systems
consisting of coupled silicon ring resonators [6]. Yang et al.
reported the first observation of the all-optical EIT-like
spectral response in multiple coupled photonic crystal (PC)
cavities [7]. The EIT-like spectral response was also found
in the coupled whispering-gallery microresonators [8], with
observations of slow-light effect [9]. The on-chip footprint
and field confinement of conventional photonic devices are
physically limited by the fundamental laws of classical
diffraction [11].

Nowadays, novel techniques for controlling light on a
small scale increasingly promote the development of opti-
cal physics [3]. Electromagnetic waves trapped on metal-
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dielectric interfaces and coupled to propagating free-electron
oscillations in the metals are known as surface plasmon
polaritons (SPPs), which are regarded as one of the most
promising technologies for the minimization of on-chip
integrated devices owing to their capabilities to overcome the
classical diffraction limit and manipulate light in the nanoscale
domain [11–14]. A large amount of plasmonic components
with special functions are proposed and demonstrated both
numerically and experimentally in the metallic nanostructures
[15–21]. Recently, the plasmonic analog of EIT has been
investigated intensively in metamaterials [22]. Plasmonic
waveguides such as the metal-insulator-metal (MIM) struc-
ture are attracting much attention due to their particularly
strong confinement of light [11,23,24], which can be well
employed to realize truly nanoscale photonic functionality
[11]. Spectral features such as the EIT-like performance
in plasmonic waveguide-resonator systems are also very
important for dynamic control and manipulation of light in the
nanostructures [25,26].

The EIT-like spectral response performed in waveguide-
resonator systems exhibits two physical pictures: a radiative
(coupled to waveguide) resonator coupled with a subradiant
(not coupled to waveguide) resonator [5,8,9,26] or two detuned
resonators coupled to a bus waveguide [4,6,7,25]. The latter
scheme is essential for the observation of EIT-like and slow-
light effects [4]. As an important phenomenon, a multi-EIT-
like spectral response was realized in PC resonator systems [7].
Can similar behavior be performed in plasmonic waveguide-
resonator systems? Which factors would determine the EIT-
like response? The current paper answers these questions. In
this paper, we not only study numerically the multiple EIT-like
and slow-light effects in a type of plasmonic waveguide-
resonator systems, but also obtain consistent results by means
of the derived theoretical model. Theoretical and simulation
results reveal that the EIT-like response mainly depends on the
resonance detuning, intrinsic Drude loss, and cavity-cavity
separation. It is found that transparency-resonance peaks
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possess a high quality factor, group indices, and transmission
efficiencies.

II. PLASMONIC SYSTEMS AND THEORETICAL MODEL

A cross-section schematic diagram of our plasmonic sys-
tems is shown in Fig. 1. It consists of a MIM bus waveguide
with multiple asymmetrically aperture-side-coupled dielectric
nanodisk resonators. When a transverse-magnetic (TM) light is
injected and coupled into the bus waveguide, SPP wave forms
on the metallic interfaces and is confined in the waveguide.
As the SPP wave passes through the coupled aperture, the
energy can be coupled into the nanodisk resonator through
the dielectric aperture. A single disk transmission spectrum
exhibits a dip at the resonance wavelength due to the destruc-
tive interference between the incident wave and escaped power
from the resonator. For the multi-resonator-coupled waveguide
systems in Fig. 1, the dynamic transmission features can
be investigated by a temporal coupled-mode theory [27].
To simplify the theoretical model, the light propagation
and coupling losses are not considered. For the harmonic
time dependence of e−jωt , the temporal normalized mode
amplitudes ai of the ith cavity (i = 1, 2, . . ., N ) can be
described as

dai

dt
= (−jωi − κo,i − κe,i)ai + ejθi

√
κe,iS

(i)
+,in

+ ejθi
√

κe,iS
(i)
−,in, (1)

where ωi represents the resonance frequency of the ith cavity,
κo,i is the decay rate of the field due to internal loss in the
ith cavity, and κe,i is the decay rate due to the energy escape
into the waveguide. The decay rates satisfy the relationships
κo,i = ωi/(2Qo,i), κe,i = ωi/(2Qe,i). Here, Qo,i and Qe,i

stand for the intrinsic and coupling quality factors of the ith
cavity, respectively. θi is the phase of coupling coefficient. The
dielectric cavities and apertures possess mirror symmetry with
respect to the reference planes. The amplitudes of the incoming

FIG. 1. (Color online) Schematic diagram of plasmonic multi-
nanoresonator-coupled waveguide systems. di and gi represent the
diameter and aperture-coupled length of cavity i (i = 1,2, . . . ,N ),
respectively. w and Li are the width of the MIM bus waveguide and
the separation between cavities i and i + 1, respectively. The dashed
lines are reference planes in the middle of nanodisk cavities. The
other parameters are present in the text.

and outgoing waves in the bus waveguide are depicted by S(i)
p,in,

and S
(i)
p,out(i = 1,2, . . . ,N ). The subscript p = ± represent two

propagating directions of waveguide modes, as shown in Fig. 1.
From energy conservation, the outgoing waves of the ith cavity
can be written as

S
(i)
−,out = S

(i)
−,in − e−jθi

√
κe,iai, (2a)

S
(i)
+,out = S

(i)
+,in − e−jθi

√
κe,iai . (2b)

In the linear system, since the input frequency is ω, the
field everywhere oscillates as e−jωt , and dai/dt = −jωai .
The relation between incoming and outgoing waves of the ith
cavity can be expressed as

S
(i)
−,in = κe,i

j (ωi − ω) + κo,i

S
(i)
+,in

+ j (ωi − ω) + κo,i + κe,i

j (ωi − ω) + κo,i

S
(i)
−,out, (3a)

S
(i)
+,out = j (ωi − ω) + κo,i − κe,i

j (ωi − ω) + κo,i

S
(i)
+,in

− κe,i

j (ωi − ω) + κo,i

S
(i)
−,out. (3b)

When the light is only inputted from the left port
(S(i)

−,in = 0), the transmission and reflection coefficients of the
single-resonator-coupled waveguide system are derived as

ti(ω) = j (ωi − ω) + κo,i

j (ωi − ω) + κo,i + κe,i

, (4a)

ri(ω) = − κe,i

j (ωi − ω) + κo,i + κe,i

. (4b)

Consequently, incoming and outgoing waves of the ith
cavity in multi-resonator-coupled waveguide systems satisfy
the following transfer equation:[

S
(i)
−,in

S
(i)
+,out

]
=

(
− ri (ω)

ti (ω)
1

ti (ω)

1 + ri (ω)
ti (ω)

ri (ω)
ti (ω)

)[
S

(i)
+,in

S
(i)
−,out

]
. (5)

From Eq. (5), the side-coupled cavities can be regarded as
frequency-dependent lossy mirrors [r2

i (ω) + t2
i (ω) < 1]. The

propagation waves in the bus waveguide should satisfy the
relationship in the steady state:

S
(i)
−,in = S

(i+1)
−,oute

jϕi , S
(i+1)
+,in = S

(i)
+,oute

jϕi . (6)

Here ϕi (i = 1,2, . . . ,N − 1) represents the phase difference
between the ith and (i + 1)th cavities. The matrices are defined
as

Vi =
(

− ri (ω)
ti (ω)

1
ti (ω)

1 + ri (ω)
ti (ω)

ri (ω)
ti (ω)

)
, Mi =

(
0 ej ϕi

e−j ϕi 0

)
. (7)

Thus, incident and output waves in the entire system show
a transfer characteristic and can be described as[

S
(N)
−,in

S
(N)
+,out

]
= VNMN−1VN−1MN−2 · · ·V2M1V1

[
S

(1)
+,in

S
(1)
−,out

]
. (8)

We assume

H =VNMN−1VN−1MN−2 · · ·V2M1V1 =
(

H11 H12

H21 H22

)
. (9)

053803-2



PLASMONIC ANALOG OF ELECTROMAGNETICALLY . . . PHYSICAL REVIEW A 85, 053803 (2012)

When the incident light is launched only from the left
waveguide (S(N)

−,in = 0), the output transmission efficiency in
the entire waveguide-resonator system can be derived as

T =
∣∣∣∣∣S

(N)
+,out

S
(1)
+,in

∣∣∣∣∣
2

=
∣∣∣∣H21H12 − H22H11

H12

∣∣∣∣
2

. (10)

III. EIT-LIKE RESPONSE IN
DUAL-RESONATOR-COUPLED SYSTEMS

A. Waveguide dispersion and quality factors

The cavity-cavity phase difference ϕi in Eq. (6) for the
plasmonic waveguide is expressed as

ϕi = Re(βspp)Li = ωRe(neff)Li

c
, (11)

where Li (i = 1,2, . . . ,N − 1) is the optical path difference
between the ith and (i + 1)th cavities. βspp is the complex
propagation constant of the SPP wave, c is the light velocity
in vacuum, and neff is the effective refractive index which can
be obtained by solving the dispersion equation [15],

εm

√
n2

eff − εd tanh

(
wπ

√
n2

eff − εd

λ

)
+ εd

√
n2

eff − εm = 0,

(12)

where εm and εd stand for the dielectric constant of metal
cladding and dielectric waveguide with a width of w. In the
plasmonic systems, the metal cladding is assumed as silver,
whose frequency-dependent complex relative permittivity can
be described by the well-known Drude model of εm(ω) = ε∞–
ω2

p/(ω2 + jωγ ) [15,25]. Here, ε∞ is the dielectric constant
at the infinite frequency, and γ and ωp stand for the electron
collision and bulk plasma frequencies, respectively. These
parameters for silver can be set as ε∞ = 3.7, ωp = 9.1 eV,
and γ = 0.018 eV [15]. The width of the bus waveguide is
assumed as 50 nm (i.e., w = 50 nm). The insulator in the
waveguide-resonator systems is set as air (εd = 1). The real
part of the refractive index obtained by solving Eq. (12) is
shown in Fig. 2(a).

The multi-resonator-coupled waveguide configurations are
the generalization of the dual-resonator-coupled system.
Therefore, the fundamental features of the dual-resonator-
coupled system are very important for investigating the EIT-
like effect in plasmonic waveguide-resonator systems. For
dual-resonator-coupled waveguide systems (N = 2), the output
transmission efficiency can be derived as

T =
∣∣∣∣∣S

(2)
+,out

S
(1)
+,in

∣∣∣∣∣
2

=
∣∣∣∣ t1t2

1 − r1r2ej2ϕ1

∣∣∣∣
2

. (13)

The above equation is a typical form of the transmission
spectrum of a Fabry-Perot resonator with two frequency-
dependent mirrors [4]. Therefore, the physical mechanism
of the spectral response in the plasmonic waveguide can be
contributed to the Fabry-Perot oscillation. r1,2 and t1,2 are the

FIG. 2. (Color online) (a) Real part of the effective refractive
index in the MIM bus waveguide with w = 50 nm. The approximately
optimal separation L1 corresponds to the cavity-cavity phase of π for
the central wavelength. (b) Intrinsic quality factor (Qo) versus the
diameter of the nanodisk resonator.

frequency-dependent reflection and transmission coefficients
of mirrors 1 and 2, which can be achieved from Eq. (4).

The quality factors Qo,1, Qo,2, Qe,1, and Qe,2 should be
obtained for the theoretical investigation of the transmission
response in the dual-resonator-coupled system. Here, the
intrinsic quality factor Qo of the dielectric cavity can be
estimated from the following equations [28]:

√
εmJ ′

n(k
√

εdd/2)

Jn(k
√

εdd/2)
−

√
εdH

(1)′
n (k

√
εmd/2)

H
(1)
n (k

√
εmd/2)

= 0, (14)

Qo = − Re(k)

2Im(k)
, (14b)

where d is the diameter of the nanocavity. k is the wave number
in vacuum and includes a relatively small negative imaginary
part for a given n, where the negative imaginary part presents
the loss [28]. Jn and J ′

n are Bessel function of the first kind
with the order n and its derivative, Hn

(1) and Hn
(1)′ are the

first kind Hankel function with the order n and its derivative,
respectively. The fundamental mode is considered in the
frequency range, which corresponds to the first-order (n = 1)
Bessel and Hankel functions. From Eq. (14), Qo as a function
of the diameter of the nanodisk cavity is shown in Fig. 2(b).
The total quality factor (Qt ) of the side-coupled cavity can
be estimated from Qt = λ0/�λ, where λ0 and �λ are the
peak wavelength and the FWHM of the reflection spectrum,
respectively. Under the condition of Qo � Qe, the quality
factor (Qe) owing to the power escape into the waveguide
can be obtained from the equation Qe = QoQt/(Qo − Qt ).
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FIG. 3. (Color online) Transmission spectra with various wave-
length detuning σλ in the plasmonic dual-nanoresonator-coupled
waveguide with L1 = 280 nm. The circles are the simulation results
and the solid curves are the theoretical calculations. The diameters
(d1 and d2) of cavities 1 and 2 are set as 391 and 399 nm (a), 392 and
398 nm (b), 393 and 397 nm (c), and 394 and 396 nm (d).

In our structure, the coupling distances g1 and g2 are fixed
at 100 nm. The widths of coupling aperture are 20 nm. The
diameter of cavity 1 (2) is set from 391 (399) nm to 394 (396)
nm at an interval of 1(−1) nm. As depicted in Fig. 2(b), Qo is
about 530 for the above diameters. Using the finite-difference
time-domain (FDTD) method [29], Qt is calculated at about
60 with selected physical parameters. Thus, Qe is about 67.7
for the side-coupled resonators.

B. Dependence of the transparency peak on resonance
detuning and intrinsic loss

As shown in Fig. 3, the transmission spectra exhibit typical
EIT line shapes, namely, a narrow transparency peak in
the center of a broader transmission dip [6]. The resonance
wavelengths λ1 and λ2 for cavities 1 and 2 are controlled
by adjusting the diameters. The wavelength difference σλ =
|λ1 − λ2| is termed detuning [25]. From the Fabry-Perot
theoretical model, the transmission will be enhanced if the
Fabry-Perot resonant condition is satisfied. The pronounced
EIT-like transparency peak appears at (ω1 + ω2)/2 when
the cavity-cavity phase ϕ1 satisfies mπ (m = 1, 2, . . .) [7].
Because 4πc/(ω1 + ω2) approaches the central wavelength
(λ1 + λ2)/2 here, the transparency peak nearly locates at the
central wavelength [25]. As shown in Fig. 3, transparency-
resonance peaks locate at the central wavelength of 782.5 nm.
From Eq. (11), ϕ1 equals π at λ12 = (λ1 + λ2)/2 when
L1 = λ12/[2Re(neff)]. The optimal cavity-cavity separation
L1 plotted in Fig. 2(a) is about 280 nm at 782.5 nm, which

FIG. 4. (Color online) Transmission spectra with different elec-
tron collision frequencies γ which represents the intrinsic Drude loss
of silver. Here L1 = 280 nm, and the diameters of cavities 1 and 2
are 392 and 398 nm, respectively.

agrees well with the parameter setting. The spectral responses
in the systems are investigated by the FDTD simulations and
theoretical model. Figure 3 reveals that the transparency peaks
possess symmetrical profiles. A smaller detuning induces a
narrower spectral bandwidth (higher quality factor) but a
reducing peak transmission. Therefore, there exists a tradeoff
between the peak transmission and quality factor [4]. The
cavity detuning offers a convenient scheme to control the
quality factor of the transparency resonance. The theoretical
results are in good agreement with FDTD simulations. In
the FDTD scheme, perfectly matched absorbing boundary
conditions are employed to absorb outgoing waves from the
computation domain [29]. The spatial and temporal steps are
set as �x = �y = 2 nm and �t = �x/2c, respectively.

Successively, the EIT-like effect is investigated in the
plasmonic systems with different metal (intrinsic Drude) loss.
As shown in Fig. 4, the transparency-resonance transmission
and quality factor increases with the decrease of the electron
collision frequency of the metal (i.e., damping factor of the
silver). The result illustrates that the EIT-like spectral response
is limited by the intrinsic Drude loss of metal material.
Thus, a gain material could be inserted into the waveguide
system to compensate the Drude loss [30], which thereby
achieves a more obvious EIT-like effect and higher quality
factor.

C. Influence of cavity-cavity separation
on the transparency peak

The round-trip phase of the Fabry-Perot cavity is controlled
by the optical path difference between the two mirrors. The
transmission properties will be changed by adjusting the
cavity-cavity separation L1. Figure 5 reveals the transmission
spectra at the various values of L1, which are calculated by
the FDTD method and dynamic equations. Here, the diameters
are set as d1 = 392 nm and d2 = 398 nm. It is found that the
resulting transparency line is very low, as L1 is around 140 nm,
where the transmission waves through two mirrors generate the
destructive interference around the transparency wavelength.
The transmission spectrum possesses a narrow, symmet-
ric peak in the middle of the transparency window when
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FIG. 5. (Color online) Simulation (circles) and theoretical (solid
curve) transmission spectra with the different cavity-cavity separation
L1. The diameters of cavities 1 and 2 are 392 and 398 nm, respectively.

L1 = 280 nm, which derives from the constructive interference
of transmission waves at the central wavelength. Moreover, the
transparency-resonance peak becomes asymmetric and blue-
(red-) tilted when L1 = 260 (300) nm, respectively. To further
clarify the spectral features, the evolution of the transmission
spectrum with separation L1 is depicted in Fig. 6(a). We find
that the transparency peaks exhibit obvious and redshift around
L1 = 280 nm. The optical behavior can be distinctly explained
by the Fabry-Perot model. The dynamical equation in Eq. (13)
can be also expressed in the following form:

T =
( |t1t2|

1 − |r1r2|
)2 1

1 + 4
( √|r1r2|

1−|r1r2|
)2

sin2 θ
. (15)

Here, θ = Arg[r1r2exp(j2ϕ1)]/2 is one-half of the round-trip
phase in the Fabry-Perot cavity. The transmission can be
written as T = MP , where M = [|t1t2|/(1 − |r1r2|)]2 and
P = 1/{1 + 4[|r1r2|/(1 − |r1r2|)2] sin2 θ}. M stands for the
maximum possible output transmission through the plasmonic
waveguide. The term P containing the phase information of the
Fabry-Perot resonator will influence the transmission response
as the cavity-cavity separation L1 changes. Figure 6(b)
describes the results of M and P with the different L1. It is
found that M possesses an EIT-like line shape. P is symmetric
and has a minimum at the transparency-resonance wavelength
when L1 = 140 nm. Thus, P suppresses the generation of
the EIT-like peak, as shown in Fig. 5(a). Meanwhile, P

exhibits symmetric and has maximum at the transparency-peak
wavelength when L1 = 280 nm, which gives rise to a
pronounced and symmetric EIT-like spectral response. When
L1 = 260 nm (300 nm), P becomes asymmetric and its

FIG. 6. (Color online) (a) Evolution of transmission spectrum
with cavity-cavity separation L1. (b) M and P at different L1. M

represents the maximum possible output transmission. P includes the
phase term of the Fabry-Perot cavity and controls the transmission
spectral features.

maximum shifts to the left (right) side of the peak wavelength
of M . This performance induces the asymmetric and blue
(red)-tilted EIT-like peak, as shown in Figs. 5(c) and 5(e). The
peak location of P corresponds to the resonance wavelength
of the Fabry-Perot cavity. Essentially, the movement of the
EIT-like transmission peak is contributed to the redshift of
the Fabry-Perot resonance wavelength with the increase of
cavity-cavity separation at around 280 nm.

D. Slow-light effect

Similar to the EIT effect in the atomic system, our
plasmonic systems also support slow group velocities. The
slow-light effect can be described by the group index ng , which
is expressed as

ng = c

vg

= c

D
τg = c

D
· dψ(ω)

dω
. (16)

Here vg stands for the group velocity in the plasmonic
waveguide systems. τg and ψ(ω) are the optical delay time
and transmission phase shift, respectively. D is the length of
the plasmonic system. The slow-light behavior is numerically
investigated in the waveguide-resonator system with d1 = 392
nm, d2 = 398 nm, L1 = 280 nm, and D = 1 μm. Figure 7(a)
illustrates that the phase slope is negative and steepest at
the location of the EIT-like peak. This ultracompact config-
uration exhibits the large optical delay in the transparency
window, with a maximum delay time of about 0.12 ps at
the transparency-peak wavelength as shown in Fig. 7(b). The

053803-5



HUA LU, XUEMING LIU, AND DONG MAO PHYSICAL REVIEW A 85, 053803 (2012)

FIG. 7. (Color online) (a) Transmission phase shift, (b) optical
delay line, and (c) group indices in the plasmonic system with
d1 = 392 nm, d2 = 398 nm, and L1 = 280 nm. The dot shows
the location of the EIT-like peak. (d)–(f) Average field distributions
of |HZ| at the resonance wavelengths of cavities 1 (d) and 2
(f) as well as transparency-resonance wavelength (e). The input
direction is marked by the white arrow. See Supplemental Material at
[http://link.aps.org/supplemental/10.1103/PhysRevA.85.053803] for
the multimedia file corresponding to the simulation of (e) [31].

negative group delay corresponding to the fast light is observed
at the two sides of the transparency window [9]. The group
indices are depicted in Fig. 7(c). High group indices around
the transparency peak result from the strong dispersion in the
transparency window. The maximum group index is over 35 at
the transparency-peak wavelength. The corresponding quality
factor of the transparency-peak resonance reaches the level of
∼200, as shown in Fig. 5(d).

In addition, the field distributions at the individual reso-
nance and transparency-resonance wavelengths are plotted in
Figs. 7(d)–7(f). With the physical parameters in Fig. 7(a), the
resonance wavelengths of cavities 1 and 2 are located at 778
and 787 nm, respectively. When the incident wavelength is
778 or 787 nm, the local resonance is excited in the individual
side-coupled cavity and the incident light is reflected, as
depicted in Figs. 7(d) and 7(f). For the transparency-resonance
wavelength, the two partially resonant cavities form a Fabry-
Perot oscillation in the bus waveguide, and the incident light
can pass through the waveguide, as shown in Fig. 7(e) and
[31]. This performance is counterintuitive for side-coupled
resonator systems. The field distributions are consistent with
the transmission spectrum in Fig. 3(b).

IV. MULTIPEAK EIT-LIKE RESPONSE

Finally, a plasmonic triple-resonator-coupled waveguide
system is designed as an example to investigate the multipeak
EIT-like transmission response and multiarea slow-light effect.
The diameters of cavities 1, 2, and 3 are set as 392, 398, and
404 nm, respectively. The cavity-cavity separations L1 and L2

are 280 nm, and D is 1.2 μm. The other physical parameters are
the same as the sample in Sec. III. According to the results in
Sec. III A, the intrinsic quality factor (Qo) and coupling quality

FIG. 8. (Color online) (a) Simulation (circles) and theoretical
(solid curve) transmission spectrum in the triple-nanoresonator-
coupled waveguide system with d1 = 392 nm, d2 = 398 nm, d3 =
404 nm, L1 =L2 = 280 nm, and g1 = g2 = 100 nm. (b) Corresponding
transmission phase shift, (c) optical delay line, and (d) group indices
in the transparency windows. The dots in (b) show the locations of
the two EIT-like peaks. Average field distributions of |HZ| at the
two transparency-resonance wavelengths: (e) λ11 = 782.5 nm and
(f) λ22 = 792 nm.

factor (Qe) of these side-coupled cavities can also be estimated
as 530 and 67.7, respectively. As shown in Fig. 8(a), the
transmission spectrum calculated by the theoretical model is in
accordance with the FDTD simulation. There are two EIT-like
peaks at the wavelengths λ11 (782.5 nm) and λ22 (792 nm) in
the transmission spectrum. Transmission phase shift, optical
delay line, and group indices are respectively depicted in
Figs. 8(b)–8(d). The results show that two slow-light areas
are realized in the transparency windows. The maximal group
indices are about 35 at the two transparency-peak wavelengths.
The quality factors of transparency resonances retain the level
of ∼200. Figures 8(e) and 8(f) show the average magnetic field
distributions at the transparency-peak wavelengths. The gener-
ation of the first EIT-like peak is contributed to the Fabry-Perot
resonance building in the bus waveguide between cavities 1
and 2. Another EIT-like peak occurs due to the satisfaction
of the Fabry-Perot resonant condition in the bus waveguide
between cavities 2 and 3. The incident lights can pass through
the plasmonic waveguide system, which is consistent with the
result in Fig. 8(a). This sample is only an example of multi-
resonator-coupled waveguide systems. N–1 areas of EIT-
like transparency windows can be realized in the plasmonic
waveguide with N aperture-side-coupled resonators.
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V. CONCLUSIONS

The EIT-like spectral response has been investigated
theoretically and numerically in plasmonic systems which
consist of multiple cascaded nanodisk resonators aperture-
side-coupled to MIM bus waveguides. The simplified theo-
retical model has been derived from the temporal coupled-
mode theory, which shows that plasmonic multi-resonator
systems can be regarded as arrays of wavelength-filtering
lossy mirrors. For the two-resonator system, the theoretical
and simulation results have illustrated that the decrease of
resonance detuning between the side-coupled cavities gives
rise to narrower EIT-like spectral responses but at the expense
of dropping peak transmission. The decrease of the intrinsic
Drude loss induces a higher transparency-resonance quality
factor and peak transmission. The transmission spectrum
exhibits the symmetrical EIT-like line shape when the cavity-
cavity round-trip phase satisfies the condition of Fabry-Perot

resonance. With the increase of cavity-cavity separation at
around the optimum length, the transparency peak possesses a
redshift which can be accurately analyzed by the Fabry-Perot
theoretical model. Similar to the multiple EIT in atomic
systems, multiple EIT-like transparency windows have been
found in the plasmonic waveguide-resonator systems. Our
ultracompact configurations can realize group indices of ∼35
and quality factors of about 200, as well as retain high peak
transmission. They can find important potential applications
in highly integrated optical circuits and networks, especially
for wavelength-selective, ultrafast switching, light storage and
nonlinear devices.
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