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Two-dimensional fundamental soliton-soliton pairs are investigated in binary mixtures of Bose-Einstein
condensates with attractive interactions between atoms of the same type. Both attractive and repulsive interactions
between atoms of different types are considered. The general properties of the stationary states are investigated
variationally and numerically. The stability regions of the soliton-soliton pairs are determined.
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I. INTRODUCTION

Binary mixtures of Bose-Einstein condensates (BECs) are
interacting quantum systems of macroscopic scale which
exhibit rich physics not accessible in a single-component
degenerate quantum gas. The key difference between multi-
component and single-component BECs is the intercomponent
interaction. In view of their unique properties binary mixtures
of BECs open up intriguing possibilities for a number of impor-
tant physical applications, including quantum simulation [1],
quantum interferometry [2], and precision measurements [3,4].

Various types of nonlinear matter wave structures have
been predicted for multicomponent BECs [5–9]. However,
many basic properties of two-component BECs remain to be
investigated even in simple mean-field approaches based on
coupled Gross-Pitaevskii equations (GPEs) with a vector order
parameter. Most previous work on two-dimensional (2D) and
three-dimensional (3D) vector solitonic structures focused on
BECs with repulsive intracomponent interactions [10–14].

Since the scattering length of 7Li atoms is negative, a binary
mixture of BECs with attractive intercomponent interactions
could be realized experimentally by simultaneously trapping
7Li atoms in different hyperfine states. Experimental progress
to control the strength and even the sign of intraspecies
and interspecies interactions via Feshbach resonances [15,16]
opens new prospects for investigations of attractive BECs.
It also motivates recent extensive theoretical studies of two-
component matter wave solitons for different signs of intra-
and intercomponent interactions (see, e.g., [17–24]).

As is well known, bright 2D and 3D solitons, described
by a GPE with attractive nonlinearity, are unstable and may
collapse in a finite amount of time, if the number of atoms in
the condensate exceeds a critical value (see, e.g., Ref. [25]).
Recent theoretical investigations [26] predicted the existence
of stable soliton-vortex pairs in trapped BECs with attractive
intracomponent interactions. However, the ground-state 2D
soliton-soliton structures in such BECs have never been
investigated and will be the focus of the present work. Note
that in a different context soliton-soliton pairs, described by
a similar model, but without linear potential, are found to be
unstable [27]. It is reasonable to expect that a stabilization
of fundamental vector solitons could occur in an additional
external trapping potential.

In the present work we perform a detailed theoretical
analysis of nonlinear matter wave structures in binary mixtures

of atoms with attractive intracomponent interactions and
attractive as well as repulsive intercomponent interactions.
General properties of the steady states of such systems
are investigated by means of a variational analysis and
numerical simulations. The conditions for the existence and
stability of matter wave vector solitons are revealed. Since no
experimental work on disk-shaped bright solitons is known to
us, we hope that the present study encourages experimental
investigations in this direction. Relevant parameters for such
experiments can be extracted from the estimation of the critical
particle densities given in the following sections.

II. MODEL

We consider a binary mixture of BECs at zero temperature
described in mean-field approximation by two coupled Gross-
Pitaevskii equations (GPEs) (j ∈ {1,2}):

ih̄
∂�j

∂t
= (Ĥj + gjj |�j |2 + gj,3−j |�3−j |2)�j, (1)

with Ĥj = − h̄2

2Mj
∇2 + Vj (r), and Mj is the mass of an atom

of type j loaded into the axially symmetric harmonic external
trapping potential Vj (r) = Mjω

2
⊥(x2 + y2)/2 + Mjω

2
zz

2/2.
Interactions between atoms of the same type (intra-component
interactions) are characterized by the diagonal coupling coeffi-
cients gjj = 4πh̄2ajj /Mj , where ajj are the s-wave scattering
lengths for binary collisions between these atoms. Inter-
component interactions are controlled by the off-diagonal
coupling terms g12 = g21 = 2πh̄2a12/M∗ with the reduced
mass M∗ = M1M2/(M1 + M2). Note that our simple mean-
field approach provides a reasonable approximation for the
evolutionary scenarios investigated here; however, a mean-
field approach of course fails at the final stage of the collapse
when the atomic density increases catastrophically.

We assume that the longitudinal trapping frequency ωz

is much larger than the transversal trapping frequency ω⊥
(ωz � ω⊥) and that the nonlinear interactions ∼gij are weak
with respect to the confinement strength of the potential in
the longitudinal direction. In this case the BEC is “disk
shaped” and we may assume that the longitudinal motion
of condensates is frozen in �j (r,t) = �̃j (x,y,t)ϒj (z,t),
where ϒj (z,t) = (lzj

√
π )−1/2 exp(− i

2ωzt − 1
2z2/l2

zj ) is the
ground-state wave function of the longitudinal harmonic
trapping potential, lzj = √

h̄/(Mjωz). After integrating out the
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longitudinal coordinates, the GP equations take the effective
2D form

i
∂�̃j

∂t
+ (ĥj + |�̃j |2 + bj,3−j |�̃3−j |2)�̃j = 0, (2)

where ĥ1 = �⊥ − r2, ĥ2 = κ�⊥ − r2

κ
, κ = M1/M2, r =√

x2 + y2, and �⊥ = ∂2/∂x2 + ∂2/∂y2 is the 2D Laplacian.
Here we have introduced the dimensionless variables (x,y) →
(x,y)/l⊥1, t → t/τ , and �̃j → �̃j /

√
Cj , where l⊥1 =

√
h̄/(M1ω⊥), τ = 2/ω⊥, Cj = h̄ω⊥

√
π (l2

z1 + l2
z2)/(2|gjj |).

Dimensionless coupling parameters are defined by b12 =
− g12

|g11|
√

2
1+κ

and b21 = − g21

|g22|
√

2κ
1+κ

. For simplicity, we con-
sider here only the symmetric case M1 = M2 and g11 = g22,
so that κ = 1 and b12 = b21 = σ . Furthermore, we specifically
consider only cases where the diagonal part of the interaction
matrix gij is attractive (g11 < 0, g22 < 0) while the off-
diagonal terms g12 = g21 may be attractive (g12 < 0,σ > 0)
or repulsive (g12 > 0,σ < 0).

The coupled differential equations given in Eq. (2) have the
following integrals of motion: (i) the number of particles in
each component

Nj =
∫

|�̃j |2d2r, (3)

(ii) the total energy

E = E1 + E2 − σ

∫
|�̃1|2|�̃2|2d2r, (4)

with

Ej =
∫ (

|∇�̃j |2 + r2|�̃j |2 − 1

2
|�̃j |4

)
d2r,

(iii) momentum, and (iv) angular momentum.

III. STATIONARY SOLUTIONS

We consider now stationary vector soliton solutions of the
coupled GPEs (2). We are looking for a ground state of the
form

�̃j (r,t) = ψj (r)e−iμj t , (5)

where r =
√

x2 + y2. Each solution is characterized by chem-
ical potentials μj . The real functions ψj (r) satisfy the coupled
equations

μjψj + ψ ′′
j + 1

r
ψ ′

j − r2ψj + (
ψ2

j + σψ2
3−j

)
ψj = 0 (6)

and the boundary conditions ψ ′
j (0) = 0 and ψj (∞) = 0. At

fixed strength of the intercomponent interaction σ we then
obtain a two-parameter family of vector soliton solutions (with
the chemical potentials μ1 and μ2 as parameters).

Obviously, vector solitons with the same chemical potential
μ1 = μ2 = μ̃ and the same radial profiles ψj (r) are described
by a single GPE with a harmonic potential and an effective in-
teraction strength σ̃ = 1 + σ . It is known (see, e.g., Ref. [28])
that 2D solitonic solutions of this equation exist for μ̃ < 2
if σ̃ > 0 and for μ̃ > 2 if σ̃ < 0. The value μ̃ = 2 coincides
with the eigenvalue of the ground state of a linear Schrödinger
equation with harmonic potential; i.e., nonlinear terms vanish

and the number of atoms tends to zero when μ̃ → 2. If σ̃ < 0,
the number N of atoms grows rapidly for μ̃ > 2; if σ̃ > 0,
N saturates at a critical value Ncr/σ̃ where μ̃ → −∞. Here,
Ncr = 11.68 is the number of atoms in the fundamental Townes
soliton, which is the localized solution of a single GPE without
external trap.

Using these results for one-component solitons as a guide,
one may expect qualitatively different properties for vector
solitons with strong repulsion (σ < −1) or weak repulsion
−1 < σ < 0. Analogously, we will also discuss separately
the properties of the soliton-soliton pairs with weak attraction
(0 < σ < 1) and strong attraction (σ > 1).

A. Attractive intercomponent interactions (σ > 0)

The set of equations represented by Eq. (6) was solved
numerically by a stabilized relaxation method similar to that
described in Ref. [29]. In addition, we performed a variational
analysis of the fundamental vector solitons. The variational
results not only provide an appropriate initial condition for
our numerical relaxation procedure but also they show a good
agreement with our numerical results as is seen, e.g., from
Figs. 1(b)–1(d) and 1(f)–1(h).

If all interactions between particles are attractive, then both
solitonic components are basically bell shaped and a simple
trial function of the form

ψj (r) =
√

Nj

πa2
j

e
− 1

2
r2

a2
j (7)

is expected to be a good approximation. Here aj is the effective
width of component j . The trial function is normalized to
the number of particles: 〈ψj |ψj 〉 = Nj . Substituting the trial
function given by Eq. (7) into Eq. (4), we obtain the energy

E = E1 + E2 − σE12 (8)

with

Ej = Nj

(
1

a2
j

+ a2
j − Nj

4πa2
j

)
, E12 = N1N2

π
(
a2

1 + a2
2

) .

A soliton solution corresponds to a stationary point of the
total energy at a fixed number of particles in each component:
(∂E/∂a1)N1,N2 = 0,(∂E/∂a2)N1,N2 = 0.

Obviously, the two-parameter family of vector soliton
solutions is symmetric with respect to the simultaneous
interchange μ1 ↔ μ2 and ψ1 ↔ ψ2, so that in the plane
of chemical potentials (μ1,μ2) the solutions are symmetric
with respect to the line μ1 = μ2. To utilize this symmetry
we present the number of particles for each component as
functions of the difference μ− = μ1 − μ2 at the fixed total
chemical potential μ+ = μ1 + μ2. Typical results are shown
in Figs. 1(b)–1(d) and 1(f)–1(h).

Note that the region of existence for vector soliton pairs
has boundaries in the (μ1,μ2) plane, beyond which only
single-component (scalar) solitons exist. For different fixed
values of μ+ we determined the number of particles in
each component and then constructed the complete existence
region, which is shown in Figs. 1(a) and 1(e). In these figures
the solid black line separates the vector solitons from the
scalar soliton region where one solitonic component vanishes
and the red dashed line indicates the boundary where the
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FIG. 1. (Color online) (a) and (e) Existence region for vector
solitons in the (μ1,μ2) plane for σ = 0.5 and 2.0. Insets: examples
for radial profiles ψ1(r) (red dashed line) and ψ2(r) (black solid
line) at points A, B, and C in the (μ1,μ2) plane; A = (−6,−4), B =
(−5,−5), C = (−2,−8). (b)–(d) and (f)–(h) The number of atoms N1

(red dashed line for numerical, red dotted line for variational results)
and N2 (black solid line for numerical results, black dashed-dotted line
for variational results). The number of atoms are plotted as functions
of the difference μ− = μ1 − μ2 at fixed total chemical potential
μ+ = μ1 + μ2. The dotted straight lines in (a) and (e) correspond
to the μ+ of the particle number profiles given in (b)–(d) and (f)–(g),
respectively.

other component vanishes. As expected, these curves merge at
the point μ1 = μ2 = 2 where both components vanish. With
increasing interaction strength σ the region of existence for
vector solitons gradually shrinks, and at σ = 1 the boundaries
degenerate to a straight line. Indeed, only pairs of identical
solitons with equal chemical potentials exist if σ = 1. For
σ > 1, where intercomponent interactions dominate over
intracomponent interactions, the region of existence for vector
solitons grows again. With respect to the case σ < 1 the
boundary lines of the existence region swap around [compare
Figs. 1(a) and 1(e)].

As is seen from Fig. 1, the number of particles Nj (μ−)
reaches its maximum value Nj max at the boundary of the

existence domain where the other component N3−j vanishes.
For decreasing total chemical potential μ+, Nj max increases
towards Ncr = 11.68 for numerical solutions and Ncr = 4π

for the variational trial functions Eq. (7). In order to relate
these critical particle numbers to experimentally relevant
parameters we determine the normalization of the 3D wave
function 〈�|�〉 = N (3D), from which one obtains the number
of trapped atoms in a disk-shaped BEC: N (3D)

cr ≈ 0.1βNcr,
where β = lz/|aii | is the ratio of longitudinal oscillator length
lz = √

h̄/(Mωz) to the scattering length between atoms of the
same sort.

The remarkably different behavior of the functions Nj (μ−)
for weak or strong intercomponent interactions is evident
from a comparison of Figs. 1(d) and 1(h). In the first case
(0 < σ < 1) the number of atoms saturates at Nj max � Ncr.
In the second case (σ > 1) the number of atoms decays
rapidly from Nj max � Ncr at one boundary to zero at the
other boundary of the existence domain. It is easy to verify
that for the case σ > 1 the sum of the number of particles in
each component is always less than the critical value Ncr. For
weak intercomponent interactions (0 < σ < 1) we may find
N1 + N2 > Ncr.

In summary, if intercomponent as well as intracomponent
interactions are attractive, then both solitonic components are
localized at the bottom of the potential trap, and the number
of atoms in each component is subcritical. These facts change
dramatically for repulsive intercomponent interactions, which
we discuss next.

B. Repulsive intercomponent interactions (σ < 0)

To gain insight into the properties of the fundamental vector
solitons with intercomponent repulsion we first present the
results of a variational analysis. They provide a rather complete
overview of the steady states which correspond to stationary
points of the total energy Eq. (4) at a fixed number of atoms in
each component.

Minima of the total energy at a given number of atoms
can be attained for two different types of the solutions. The
first type we call “bell shaped” since the density distribu-
tion of both components looks Gaussian-like. To stabilize
such a “miscible” configuration for negative σ , the particle
number in each component must increase with respect to
the previously discussed case σ > 0 in order to compensate
for the additional intercomponent repulsion by increased
intracomponent attraction. Solutions of the second type will
be referred to as “phase-separated” or “immiscible.” These
solutions minimize the “component-overlapping” part of the
total energy [the last term in Eq. (4)] by substantially changing
the shape of the density distributions. One component is
pushed outward and forms a ringlike shell, while the other
component is noticeably compressed—it has a higher peak
density and narrower width than its noninteracting counterpart.
The “immiscible” states are typical for BECs with both
repulsive intra- and intercomponent interactions [30–35].
A simple condition for phase separation can be obtained
by minimizing the interaction energy [36]: g2

12 > g11g22;
i.e., the intercomponent repulsion dominates. An accurate
analysis of phase separation in repulsive BECs is given in
Refs. [10,17]. If the interaction between atoms of the same
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sort are attractive and the number of atoms in the solitonic
components differ significantly, then a local-density depletion
in the center of one component may appear for any strength
of repulsive intercomponent interactions. Yet another notable
feature of BECs with attractive intracomponent but repulsive
intercomponent interactions is the possible coexistence of
“miscible” and “immiscible” states for the same chemical
potentials.

The simplest normalized trial function ψj (r) supporting
spatially separated components is given by the Ansatz

ψj (r) = Aj

(
1 + δj

r2

a2
j

)
e
− 1

2
r2

a2
j , (9)

where aj is the effective width of component j of the soliton-

soliton pair, and Aj =
√

Nj/{πa2
j [1 + 2δj (1 + δj )]}. The

parameter δj � 0 introduces deviations from the Gaussian-like
shape of the soliton. If δj > 1/2, the density distribution
has a local minimum at the bottom of the external potential
trap. Evidently only one of the two BEC components is
forced outward by repulsive intercomponent interactions.
Consequently, δ2 may be set to zero without loss of generality
and we need to determine only three variational parameters: a1,
a2, and δ = δ1. Variational results for the number of atoms as
functions of the chemical potential difference μ− = μ1 − μ2

are shown in Fig. 2.
Let us first discuss the properties of the “bell-shaped”

solutions with δ = 0. These solutions are presented in Fig. 2 by
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FIG. 2. (Color online) Variational results for σ = −0.5 [(a)–(c)]
and −2.0 [(d)–(f)]. Shown are the number of atoms N1 (red dashed
curve for solutions with δ = 0, red curves with open circles for
solution with δ > 0) and N2 (solid black curves for solutions with
δ = 0 and black curves with filled dots for solutions with δ > 0) as the
functions of μ− = μ1 − μ2 at different values of the total chemical
potential μ+ = μ1 + μ2. Green dotted line: N = Ncr = 4π .

the red dashed curves for N1 and by the solid black line for N2.
As they should, solutions with the same chemical potential and
same number of atoms only exist for μ+ < 4 if −1 < σ < 0
and for μ+ > 4 if σ < −1. For −1 < σ < 0, the existence
domain of vector solitons is bounded in the (μ1,μ2) plane like
in the case σ > 0.

However, if intercomponent repulsion dominates over
intracomponent attraction (σ < −1) “bell-shaped” solutions
exist for any chemical potential. It is remarkable that even
at μ− = 0 the solitonic components differ essentially from
each other for μ+ < 4 [see Fig. 2(f)], but for μ+ > 4 there
appears an additional branch of solutions that share the
same profile at μ− = 0 [see Figs. 2(d) and 2(e)]. The gap
between these two branches gradually disappears when μ+
increases [compare Figs. 2(e) and 2(d)]. For relatively weak
intercomponent interactions (−1 < σ < 0) and decreasing μ+
the absolute value of the derivatives |∂Nj/∂μj | grows rapidly
in the vicinity of the intersection point. Furthermore, it is
interesting that in the profile for Nj (μ−) a cusp appears for
Nj (0) > 16π/(3 + σ ) provided that −1 < σ < −1/3. In this
case two additional crossing points are observed at μ1 = μ2

[see Fig. 2(c)].
The properties of the second type of solutions (“phase-

separated” states with δ > 0), predicted by the variational
method, are illustrated in Fig. 2 for N1(μ−) by red lines with
open circles and for N2(μ−) by black curves with filled dots.
Recall that we show only solutions with δ1 = δ and δ2 = 0
but the rest of the solutions can be easily constructed using
the corresponding symmetry. The parameter δ describing the
deviation of the radial profile from the Gaussian-like shape is
given in Fig. 3. Here, δ(μ−) is shown for the same values
of σ and μ+ as in Fig. 2. As is seen from Fig. 3 the
variational parameter δ reaches zero at some value of μ−,
where the two types of solutions δ > 0 and δ = 0 merge.
Indeed this is also observed in Fig. 2 for solutions with
μ1 ≈ μ2.

The above-described features of phase-separated steady
states obtained using the variational approach are supported
by numerical simulations of Eq. (6). Note that only half of the
phase-separated solutions are shown in Figs. 5(f)–5(h) to avoid
confusion. The traces in these figures can easily be completed
using the replacements N1 → N2 and μ− → −μ−. Unfor-
tunately, our relaxation technique is not able to reproduce
both types of solutions predicted by variational method for
repulsive intercomponent interactions since the “bell-shaped”

0.0
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FIG. 3. (Color online) Variational parameter δ as a function of
μ− = μ1 − μ2 for different values of the total chemical potential
μ+ = μ1 + μ2.
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FIG. 4. (Color online) Examples of radial profiles ψ1 (red dashed
curves) and ψ2 (black solid curves) for σ = −0.5 and −2.0 found
numerically.

solutions (with δ1 = δ2 = 0) usually have higher energies than
the phase-separated solutions at the same chemical potential.
That is why our numerical procedure rather converges to the
“phase-separated” solutions or to scalar solitons. Therefore,
our analysis of the steady states with δ1 = δ2 = 0 is limited to
the variational method.

Typical radial profiles found numerically are shown in
Fig. 4. Generally, the numerical results are found to be in
good agreement with the variational predictions for the “phase-
separated” solutions. One expects, however, differences be-
tween numerical and variational results for solutions with a
very dense ring-shaped component. Indeed, a ring component
with large amplitude could push away the atoms at the
periphery of the core component. Consequently, an additional
outer ring should be observed in the density distribution of the
core component. Moreover, if the number of atoms increases
even more, then more and more rings should appear in both
solitonic components. Actually, an additional outer ring is
seen for ψ2(r) in Fig. 4(f), and such a modification of the
core component explains the nonmonotonic behavior of the
diagrams N2(μ−) at negative μ− in Figs. 5(f)–5(h).

IV. STABILITY ANALYSIS

A few general conclusions concerning stability follow from
our variational analysis. In fact, it is easy to find a sufficient
condition for stability against radially symmetric collapse: if
both solitonic components satisfy the condition Nj < Ncr,
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FIG. 5. (Color online) Top: Stability region in the (μ1,μ2) plane
(green) as obtained by numerical simulations: (a) σ = −0.5, (b) σ =
−2.0. Bottom: Number of atoms N1 (red dashed curves) and N2 (black
solid curves) as a function of the chemical potential difference μ− =
μ1 − μ2 at fixed total chemical potential μ+ = μ1 + μ2 obtained
numerically: (c)–(e) σ = −0.5, (f)–(h) σ = −2.0. The dotted straight
lines in (a) and (e) correspond to the μ+ of the particle number profiles
given in (b)–(d) and (f)–(g), respectively.

then the stationary solutions are expected to be stable since
they correspond to the minimum of the total energy. As was
shown in the previous section, for attractive intercomponent
interactions (σ > 0) the particle numbers in both solitonic
components are always below the critical value and, therefore,
the vector solitons should be stable in this case.

For σ < 0, the variational analysis predicts the existence
of two types of stationary solutions: “phase-separated” states
and colocated “bell-shaped” states with different stability
properties. The solutions with δ1 = δ2 = 0 should be stable
provided N1 < Ncr and N2 < Ncr. At the same time, the phase-
separated states are predicted to be stable against collapse even
if the ring component j (with δj > 0) is supercritical provided
that the bell-shaped component (with δ3−j = 0) consists of a
subcritical number of particles.
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FIG. 6. (Color online) Maximum growth rates as a function of μ1

at fixed μ2. Note that all growth rates vanish above some threshold
value of μ1.

It is clear that a radially symmetric variational analysis
does not provide any information about the stability with
respect to azimuthal perturbations. This question may be
addressed by numerical simulations as discussed below. In
contrast to the results of the variational analysis our numerical
simulations predict the phase-separated states to be unstable
against collapse even if only one component has a number of
particles above the critical value Ncr. Note that numerical time
evolution of the variational Ansatz for the steady states with
δ1 = δ2 = 0 confirmed their stability only in the region where
these solutions practically merge with the second solitonic
branch [see Figs. 2, 3, and 5].

The stability of the stationary solutions with respect to
azimuthal symmetry-breaking perturbations was investigated
by a linear stability analysis. We write the order param-
eter of the two-component BEC in the form �̃j (r,t) =
[ψj (r) + εj (r,t)]e−μj t with a small perturbation εj (r,t) =
uj (r)eiωt+iLϕ + v∗

j (r)e−iω∗t−iLϕ and insert it into Eq. (2). We
linearized the resulting equations with respect to ε and solved
the resulting eigenvalue problem for ω. Solutions exhibiting
an imaginary part would indicate instability.

We find that γL = Im(ω) are identically zero for all L if the
intercomponent interaction is attractive. If it is repulsive the
azimuthal modes L = 1 and 2 may be unstable. A typical
example for a maximum growth rate γL as a function of
the chemical potential μ1 at fixed μ2 is shown in Fig. 6.
The unstable modes with γL �= 0 have eigenfrequencies with
vanishing real part: Re(ω) = 0; i.e., the azimuthal instabilities
that may appear for the case of repulsive intercomponent
interactions are always aperiodic. The evolution scenario that
appears as a result of a developed azimuthal instability is
discussed below in more detail. But it is clear that an instability
of the L = 1 mode leads to relative motion of the BEC
components, while the unstable L = 2 mode is expected to
split the ring-shape component into two filaments. Note that
above some threshold the growth rates vanish. It is important
to realize that the mode L = 1 has a much wider instability
region than L = 2, and that the growth rates of the mode
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FIG. 7. (Color online) Time evolution of the density distributions
|�̃1|2 (upper rows) and |�̃2|2 (lower rows) of perturbed vector solitons
for (a) σ = −0.5, μ1 = −1.5, μ2 = 2 and (b) σ = −0.8, μ1 = −5,
μ2 = −5.

L = 2 are smaller than those of the mode L = 1. Therefore,
the L = 1 modes are most dangerously influencing the stability
of repulsively interacting solitons.

The predictions of the variational analysis and the results
of the linear stability analysis have been tested by numerical
experiments of the time evolution of the perturbed vector
solitons. For the numerical solution of the time-dependent
GPEs (2) a standard split-step Fourier-transform method (see,
e.g., Ref. [37]) has been used. While vector solitons with
attractive intercomponent interactions are confirmed to be
stable over the full existence domain, repulsive intercomponent
interactions lead to various instabilities. Typical examples for
unstable dynamics are given in Fig. 7.

We found that, if at least one solitonic component contains
an overcritical number of atoms, then the stronger component
finally collapses. However, we do not see a collapse if
both solitonic components are subcritical. Obviously, the
potential trap prevents the unlimited expansion of the BEC.
Furthermore, the final collapse is not possible if the number
of atoms in both components is subcritical, so as the result
of symmetry-breaking instability we see a contraction and
relative motion of the two solitonic components. Oscillations
between such a quasicollapse and an asymmetric state are
shown in Fig. 7(a) for times t = 3.5 and 4.0. Here, both
solitonic components are subcritical, and the growth rate for
the L = 1 mode is nonvanishing.

The growth of the L = 2 mode leads to the decay of the
shell component of the soliton into two filaments. In the
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beginning, two humps and two holes appear in the ring, and
the inner component rapidly leaks through these hollows into
a ring-shaped “well.” Repulsive intercomponent interactions
between the ring-shaped component and the leaking inner
component lead to an increase of the hollows and finally the
ring breaks up into two separate parts as seen in Fig. 7(b).
Note that the dynamics of the unstable trapped two-component
BEC is similar to the evolution of vector solitons reported in
Ref. [27] within a similar model but without external trapping
potential. The most outstanding feature of trapped matter wave
vector solitons is the fact that they can be completely stabilized
even for strong repulsive intercomponent interactions. We
show the stability region in green color in the (μ1,μ2) plane
for weak (σ = −0.5) and strong (σ = −2.0) intercomponent
repulsive interactions in Figs. 5(a) and 5(e).

V. SUMMARY AND CONCLUSIONS

Fundamental 2D soliton-soliton pairs are investigated in
two-component BECs with attractive intracomponent interac-
tions. General properties of vector solitons and their stability
are studied variationally and numerically for both attractive
and repulsive intercomponent interactions. We found different
types of soliton-soliton pairs including phase-separated pairs
where one component is pushed outward and forms a ringlike
shell and the other component is compressed due to repulsive
intercomponent interactions. It turns out that for some values of

the chemical potentials phase-separated steady states coexist
with collocated states characterized by bell-shaped density
distributions in both components.

We performed a linear stability analysis of small azimuthal
perturbations and checked these results by an extensive series
of numerical simulations. For attractive intercomponent inter-
actions matter wave bright vector solitons are demonstrated
to be stable throughout the existence domain. For BEC
components which repel each other various unstable evolu-
tion scenarios including collapse and azimuthal symmetry-
breaking instabilities are observed. The instabilities, as a rule,
lead either to separation of the condensed phases and then a
collapse of the stronger supercritical (N > Ncr) component or
a periodic relative motion of the subcritical (N < Ncr) solitonic
components backward and forward near the bottom of the
trapping potential. Nevertheless, there are conditions where
complete stabilization of vector solitons is observed even in
the case of repulsive intercomponent interactions.
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