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Bose-Einstein condensation for trapped atomic polaritons in a biconical waveguide cavity
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We study the problem of high-temperature Bose-Einstein condensation (BEC) of atom-light polaritons in
a waveguide cavity appearing due to the interaction of two-level atoms with (nonresonant) quantized optical
radiation in the strong-coupling regime and in the presence of optical collisions (OCs) with buffer-gas particles.
Specifically, we propose a special biconical waveguide cavity (BWC), permitting localization and trapping of
low-branch (LB) polaritons imposed by the variation of the waveguide radius in longitudinal direction. We
have shown that the critical temperature of BEC occurring in the system can be high enough—a few hundred
kelvins; it is connected with the photonlike character of LB polaritons and strongly depends on waveguide-cavity
parameters. In the case of a linear trapping potential we obtain an Airy-shaped polariton condensate wave function
which, when disturbed out of equilibrium, exhibits small-amplitude oscillations with the characteristic period in
the picosecond domain.
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I. INTRODUCTION

The investigation of quantum and statistical properties of
Bose-gases in low and especially in one dimension (1D) has
evoked indefatigable interest in atomic optics and condensed
matter physics for the last few decades (see, e.g., [1–6]). In
particular, at finite temperatures for a 1D or two-dimensional
(2D) ideal Bose gas, a true Bose-Einstein condensation (BEC)
can only be reached in the presence of a suitable trapping
potential [4], and the critical temperature for the phase
transition depends on the shape of the trapping potential, which
is usually harmonic in practice (cf. [3,4]). Low-dimensional
systems have been studied using atoms in highly deformed
traps [7] where effects of dimensional reduction become
important [8]. Alternative systems are bosonic quasiparticles,
where light and matter are coupled in a coherent way
(see, e.g., [9]). Here quantum and statistical properties of
light Bose-quasiparticles, like excitons [10], magnons [11],
and polaritons (see, e.g., [12–15]) have been considered.
For example, exciton-polaritons occurring in quantum well
structures placed in microcavities can be treated as a 2D
gas of bosonic particles having an effective mass which is
many orders smaller than the mass of an electron in vacuum.
This allows us to study relatively high-temperature phase
transitions in low-dimensional bosonic systems. Recently,
evidence of a Kosterlitz-Thouless phase transition (cf. [2])
superfluid behavior of exciton-polaritons in such systems has
been reported by many labs [12,13]. However, in current
semiconductor structures the thermalization time is in the
picosecond domain and comparable with the particle lifetime;
thus we deal here with nonequilibrium “condensates” [14],
for which dissipative and optical pumping effects play a
crucial role (cf. [15]). The characteristic temperatures for these
condensates are a few tens of kelvins, which is far above the
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temperature of atomic condensates, but still far below room
temperature.

Recently, room-temperature Bose-Einstein-condensation
of photons has been observed [16,17], where the photons
are confined in a 2D curved-mirror optical microresonator
filled with a dye solution. Thermalization of the photon gas is
established by thermal contact between the photons and the dye
solution, using repeated absorption and reemission processes
in the dye solution [18]. Frequent collisions, on a timescale
much faster than the excited-state lifetime, lead to a decoupling
of photons and dye molecules, thus the relevant particles are
not polaritons but photons [16,17] in these experiments.

In the present paper we discuss a different approach to reach
a high (room and beyond) temperature phase transition with
mixed matter-field states—polaritons in an atomic medium.
In particular, dressed-sate polaritons, where a light field is
coherently and strongly coupled to a two-level atom, leading
to a bosonic quasiparticle (in a suitable limit) are attractive
candidates due to their potentially longer lifetime (cf. [19,20]).
In this system thermal equilibrium of coupled atom-light
(dressed) states can be achieved experimentally within a
nanosecond domain and is limited by the natural lifetime
of the two-level atoms. Here, optical collisions (OCs) with
buffer-gas atoms can lead to thermalization; experimental
evidence for a thermal quasi-equilibrium of coupled atom-light
states has been found [21,22]. The obtained thermalization
time has been about ten times shorter than the natural
lifetime at full optical power. Here, the limited available
power in the light field prevented a full thermalization. To
overcome this problem, in Refs. [23,24] special metallic
waveguides of various configurations with a length up to a few
millimeters have been considered for trapping the polaritons,
similar to waveguides and closed resonators examined for
the confinement of microwave irradiation (cf. [25,26]). The
lifetime of photonlike polaritons trapped in the waveguide
can be longer than the thermalization time and is mainly
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determined by the cavity Q factor. Thus we expect in such
a waveguide that, for a large and negative atom-field detuning,
a high-temperature phase transition to a superradiant state of
the polaritons can be reached [24].

In this paper we study thermodynamic and critical proper-
ties of dressed-state polaritons trapped in a biconical waveg-
uide (i.e., metallic microtubes with different geometries [27]).
In this case one can study the thermodynamics of a 1D quantum
gas, which exhibits a high-temperature phase transition to a
BEC in the case of a trapping potential which is more confining
than harmonic [3]. For this reason we consider waveguides
with a biconical shape, which leads to a trapping potential in
the propagation direction. Throughout the paper, we assume
the strong-coupling limit; that is, the eigenstates of the coupled
atom-light system are treated as polaritons. In Sec. II we
describe the waveguide-cavity model for confinement of the
optical mode. To be more specific, we consider field properties
in an empty lossless metallic biconical waveguide cavity
(BWC) where photons are confined in transversal and trapped
in longitudinal dimension. In Sec. III we give a quantum
description of the atom-field interaction in the waveguide, and
the problem of specifying waveguide parameters in the limit
of weak trapping is considered. Thermodynamic properties of
the 1D ideal gas of photonlike polaritons are examined, where
we find a phase transition to a BEC state at experimentally
feasible temperatures. In Sec. IV we discuss the dynamical
properties of condensed LB polaritons. In the conclusion, we
summarize the results obtained.

II. BICONICAL WAVEGUIDE CAVITY

We start by describing the problem of photon trapping
in the empty BWC, sketched in Fig. 1. We assume metallic
boundary conditions, and for the case of simplicity the cavity
is assumed to be lossless. The radius of the cylindrically
symmetric waveguide depends on z following

R(z) = R0

F (|z|) , (1)

with F (0) = 1 and F (|z|) being a function increasing mono-
tonically with |z| (i.e., ∂F/∂z > 0 for z > 0), similar to
bottle resonators based on glass materials (and with relatively
large diameter); see Ref. [23]. Here, we focus on waveguides
with a maximal diameter that is close to the wavelength of
the optical field. In this limit it is possible to guarantee a
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FIG. 1. (Color online) Biconical waveguide for photon (and
polariton) trapping. Shown is a waveguide with a radius variation
following the form R(z) = R0(1 − α|z|), which is obtained from
Eq. (13) for ν = 1 in the limit of a small value of α. In this case
the radius variation within the limited waveguide length is roughly
linear. The radius at the waveguide center z = 0 is taken to be close to
λ/2.61, yielding a low-frequency cutoff close to the atomic resonance.

spacing of the transverse modes above the thermal energy,
which allows for the transverse mode quantum numbers to be
frozen. The system becomes effectively one dimensional, with
a continuum of longitudinal modes above a low-frequency
cutoff. For a suitable density of states, BEC then becomes
possible in this one-dimensional situation. For a related
although two-dimensional situation, see Ref. [17]. We consider
biconical waveguides, because fabrication of a conical hole can
be done by, for example, ion beam etching or laser drilling, and
then two of those holes can be combined to get the required
cavity. Alternatively, self-assembling nanotubes can be used,
which have been shown to be suitable for implementation in
the experiment [23].

We use the adiabatic approximation, assuming that R(z) is
slowly varying with the z coordinate; that is, that the condition∣∣∣∣dR(z)

dz

∣∣∣∣ � 1 (2)

is fulfilled. In other words, we suppose that the angle between
waveguide and z axis is small throughout the length of the
waveguide—see Fig. 1.

The field properties in such a system can be described by
the wave (scalar Helmholtz) equation for the vector potential
�(x,y,z) (we consider TM modes of polarization only; cf.
[28]):

��(x,y,z) + k2�(x,y,z) = 0, (3)

where we assume that the field evolves in time as eiωt , and k =
ω/c is the wave vector. We can interpret �(x,y,z) ≡ �l(x,y,z)
as a photonic wave function in the waveguide, where the index
l numerates a set of quantum numbers corresponding to the
solution of Eq. (3) in terms of special functions.

Both electric (Eρ, Eϕ , and Ez) and magnetic (Hρ, Hϕ, and
Hz) field components can be found by using standard ex-
pressions for the �(x,y,z)-function derivatives in cylindrical
coordinates (see, e.g., [28]). For TM modes the z component
of the magnetic field is Hz = 0, and the metallic boundary
condition imposes that the electric field E has only a normal
component on the waveguide surface.

Taking into account axial symmetry of the waveguide in
Fig. 1 it is efficient to rewrite Eq. (3) in cylindrical coordinates
z, ρ, and ϕ as

1

ρ

∂

∂ρ

(
ρ

∂�

∂ρ

)
+ ∂2�

∂z2
+ 1

ρ2

∂2�

∂ϕ2
+ k2� = 0, (4)

where the wave vector k is defined as

k2 = k2
⊥ + k2

z . (5)

We are looking for the solution of Eq. (4) in the form

�(ρ,z,ϕ) = �(z)�(ρ,z)eimϕ, (6)

where m is an integer (azimuthal quantum) number, and the
functions �(ρ,z) and �(z) comply with the equations

∂2�

∂ρ2
+ 1

ρ

∂�

∂ρ
+

[
k2
⊥(z) − m2

ρ2

]
� = 0, (7)

∂2�(z)

∂z2
+ k2

z�(z) = 0. (8)

In Eq. (7) the terms containing derivatives of the longitudinal
coordinate z are omitted due to the adiabaticity condition (2).
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The solution for the radial distribution �(ρ,z) can be expressed
in terms of Bessel functions,

�(ρ,z) = Jm(k⊥ρ), (9)

where the wave-vector component k⊥ is quantized in this case.
Omitting lengthy but straightforward calculations for the k⊥
component of the wave vector for TM modes in the waveguide,
we obtain

k⊥,mp(z) = gmp

R(z)
= k

(0)
⊥,mpF (|z|) , (10)

where k
(0)
⊥,mp = gmp/R0 is a transversal wave vector compo-

nent, gmp is the pth zero of the Bessel function Jm(x) of the
mth order [29]. In Eq. (10) we have used the metallic boundary
conditions for electric field components, Jm(k⊥R(z)) = 0. For
p = 1 and m = 0 we find the cavity transverse ground state
mode, yielding k⊥,01(z) = g01/R(z) with g01 ≈ 2.405.

Equation (5) implies a dispersion relation of the form

ωph = ck = c

√[
k

(0)
⊥,mpF (|z|)]2 + k2

z .

In the approximation k⊥,mp(z) � kz we arrive at

ωph � ck
(0)
⊥,mpF (|z|) + ck2

z

2k
(0)
⊥,mpF (|z|)

. (11)

In this limit the second term is much smaller than the first term
and we assume that, in the smaller, kinetic energy term we can
set F (|z|) = 1. This approximation is valid in the limit of a not-
too-large overall variation in the diameter of the waveguide.
We arrive at a photon energy in the BWC

Eph = mphc
2 + (h̄kz)2

2mph
+ Vph(z), (12)

where we have defined an effective photon mass mph =
h̄k

(0)
⊥,mp/c (with ωcutoff = mphc

2/h̄ as the low-frequency cut-
off) and an effective photon-trapping potential Vph(z) =
h̄ck

(0)
⊥ [F (|z|) − 1] in analogy with Ref. [17]. The system

becomes formally equivalent to a one-dimensional ideal gas of
massive particles moving along the z axis under confinement
in the potential Vph(z).

In the following we assume a dependence

F (|z|) = 1 + α |z|ν , (13)

corresponding to a waveguide diameter variation along the
z axis of R(z) = R0/(1 + α|z|ν); with ν > 0 and α > 0,
we arrive at a potential of the form Vph(z) = h̄ck

(0)
⊥ α|z|ν =

mphc
2α|z|ν . True BEC is expected to be possible in the 1D

system if the potential is more confining than parabolic (i.e.,
ν < 2 [3]). We here mostly are interested in the case of ν = 1,
for which R(z) = R0/(1 + α|z|), which yields a linear trapping
potential following Vph(z) = mphc

2α|z| (see Fig. 1). For the
case of a relatively small variation of the waveguide diameter
over the length l of the waveguide (i.e., 1

2αl � 1), one may use
a linear variation of the diameter R(z) ≈ R0(1 − α|z|), which
gives the desired potential in the first-order approximation
[23]. Such a purely biconical design can be easier to fabricate
experimentally.

Given the dispersion relation (12), the longitudinal wave
function �(z) [Eq. (8)], follows the Schrödinger equation

∂2�(z)

∂z2
+ 2mph

h̄2 (E − Uph|z|ν)�(z) = 0, (14)

where E = Eph − mphc
2 is the shifted photon energy in the

cavity, and we made the definition Uph = mphc
2α.

The solutions �n(z) of the Schrödinger equation (14) can
be given in terms of special functions (see, e.g., [29]). In
the quasiclassical approach the energy spectrum of photonic
field in the waveguide can be obtained from familiar Bohr-
Sommerfeld quantization principle and reads (see, e.g., [30])

En = h̄ων(n + 1/2)2ν/(ν+2), (15)

with the characteristic frequency of photonic “particle” oscil-
lation (i.e., trapping frequency) in the cavity

ων =
(

πU
1/ν

ph

23/2m
1/2
ph h̄(2−ν)/2νI (ν)

)2ν/(ν+2)

. (16)

Here we have defined I (ν) = ∫ 1
0 (1 − |t |ν)1/2dt .

A characteristic length for the waveguide cavity can be
obtained by looking at the turning points z = ±zc for the
photonic ground-state mode, given by

zc = (E/Uph)1/ν =
(

π

4I (ν)

) 2
2+ν

dν, (17)

where dν = [h̄2/(2m2
phc

2α)]1/(ν+2) defines a characteristic
longitudinal scale of localization of the ground state (n = 0).
From this we can define the condition for the validity of the
quasiclassical approach, given as (cf. [31])

kzdν � (ν/2)1/3. (18)

Relation (18) can be satisfied for a given kz by adjusting the
waveguide parameter α [cf. (2)].

III. THERMODYNAMICS OF POLARITONS
IN WAVEGUIDE CAVITY

The description of atomic polaritons in a small-volume
cavity can be given in a similar way as represented in
Refs. [20,24]; namely, by using Holstein-Primakoff trans-
formation for atomic excitations. The Hamiltonian of the
total system of atom and quantized field is given by H =
Hrad + Hat + Hint, where Hrad characterizes noninteracting
photons in the waveguide, Hat is the Hamiltonian of the atomic
ensemble, and Hint is responsible for the interaction of Nat

two-level atoms with the quantized optical field in the cavity. In
momentum representation the Hamiltonian H may be written
as

H = h̄
∑

�k
[ωphf̂

†
�k f̂�k + ωatφ̂

†
�kφ̂�k + κ(f̂ †

�k φ̂�k + φ̂
†
�kf̂�k)]

− h̄κ

2Nat

∑
kk′q

(f̂ †
k+q φ̂

†
k′−q φ̂kφ̂k′ + φ̂

†
kφ̂

†
k′ φ̂k′−q f̂k+q), (19)

where f̂�k (f̂ †
�k ) is the annihilation (creation) operator for

the photons absorbed (emitted), φ̂�k (φ̂†
�k) is the annihilation
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(creation) operator that characterizes excitations (polarization)
of a two-level atomic ensemble and obeys usual commutation
relation for a Bose system,

κ =
( |℘ab|2ωLNat

2h̄ε0VM

)1/2

is the collective atom-field interaction strength, ℘ab is atomic
dipole matrix element, VM is an effective volume of mode
occupation within the region of atom-field interaction that can
be defined as

VM =
∫

cavity

|�(r)|2
max[|�(r)|2]

d3r,

where max[|�(r)|2] is maximal value of the square of the
wave function (cf. [24,32]). Here we have assumed that
the dipole matrix element ℘ab is independent of the mode.
This simplification is justified because the exact transition
rates do not influence the thermodynamic properties of the
system. The nonlinear part of the Hamiltonian H [i.e., the last
term in Eq. (19)] characterizes two-body polariton interaction
processes due to atomic saturation effects. The polaritonic
dispersion is determined by the photon dispersion ωph(k) and
the atomic excitation dispersion, which is described by

ωat ≡ ωat(k) = ω0 + h̄k2
z

2mat
, (20)

where ω0 is the atomic transition frequency.
If a quantum field intensity is not too high (the number

of photons is essentially smaller than the number of atoms),
we can assume that the corresponding dispersion relation for
polariton states is not modified compared to the uncoupled
case. Thus, we can use a polariton basis to diagonalize the total
Hamiltonian in Eq. (19) by using the unitary transformation

�̂1,�k = Xkf̂�k + Ckφ̂k, (21a)

�̂2,�k = Xkφ̂k − Ckf̂�k, (21b)

where the introduced annihilation operators �̂1,�k , �̂2,�k char-
acterize polaritons in the atomic medium, corresponding to
two types of elementary excitations which, in the low-density
limit, satisfy the usual boson commutation relations (cf. [24]).
Parameters Xk and Ck are real Hopfield coefficients satisfying
the condition X2

k + C2
k = 1, which determines the contribution

of the photon (Ck) and atomic excitation (Xk) fraction to the
polariton annihilation operators (21) according to

Xk = 1√
2

⎛
⎝1 + δk√

4κ2 + δ2
k

⎞
⎠

1/2

, (22a)

Ck = 1√
2

⎛
⎝1 − δk√

4κ2 + δ2
k

⎞
⎠

1/2

, (22b)

where

δk = ωph − ωat ≈ � + h̄k2
z

2mph
+ Vph(z)

h̄

is the frequency mismatch. Here � = ωL − ω0 is the atom-
field detuning, where ωL is the laser-light frequency which

is taken to be close to ωcutoff . In the presence of photon
trapping, the Xk and Ck parameters depend on the waveguide
longitudinal coordinate z.

We confine our analysis to polaritons of the lower branch
(LB polaritons), and we ignore the effects of interactions
between the lower and upper polariton branches. Taking into
account the quasiclassical approach [cf. Eq. (18)] for the
photonic field in the BWC, we find the general conditions
for the observation of a BEC of (lower branch) polaritons,

�En � kBT � h̄�R0, (23)

where �R0 = (�2 + 4κ2)1/2 is the zero-momentum Rabi split-
ting frequency between the lower and upper polariton branch.
The first constraint in Eq. (23) represents the condition for
a quasiclassical limit where the energy spacing �En ∼ h̄ων

[see Eq. (15)] of the quantized photonic states is essentially
smaller than the thermal energy and the states may be
treated as a continuum (cf. [3]), where the energy levels are
populated according to a Bose-Einstein distribution in thermal
equilibrium. The second condition implies that the thermal
energy is not enough to excite lower branch polaritons to
the upper branch, essentially allowing us to neglect the upper
branch.

Taking Eqs. (21) and (22) into account from Eq. (19) we
can obtain the LB Hamiltonian HLB in the form

HLB = h̄
∑

�k
��k�̂

†
2,�k�̂2,�k +

∑
kk′q

U�k�k′ �q�̂
†
2,k+q�̂

†
2,k′−q�̂2,k�̂2,k′ ,

(24)

where ��k = 1
2 (ωat + ωph − �R) determines the dispersion

relation for LB polaritons; �R = (δ2 + 4κ2)1/2 is the Rabi
splitting frequency that determines the gap between upper
and lower states. The gap is minimal and equal to �R0 taken
for kz = 0 at the center of the trap (waveguide) at z = 0. In
Eq. (24), we use the definition

U�k�k′ �q = h̄κ

2Nat
(C|�k+�q|X�k′ + C�k′X|�k+�q|)X|�k′−�q|X�k,

which determines two-body polariton-polariton scattering
processes. The effective mass of the LB polaritons is found
to be

mpol ≡ h̄

(
∂2��k
∂k2

z

∣∣∣∣
kz=0

)−1

= 2matmph�Rz(z)

(mat + mph)�Rz(z) − (mat − mph)[� + Vph(z)/h̄]
,

(25)

where �Rz(z) = {[� + Vph(z)/h̄]2 + 4κ2}1/2 is the z-
dependent Rabi splitting frequency.

To be more specific we examine the interaction between
a quantized field and rubidium atoms, which are treated as
a two-level system. The transition frequency is taken as the
weighted mean of the rubidium D lines, ω0/(2π ) � 382 THz,
and the laser is taken to be red detuned by |�|/(2π ) � 11 THz,
� < 0 [21,22]. In the experiments reported, the thermal energy
(kBT ) for the atoms at ambient temperatures (T = 530 K) is
about the frequency of the Rabi splitting �R0/(2π ) � 11 THz
in energy units, thus condition (23) has not been completely
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achieved yet [21–24]. We consider the perturbative limit when
�0, κ � |�|; that is, �R0/(2π ) ≈ |�|/(2π ) � 11 THz. For
negative detuning (� < 0) the LB polaritons with relatively
small momentum kz at the center of the trap are photonlike
with mass

mpol ≈ mph
2�R0

�R0 + |�| � 2.8 × 10−36 kg;

that is, δk � �, Xk ≈ 0, Ck ≈ 1, and �̂2,�k � −f̂�k (cf. [24]).
The role of polariton-polariton scattering processes in

Eq. (24) is negligibly small in this limit. At the bottom
of the dispersion curve the polariton scattering parameter
U0 ≡ U�k�k′ �q |�k�k′ �q=0 behaves like U0 � h̄κ4/(Nat|�|3). Hence in
the limit of a large atom-light detuning |�| (ratio κ/|�| is about
0.057, cf. [22,24]) and for a macroscopically large number of
atoms (Nat � 1) the gas of LB polaritons can be treated as
ideal.

The photonic fraction of the LB polaritons—Hopfield coef-
ficient C2

0 ≡ C2
kz=0—and the mass of LB polaritons mpol taken

in the limit of zero momentum kz = 0 as a function of z are
presented in Figs. 2(a) and 2(b). With increasing coordinate z,
LB polaritons become more atom like and present half-matter–
half-photon quasiparticles [X0(z) = C0(z) = 2−1/2] with mass
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FIG. 2. (Color online) (a) Polariton photon fraction (coefficient
C2

0 ) and (b) normalized LB polariton mass mpol as a function of z for
trapping-power parameter ν = 0.5, 1, 1.5. The inset shows the de-
pendence of z1/2/dν versus parameter ν. The parameters are �/2π =
−11 THz, R0 � λ/2.61 ≈ 0.3 μm, and α1/ν = 0.0005 μm−1.
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FIG. 3. (Color online) Dependencies of photonic trapping fre-
quency ων/(2π ) versus trapping parameter ν. Blue solid line
corresponds to α1/ν = 0.005 μm−1, red dashed line to α1/ν =
0.0005 μm−1, green dotted line to α1/ν = 0.000 05 μm−1. In the
inset the dependence of ων versus the parameter α1/ν for ν = 0.5
(blue solid line), ν = 1 (red dashed line), and ν = 1.5 (green dotted
line) is depicted.

mpol ≈ 2mph at the distance z1/2 = (h̄|�|/Uph)1/ν , where
photonic and atomic dispersion lines cross [see Fig. 4(a)].
From definition (25) it follows that the mass of polaritons
becomes z independent if condition Vph(z) � h̄|�| is sat-
isfied. Since Vph(dν) ∼ h̄ων , the inequalities (23) already
involve the above condition. In this limit an effective width
of the photonic mode localization dν is essentially smaller than
the characteristic length z1/2. The ratio z1/2/dν for different
trapping power is outlined in the inset in Fig. 2(b). For ν = 1
the region of photon mode localization is more than ten times
shorter than characteristic length z1/2, allowing us to treat the
LB polaritons as nearly photonic. The variation of the polariton
mass [see Fig. 2(b)] is small for z � z1/2 [i.e., under condition
(23)], allowing us to treat the LB polaritons as particles with
constant mass.

Figure 3 shows the characteristic trapping frequency ων as
a function of parameter ν for the cavity, where the red (dashed)
curve corresponds to the waveguide α parameter used in Fig. 2.
For ν � 1 the condition (23) can be fulfilled for any reasonable
value of α parameter by choosing the atom-field detuning |�|.
On the other hand, ων increases within the domain of 0 < ν <

1 and the fulfillment of condition (23) mainly depends on the
given value of curvature of the waveguide radius (i.e., on the
α parameter) and on the experimentally accessible atom-field
detuning |�|.

The results for the rubidium system allow us to further
simplify the Hamiltonian for the LB polaritons: At small
momenta h̄k2

z /(2mpol) � �R0 it approaches

HLB ≈
∑

�k

[
h̄2k2

z

2mpol
+ U (z)

]
�̂

†
�k�̂�k, (26)

where U (z) is an effective trapping potential for polaritons
defined as

U (z) = 1
2 {Vph(z) −

√
[h̄� + Vph(z)]2 + 4h̄2κ2 + h̄�R0}.

(27)
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The last term in curly brackets of Eq. (27) specifies the
minimal level of potential energy U (z), which is equal to zero
[U (z)|z=0 = 0], at the center of the trap. From Eq. (27) under
the condition (23) for photonlike polaritons one can obtain a
simple expression for a power-law potential

U (z) � Upol |z|ν , (28)

where Upol = mphc
2α(�R0 + |�|)/(2�R0).

Let us examine the statistical properties of LB polaritons
trapped in the waveguide. From the above discussion, we can
treat the polaritons as one-dimensional ideal bosons confined
in the potential U (z). In the quasiclassical approximation (23)
the density of states approaches

ρ (ε) =
√

2

πh̄

∫ l(ε)

0

(
mpol

ε − U (z)

)1/2

dz, (29)

where l(ε) = (ε/Upol)1/ν is a characteristic length of local-
ization for LB polaritons with energy ε [see Fig. 4(a)]. The
density of states ρ(ε) as a function of the normalized polariton
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FIG. 4. (Color online) (a) Energy of polariton trapping versus
coordinate z taken for ν = 1. (b) Dependence of density of states
ρ(ε) on normalized polariton energy ε/(h̄|�|). The solid curves cor-
respond to the exact trapping potential(27), and the dashed curves
are relevant to the power-law potential (28). The black solid lines
correspond to atomic ωat and photonic ωph frequencies. The shaded
(yellow) area corresponds to LB polariton ground-state wave function
(see Sec. IV).

energy ε/(h̄|�|) is plotted in Fig. 4(b) for the approximate
(dashed) and exact (solid) potential. Differences occur at
polariton energies of ε ∼ h̄|�|; that is, for LB polaritons
weakly confined inside the region z < z1/2, one can use the
power-law approximation (28) of the trapping potential U (z).

The total number of LB polaritons Npol is given by

Npol = N0 +
∫

ρ(ε)dε

exp[(ε − μ)/kBT ] − 1
, (30)

where N0 is the number of ground-state polaritons and μ is
the chemical potential.

We find the critical temperature TC for which the ground-
state occupation becomes macroscopic by solving Eq. (30) at
μ = 0. For the onset of Bose-Einstein condensation one finds
(cf. [3])

kBTC =
[

πh̄NpolνU
1/ν

pol√
2mpolF (ν)�(x)ζ (x)

]2ν/(2+ν)

, (31)

where

F (ν) =
∫ 1

0

t1/ν−1dt√
1 − t

,

and �(x) and ζ (x) are the gamma and the Riemann (zeta)
functions, respectively, taken at x = 1/ν + 1/2. Below the
critical temperature the occupation of the ground state is
determined by

N0 = Npol

[
1 −

(
T

TC

)1/ν+1/2]
. (32)

In the experiment, the average number of LB polaritons,
Npol = ∑

�k〈�̂†
�k�̂�k〉 ≈ Nph, can be estimated using the photon-

like character of polaritons in the perturbation limit. Notice
that a polaritonic model is valid under the low-excitation-
density limit for which the average number of photons Nph

is essentially smaller than the average number of atoms Nat.
Using experimentally accessible rubidium atom densities,
which are nat = Nat/VM = 1016 cm−3, (cf. [21]) and taking
the occupation volume VM of the lowest photonic mode (TM01

mode) to be VM ≈ 0.5 μm3 we find an average number of
Nat = 5000 atoms in the BWC, thus limiting the experiment
to a few hundred polaritons. In Fig. 5 the critical temperature
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FIG. 5. (Color online) Critical temperature TC versus number of
polaritons Npol.
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TC as a function of LB polariton number Npol is shown. A
high-temperature BEC, as follows from Eq. (31) and Fig. 5,
can be achieved for an experimentally feasible number of
polaritons. Since the function ζ (x) diverges at x = 2 [see
Eq. (31) and [3]], the critical temperature TC vanishes for
increasing trapping power parameter ν (see Fig. 5). From
Eq. (31) we find a critical temperature which drastically
increases with increasing α parameter. However, the values
of the parameter are limited by inequality (2) for our problem.

Notably, the thermal de Broglie wavelength �T =
[2πh̄2/(mpolkBT )]1/2 at the experimentally explored temper-
atures of the atomic gas T = 530 K is macroscopically large
(i.e., � = 1.89 μm) and comparable with the magnitude of
characteristic length d1 of photonic field localization.

IV. POLARITON BEC PROPERTIES AT ν = 1

Let us examine LB polariton condensate properties at
sufficiently “low” temperatures such as T � TC , which is
relevant to the linear trapping potential U (z) obtained at ν = 1.
In this case the parameter Upol = U (z)/|z| may be physically
interpreted as a force acting on polaritons in the waveguide
cavity. Macroscopic LB polariton BEC properties can be
found with the help of a quantum field theory approach. In
particular, the Lagrangian density L for the system described
by Hamiltonian (26) looks like

L = ih̄

2

(
ψ

∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
+ h̄2

2mpol

∣∣∣∣∂ψ

∂z

∣∣∣∣
2

+ Upol|z||ψ |2,
(33)

where ψ(z,t) ≡ 〈�̂(z,t)〉 is the classical polariton condensate
ground-state wave function normalized as

∫ +∞
−∞ |ψ(z,t)|2dz =

1. The Lagrangian density L implies the nonstationary
Schrödinger equation for polaritons in coordinate represen-
tation in the form

ih̄
∂ψ(z,t)

∂t
=

[
− h̄2

2mpol

d2

dz2
+ Upol |z|

]
ψ(z,t). (34)

To obtain a stationary solution we make the substitution
ψ(z,t) = e−iμt/h̄ψ(z), where μ is the chemical potential. Then
we have

h̄2

2mpol

d2ψ(z)

dz2
+ (μ − Upol|z|)ψ(z) = 0. (35)

The LB polariton ground-state wave function is expressed
through the Airy function as (cf. [33])

ψ(z) = 1.308√
d1,pol

Ai

( |z|
d1,pol

+ a′
1

)
, (36)

where d1,pol = [h̄2/(2mpolUpol)]1/3 specifies a characteristic
scale of spatial (longitudinal) localization of the polariton
condensate for a linear trapping potential; a′

1 ≈ −1.0188 is
the first zero of the Airy function derivative. It is interesting to
note that the characteristic length d1,pol = d1 is the same for the
photons and photonlike polaritons trapped in the BWC due to
the relation mpolUpol = mphUph; that is, true under condition
(23) [see also Eqs. (17) and (28)]. Since LB polaritons are
completely photonlike it is possible to conclude that the photon
mode n = 0 reflects the behavior of polaritonic probability

density |ψn|2 ≡ |ψ |2. The chemical potential μ can be easily
found from Eqs. (35) and (36) and is given by

μ = 1.0188Upold1. (37)

To investigate the reaction of the BEC to a small disturbance
induced from the outside we study the dynamics of the
BEC when the initial wave function has been compressed
or stretched compared to the equilibrium wave function. In
this case one expects slow oscillations of the BEC around the
equilibrium state. The dynamics of the polariton BEC induced
by a disturbance can be found by means of the variational
approach for solving Eq. (34). In particular, we take the Airy
trial function for the ground state (cf. [34]):

ψ(z,t) = N√
D(t)

Ai

( |z|
D(t)

+ a′
1

)
eib(t)|z|, (38)

where N is a normalization constant. In Eq. (38) the time-
dependent function D(t) specifies the width of the wave
function, and b(t) characterizes a related wave function
curvature. Inserting Eq. (38) into Eq. (33) it is possible to
obtain an effective Lagrangian L̄ = ∫ +∞

−∞ Ldz by averaging
Lagrangian density L as

L̄ = −2h̄a′
1

3

db

dt
D − h̄2a′

1

6mpol

1

D2
+ h̄2

2mpol
b2 − 2Upola

′
1

3
D.

(39)

The effective Lagrangian L̄ leads to a Newton-like equation
for condensate width function

d2D

dt2
= 3h̄2

4|a′
1|m2

polD
3

− 3Upol

2|a′
1|mpol

. (40)

For further processing it is useful to introduce a new dimen-
sionless variable for the wave function width w = D/d1 and
the rescaled time τ = ωpolt , where ωpol is a characteristic
frequency of polariton trapping defined as [cf. (16)]

ωpol =
√

3h̄

2
√|a′

1|mpold
2
1

�
(

33/2U 2
pol

2|a′
1|3/2h̄mpol

)1/3

. (41)

The dimensionless equation for the new variables takes the
form

∂2w

∂τ 2
= 1

w3
− 1. (42)

The solution of Eq. (42) in the absence of polariton trapping
is w = (1 + τ 2)1/2, which describes the spreading of a free
polariton wave packet with Airy shape (cf. [33]). In the pres-
ence of polariton trapping the analytical solution of Eq. (42)
is much more complicated. Figure 6 demonstrates the tem-
poral dynamics of the normalized polariton condensate wave
function width w, using the rubidium parameters described
in Sec. III (cf. [21–23]), which shows oscillations around the
equilibrium solution. The characteristic frequency estimated
for experimental conditions is ωpol/(2π ) = 0.817 THz. It is
important that the value of ωpol should satisfy the quasiclassical
condition (23) discussed above. Completely neglecting the
decay rate, the polaritonic system exhibits periodical behavior
similar to an atomic BEC in a harmonic trap (cf. [34]). The
frequency �osc for small-amplitude oscillations (see Fig. 6)
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FIG. 6. (Color online) Normalized wave function width w versus
time t . The parameters are the following: ν = 1, R0 ≈ 0.3 μm, and
α1/ν = 0.0005 μm−1. The initial conditions are w(τ = 0) = 0.75 for
the solid (blue) curve, w(τ = 0) = 0.8 for the dashed (red) curve, and
w(τ = 0) = 0.9 for the dotted (green) curve. In all cases ẇ(τ = 0) =
0. The horizontal line w = 1 corresponds to the stationary solution
of Eq. (42).

can be obtained by linearizing Eq. (42) around the stationary
state w = 1 and is found to be �osc = √

3ωpol. The polariton
wave function is stable everywhere in this case.

V. CONCLUSIONS

Let us briefly summarize the results obtained. We have
considered the problem of the thermodynamics for polaritons
emerging due to the interaction of two-level rubidium atoms
with an optical field in the presence of OCs with buffer-gas
particles. We assume the optical field to be trapped inside
a biconical waveguide filled with rubidium atoms, and we
find conditions for effective trapping of the coupled atom-
light system. In particular, we find a phase transition to a
BEC of polaritons if relation (23) is fulfilled, a condition
that substantially depends on a cavity mode structure and
α parameter characterizing slow changing of the waveguide
radius along the longitudinal coordinate. We analyze the
problem of BEC formation for lower-branch atomic polaritons
trapped in the BWC under the quasiclassical approach (18)
and (23), and we find that atomic polaritons formed in the
waveguide may be treated as a 1D ideal gas of bosonic

quasiparticles in the framework of current experimental results
achieved for the thermalization of coupled atom-light states in
the presence of a strong atom-field coupling regime.

Even though the character of the dressed-state polaritons
discussed in the paper is nearly photonlike, they represent
mixed states of photons and excitations of a two-level
atomic system. In this sense they are physically close to
exciton-polaritons obtained in semiconductor microcavities
(cf. [12,13]). However, our estimations show that the critical
temperature of the BEC phase transition can exceed the
temperature of 530 K currently used in experiments, thus
being high enough to be observed using appropriate waveguide
parameters and cavity modes. Such high critical temperatures
cannot be achieved for exciton-polaritons in current narrow-
band semiconductor microstructures due to exciton ionization
effects. The main reason for the high transition temperature
is the photonlike character of the polaritons (i.e., their low
effective mass). This, together with the thermalization due
to optical collisions, may allow to experimentally observe a
high-temperature phase transition of dressed-state polaritons
using realistic parameters.

In a more detailed study we investigated the case of a
biconical cavity leading to a linear trapping potential of a
polariton gas. We are aware that the transverse decoherence
rate needs to be studied in more detail for the considered
system to ensure the strong-coupling limit. Using variational
techniques we find the ground-state wave function to be
Airy shaped, where the width w exhibits small-amplitude
oscillations in time around a stationary state when the BEC
is excited, with a characteristic period in the picosecond
domain for current experiments. The results obtained indicate
that the observation of a corresponding thermodynamic phase
transition is possible already in current experimental setups,
given the described waveguide structures are prepared with the
required accuracy.
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