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A scheme is discussed that allows for performing homodyne detection of the matter-wave field of ultracold
bosonic atoms. It is based on a pump-probe laser setup, which both illuminates a Bose-Einstein condensate, acting
as reference system, and a second ultracold gas, composed by the same atoms but in a quantum phase to determine.
Photon scattering outcouples atoms from both systems, which then propagate freely. Under appropriate conditions,
when the same photon can either be scattered by the Bose-Einstein condensate or by the other quantum gas, both
flux of outcoupled atoms and scattered photons exhibit oscillations, the amplitude of which is proportional to the
condensate fraction of the quantum gas. The setup can be extended to measure the first-order correlation function
of a quantum gas. The dynamics discussed here makes use of the entanglement between atoms and photons,
which is established by the scattering process in order to access detailed information on the quantum state of
matter.
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I. INTRODUCTION

The measurement technique which is mostly employed in
experiments with ultracold atoms is based on time of flight
[1,2]. Used in different setups, it allows one to determine the
quantum state of matter [3–5]. Further exciting perspectives
have been opened by the recent demonstration of in situ
imaging of atoms in optical lattices [6–9]. In addition,
the remarkable progress in coupling ultracold atomic gases
with high-finesse optical resonators [10–13] has generated
a renewed interest in revealing the correlation functions of
matter by photodetection of the scattered light. This progress
opens, amongst several others, the possibility to monitor
properties of the quantum state of matter in a nondestructive
way [14–17].

Photons emitted by Rayleigh scattering, and in general in a
pump-probe type of experiment, have been used to characterize
the quantum state of atomic gases [18–22]. They deliver
information on the structure form factor of the quantum gas and
thus on the density and density-density correlations [3,22–24].
Proposals for optical detection of certain quantum states of
matter have appeared in the literature [23–27].

In this article, we discuss a setup in which detection of the
photons scattered by a quantum gas permits one to determine
the mean value of the atomic field. This setup constitutes a
matter-wave analogon of homodyne detection of light fields
[28], and specifically allows one to determine the condensate
fraction of a quantum gas [29] by photodetection. Furthermore,
we show that this scheme can be extended to determine the
first-order correlation function of an atomic gas when the two
illuminated regions belong to the same quantum gas.

The setup for determining the condensate fraction is
sketched in Fig. 1 and is based on an interferometer for
Bose-Einstein condensates (BEC) realized in Refs. [30,31].
We establish a direct connection between our theoretical model
and the experimental setup in Refs. [30,31] and then focus on
a scheme in which the second system is not necessarily a
BEC. We then show that this setup allows one to determine
the condensate fraction of the second system by measuring the

flux of the scattered photon. The dynamics is based on first
creating entanglement between the scattered photon and the
scattering atom of the quantum gas and then on performing an
operation similar to a quantum eraser [32], thereby allowing
one to measure the correlation functions of matter in the flux
of the scattered light.

This article is organized as follows. In Sec. II, the setup
and the theoretical model are introduced. In Sec. III, a
formal connection is derived between the photon flux and the
correlation functions of the scattering atoms. In Sec. IV, the
photon flux is evaluated when the scattering systems are two
Bose-Einstein condensates at zero temperature and at different
temperatures. In Sec. V, it is discussed how a similar setup
can be used to measure the first-order correlation function.
The conclusions are drawn in Sec. VI. The Appendixes report
details of the calculations presented in Secs. II, III, and IV.

II. MODEL

A realization of the setup we consider in this paper is
depicted in Fig. 1. Here, ultracold bosonic atoms of mass
m are initially prepared in the stable electronic state |1〉 and
confined by the (state-dependent) potential V1(r). The atoms
that are illuminated by the lasers are coherently coupled to
the electronic state |2〉, which is stable and not confined: the
outcoupled atoms propagate freely in space.

In this section, we introduce the Hamiltonian and the
physical quantities which are at the basis of our analysis.

A. Hamiltonian

We denote by H the Hamiltonian governing the dynamics
of photons and atoms, which we decompose into the sum

H = H0 + Hemf + Hint + Hshift, (1)

with H0 the Hamiltonian governing the atoms dynamics in
absence of interaction with the lasers, Hemf the Hamiltonian
for the free transverse electromagnetic field (emf), while Hint

describes the coupling between states |1〉 and |2〉 induced by
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FIG. 1. (Color online) Setup for performing homodyne detection
of matter-wave fields. A gas of identical bosonic atoms is confined
in two distinguishable regions of space. In the left region, it forms a
Bose-Einstein condensate that acts as reference system for measuring
the condensate fraction of the right system. A pump-probe laser setup
outcouples the atoms from both wells. The photon flux of the probe
beam is constituted by the photon scattered in the outcoupling process
and exhibits oscillations, the amplitude of which depends on the
condensate fraction of the right system, and which vanishes when
this is zero. The first-order correlation function of a quantum gas can
be determined in an extension of this setup and is discussed in Sec. V.
Details on the parameters are given in the text.

coherent Raman scattering. Hamiltonian Hshift includes the
dynamical Stark shift due to off-resonant coupling between
atoms and emf modes. These Hamiltonians are given using a
second-quantized description of matter and photon fields. In
detail,

Hemf =
∑

λ

h̄ωλa
†
λaλ

gives the energy of the transverse electromagnetic field in free
space (without the vacuum energy) where λ labels a mode of
the emf at wave vector k, polarization �ε ⊥ k, and frequency
ωk = c|k|, with c the velocity of light. The operators aλ and
a
†
λ annihilate and create, respectively, a photon in mode λ, and

obey the bosonic commutation relation [aλ,a
†
λ′ ] = δλ,λ′ .

The atomic Hamiltonian H0 is conveniently rewritten as
H0 = H1 + H2 + H12, where

H{j=1,2} =
∫

dr ψ
†
j (r)

(
−h̄2∇2

2m
+ Vj (r) + h̄ωaj

)
ψj (r)

+gj

2

∫
dr ψ

†
j (r)ψ†

j (r)ψj (r)ψj (r) (2)

describes the dynamics of the atoms in the electronic state |j 〉
at frequency ωaj . Here, ψj (r) and ψ

†
j (r) are the annihilation

and creation operators, respectively for a bosonic atom at
position r and in the electronic state |j = 1,2〉, obeying the
commutation relation [ψj (r),ψ†

k (r′)] = δj,kδ(r − r′). Param-
eter gj = 4πh̄2as,j /m is the strength of s-wave scattering
between the atoms in state |j 〉, with as,j the corresponding
s-wave scattering length [29]. Hamiltonian term H12 describes

s-wave scattering between an atom in electronic state |1〉
and an atom in electronic state |2〉 (see [33,34]), and will
be negligible in the situations we consider.

The Hamiltonian terms for the interactions between photons
and atoms are given using normal ordering [35]. They include
a term describing coherent Raman coupling between the states
|1〉 and |2〉, in which a photon in mode 1 is scattered into mode
2 and vice versa. Raman transitions follow from a pump-probe
type of excitation and the corresponding Hamiltonian reads as

Hint = h̄

∫
dr[γ (r)a†

2ψ
†
2(r)ψ1(r)a1 + H.c.], (3)

with the position-dependent coupling strength γ (r) [36]. For
later convenience, we denote by the quantity

ω12 = ω1 − ω2

the difference between the frequencies of the two emf modes.
Moreover, we assume ω12 ∼ ωa2 − ωa1, i.e., the two lasers
drive quasiresonantly the Raman transition coupling the stable
electronic states |1〉 and |2〉. The interaction with the pump
and probe laser also induces a dynamical Stark shift, the
corresponding Hamiltonian of which reads as (in normally
ordered form)

Hshift =
2∑

j=1

h̄

∫
dr γj (r)a†

jψ
†
j (r)ψj (r)aj , (4)

where the parameter γj (r) has the dimension of an angular
frequency. It can be written as γj (r) = 2|	j (r)|2/
, with
	j (r) the Rabi frequency of the mode coupling the transition
|j 〉 → |e〉 and 
 the detuning between the mode and the atomic
transition frequencies (the Lamb shifts are included in the
frequencies of the atomic states).

In the following, we will assume that the pump and probe
fields are traveling waves with wave vectors kj. In this case,
the Raman-coupling strength γ (r) reads as

γ (r) = γ0e
iq·r (5)

with q = k1 − k2 and γ0 = 2	1(r)	2(r)∗/
.
We remark that the outcoupling of atoms from two Bose-

Einstein condensates in the setup of Refs. [30,31] was per-
formed by Bragg scattering, while we model the outcoupling
process by Raman coupling to a different hyperfine state. This
difference, however, does not affect the general results, as it
will be shown in the following.

B. Spin-dependent potential

We will now provide more details on the potential which
confines the atoms. We will assume that the atoms in state
|2〉 propagate freely, namely, potential V2(r) in Eq. (2) is a
constant which we set equal to zero.

The atoms in state |1〉 are trapped by potential V1(r). This
potential confines the atoms in two spatially separated regions
around the two potential minima, which are at distance d and,
specifically, are localized at the points rL = −(d/2)x̂ and rR =
(d/2)x̂. The potential can be then decomposed in the sum
V1(r) = VL(r) + VR(r), with Vj (r) the potential centered at rj
and j = L,R. The two atomic clouds at each well are initially
uncorrelated, and there is no tunneling between the two spatial
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regions. In principle, hence, the atoms in the two regions of
space are distinguishable.

It is useful to consider the partition ψ1(r) = ψL(r) + ψR(r)
where we denote by ψL(r,t) = ψ1(r,t)θ (−z) and ψR(r,t) =
ψ1(r,t)θ (z) the field operators, which do not vanish on
the left and right regions of space, respectively, such that
[ψj (r),ψ†

k (r′)] = δj,kδ(r − r′) for r,r′ 
= 0 [37]. Using these
definitions, we can write H1 = HL + HR with

H{j=L,R} =
∫

dr ψ
†
j (r)

(−h̄2∇2

2m
+ Vj (r)

)
ψj (r)

+g

2

∫
dr ψ

†
j (r)ψ†

j (r)ψj (r)ψj (r) , (6)

and where we have set ωa1 = 0 and g1 = g. In this representa-
tion, the Hamiltonian describing the interaction with the lasers
takes the form

Hint = h̄

∫
dr[γ (r)a†

2ψ
†
2(r) [ψL(r) + ψR(r)] a1 + H.c.].

(7)

We note that our model is an extension of the one in
Refs. [38,39] where the authors studied the outcoupling of
atoms from a single BEC by means of classical Raman
lasers. By considering the quantum dynamics of the interaction
between photons and atoms, we take into account the quantum
fluctuations of the light field due to the scattering process,
which are instead discarded in Refs. [38,39]. We will indeed
show that these fluctuations give access to some correlation
functions of the scattering system.

C. Scattered field

We now study the properties of the scattered photons
by considering the photon field operators in the Heisenberg
picture. The Heisenberg equations of motion are determined
assuming that the coupling between matter and photons is
sufficiently weak to be treated in second-order perturbation
theory. In this limit, the operators for the photonic modes read
as

a1(t) = a1(0)e−i[ω1t+φ1(t)] − i e−iω1t

∫ t

0
dτ eiω12τ

∫
dr γ (r)

× [ψ (0)†
L (r,τ ) + ψ

(0)†
R (r,τ )]ψ (0)

2 (r,τ )a2(0), (8)

a2(t) = a2(0)e−i[ω2t+φ2(t)] − i e−iω2t

∫ t

0
dτ e−iω12τ

×
∫

dr γ (r)ψ (0)†
2 (r,τ )[ψ (0)

L (r,τ ) + ψ
(0)
R (r,τ )]a1(0),

(9)

where ψ
(0)
j (r,τ ) = exp(iH0τ/h̄)ψj (r,0) exp(−iH0τ/h̄). The

physical origin of the individual terms on the right-hand side
(RHS) can be simply identified. The first term on the RHS of
both equations is the free-field component. It is characterized
by a time-dependent phase φj (t), which is proportional to
the atomic density in the electronic state |j 〉. When the Born
approximation can be performed, it is a density-dependent

phase shift of the field mode, with the form

φ1(t) =
∑

j,k=L,R

∫ t

0
dτ

∫
dr γ1(r)ψ (0)†

j (r,τ )ψ (0)
k (r,τ ),

φ2(t) =
∫ t

0
dτ

∫
dr γ2(r)ψ (0)†

2 (r,τ )ψ (0)
2 (r,τ ).

Given that all atoms are initially prepared in the electronic state
|1〉, term φ1(t) gives rise to a frequency shift of field-mode
1. This shift is proportional to the density of the medium
integrated over the path along which light propagates [3,40].

The second term on the RHS establishes a direct propor-
tionality relation between the photonic and the matter-wave
fields a2 and ψ1(r) [a1 and ψ2(r)]. It shows, in particular,
that the source term of field a1 is the coherent overlap of
the field scattered from the right and from the left wells. In
this shape, the outcoupling process in this system resembles a
beam-splitter operation. This property establishes an analogy
with an interferometric setup, which we will exploit in order to
perform homodyne detection of matter-wave field. Differing
from a simple interferometer, however, atoms and photons are
correlated by the scattering process. This important difference
is at the basis of the dynamics we observe.

Before we discuss the signal at the photodetector, we will
introduce a few approximations which will notably simplify
the treatment. In the first place, we neglect atomic collisions
between outcoupled atoms in state |2〉 since we assume that the
gas of outcoupled atoms is at very low densities. This regime
also permits us to neglect collisions between outcoupled atoms
and trapped atoms in state |1〉 [41].

III. PHOTON FLUX

The quantity we analyze in this paper is the flux of photons
of mode 2, namely, the rate of change of the photon number in
the mode at frequency ω2. Formally, the photon flux is given
by the equation

F (t) = d

dt
〈a†

2(t)a2(t)〉, (10)

where the expectation value 〈. . .〉 is taken over the initial state
of the atoms and the emf. The photon flux, integrated over the
detection time, gives the integrated intensity of the field at the
detector. It can be verified that

F (t) ∝ d

dt

∫
dr〈ψ†

2 (r,t)ψ2(r,t)〉, (11)

where the proportionality factor is the mean number of photons
in mode 1. This equality shows indeed that flux of scattered
photons and of the corresponding outcoupled atoms carries the
same information.

For the specific setup we consider, the photon flux can be
rewritten as the sum of two contributions

F = FB + FI , (12)

with

FB(t) = � Re
∑

j=R,L

∫
dr

∫
dr′

×
∫ t

0
dt ′f (r,t ; r′,t ′)Gjj (r,t ; r′,t ′), (13a)
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FI (t) = � Re
∫

dr
∫

dr′
∫ t

0
dt ′f (r,t ; r′,t ′)

×[GLR(r,t ; r′,t ′) + GRL(r,t ; r′,t ′)], (13b)

where � = 2〈a†
1a1〉γ 2

0 is a scaling factor that is proportional to
the number of photons in mode 1. Here,

Gjk(r,t ; r′,t ′) = 〈ψ†
j (r′,t ′)ψk(r,t)〉, (14)

f (r,t ; r′,t ′) = ei[q·(r−r′)−ω12(t−t ′)]〈ψ2(r′,t ′)ψ†
2(r,t)〉,

(15)

where the initial state is the vacuum state of the emf except for
modes 1 and 2, which are assumed to be in coherent states with
nonvanishing photon number, while all atoms are in internal
state |1〉 and at equilibrium in the grand-canonical ensemble
at temperature T . The atoms in state |2〉 propagate freely and
do not undergo collisions since we assume that the density is
very low. Therefore, Eq. (15) can be cast in the form

f (r,t ; r′,t ′) =
∫

dk
(2π )3

ei[(q−k)·(r−r′)−(ω̃12−ωk)(t−t ′)], (16)

with

ωk = h̄k2

2m

the recoil frequency and

ω̃12 = ω12 − ωa2

the two-photon detuning.
In order to obtain explicit expressions for the correlation

functions Gjk(r,t ; r′,t ′), it is convenient to work in the
interaction picture with respect to the grand-canonical en-
semble K0 = H0 − ∑

j=L,R μjNj , where μj is the chemical
potential of the atoms in either the right or left cloud and
Nj = ∫

dr ψ
†
j (r)ψj (r). The new atomic field operators are

obtained from those in the Heisenberg picture with respect
to H0 by replacing ψj (r,t) → ψj (r,t)e− i

h̄
μj t . From now on,

we will denote by ψj (r,t) the atomic field operators in the
Heisenberg picture with respect to K0.

We now discuss how the considered setup can be used
to measure the mean value of the atomic field operator by
means of photons. We first note that the component FB of
the photon flux is the sum of the flux from each well, while
the component FI arises from the coherent superposition
of a photon (atom) scattered by the wells. We will denote
FB by “background contribution” and FI by “interference
contribution.” In absence of initial correlations, this latter term
is proportional to the product of the mean value of the field
operators 〈ψL(r,t)〉〈ψR(r,t)〉∗. Let us now consider the case
in which, say, the left well confines weakly interacting atoms
forming a Bose-Einstein condensate. Under this assumption,
the atomic field operator can be written as [29]

ψL(r,t) = e− i
h̄
μLt [�L(r) + δψL(r,t)] , (17)

where �L(r) is the macroscopic wave function which solves
the Gross-Pitaevskii equation for the quantum gas in the
left potential well (with chemical potential μL). Then, when
the order parameter of the left condensate is known, the

interference term will deliver the mean value of the field
operator in the right well.

In the following, we use Eq. (17) in the equations for the
background contribution to the photon flux [Eq. (13a)] and for
the interference term [Eq. (13b)]. In particular, we will take

�L(r) = 〈ψj (r,t)〉 = fL(r)eiϕL (18)

and assume that both fL(r) and ϕL are real valued. Hence,
fL(r)2 is the density of condensed atoms, while the phase
ϕL is assumed to be constant in space (hence discarding
the possibility of superfluid currents in the Bose-Einstein
condensate [29]).

A. Background contribution

The background contribution can be decomposed into the
sum of the photon flux from the left and from the right well,
FB = FL + FR . An explicit form of FL can be provided since
we make a specific assumption on the quantum state of the
gas trapped in the left well. For this purpose, we consider the
integrand GLL(r,t ; r′,t ′) in FL and observe that it can be split
into two terms:

GLL(r,t ; r′,t ′) = eiμL(t−t ′)/h̄[fL(r)2 + δGLL(r,t ; r′,t ′)],
(19)

where

δGLL(r,t ; r′,t ′) = 〈δψ†
L(r,t)δψLr′,t ′)〉

=
∫

dω

2π
e−iω(t−t ′)N0(ω)A

δψLδψ
†
L
(r,r′, − ω) (20)

accounts for the contribution of the noncondensed atoms to
the photon flux. Here,

Aδψδψ†(r,r′,ω) =
∫ ∞

−∞
dτ eiωτ 〈[δψ(r,τ ),δψ†(r′,0)]〉 (21)

is the spectral density [42], with N0(ω) = [eβh̄ω − 1]−1. Sim-
ilar expressions can be found for the background contribution
of the quantum gas in the right well.

Insight on these equations can be gained by assuming that
the gas is homogeneous. This assumption allows us to write
the spectral density as A

δψj δψ
†
j
(r,r′,ω) = A

δψj δψ
†
j
(|r − r′|,ω).

We then inspect the equations for the flux using the momentum
representation for the atomic field operator. The terms giving
the contribution to the photon flux from the left cloud can be
cast in the form [43]

FL(t) = 2π� Re
∫

dk
(2π )3

|f̃L(k)|2δ̃t (	 − ωk+q), (22a)

δFL(t) = 2π�V Re
∫

dω

2π

∫
dk

(2π )3
N0(ω)

×Ã
δψLδψ

†
L
(k, − ω)δ̃t (ω + 	 − ωk+q), (22b)

where Ã
δψRδψ

†
R
(k,ω) is the spectral weight function, which is

the Fourier transform of A
δψLδψ

†
L
(r,ω) and gives the strength

of the collective excitations at wave vector k and frequency ω,
and is weighted by the Bose function N0(ω) [42]. The other
parameters are the volume V in which the atoms of the left
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well are confined, the Fourier transform of the macroscopic
wave function f̃L(k) = ∫

dr e−ik·rfL(r), and the frequency

	 = ω̃12 − μL

h̄
, (23)

giving the effective detuning of the laser from the collective
transition. Moreover, in Eqs. (22) we have introduced the
quantity

δ̃t (ω) = e−iωt/2δt (ω), (24)

which is proportional to the diffraction function δt (ω) =
sin(ωt/2)/(πω), enforcing energy conservation for long in-
teraction times t . In particular, δ̃t (ω) → δ(ω) for t → ∞, with
δ(ω) Dirac-delta function [44]. Definition (24) contains a time-
dependent phase and highlights that the corresponding factor
tends to unity in the limit in which energy conservation applies.
We will keep this time-dependent phase in the equations for
the photon flux since we will also consider intermediate times.

The integrals in Eqs. (22) run over all values of the atomic
momentum k. The integrands are the product of the momentum
distribution at k′ = q − k and of the diffraction function:
The first accounts for the effect of the photon recoil h̄q
on the atomic distribution due to the outcoupling process,
while the diffraction function imposes energy conservation in
the scattering process. Equations (22a) and (22b) thus show
that the contributions to the flux come from the total number of
condensed and noncondensed atoms, respectively, which fulfill
energy and momentum conservation of the scattering process.

We remark that according to Eq. (11), the flux evaluated
in Eqs. (22) gives also the corresponding component of
the atomic flux. The latter agrees with the corresponding
expressions derived in Ref. [38] for the atomic flux, which
is outcoupled from a single BEC by classical fields.

B. Interference contribution

In order to determine the interference contribution to the
photon flux FI (t) in Eq. (13b), one needs the explicit form of
the correlation functions GLR(r,t ; r′,t ′), GRL(r,t ; r′,t ′). For
the considered setup, however, one can already make general
statements. In absence of initial correlations, in fact, they are
the product of the mean value of the field operators in each
well, and thus take the form

GLR(r,t ; r′,t ′) = ei(μLt−μRt ′)/h̄〈ψ†
L(r,t)〉〈ψR(r′,t ′)〉

= ei(μLt−μRt ′)/h̄e−iϕLfL(r)〈ψR(r′,t ′)〉, (25)

while GRL(r,t ; r′,t ′) = [GLR(r′,t ′; r,t)]∗.
Equation (25) shows, as it is expected, that these correlation

functions are proportional to the mean value of atomic
field operator 〈ψR(r,t)〉. When this is zero, the interference
contribution vanishes. Otherwise, the amplitude of this term is
proportional to the condensate fraction of the quantum gas in
the right well. We remark that the noncondensed atoms in the
left well do not contribute to the signal because (i) there are
no initial correlations between the atoms in the left and right
wells and (ii) the mean value 〈δψL(r,t)〉 = 0.

In the shape of Eq. (25), the analogy with homodyne
detection, as it is performed with light fields, can be drawn.
The condensate in the left well here plays the role of the
local oscillator [28]. Identifying the analog of the phase of
the local oscillator is, however, a more delicate issue that
deserves some more analysis. For this purpose, we first assume
that the mean value 〈ψR(r,t)〉 can be evaluated within a
mean-field approach, such that 〈ψR(r,t)〉 = fR(r)eiϕR , with
fR(r) real-valued function and ϕR real constant. The integral
in Eq. (13b) can then be cast in the form

FI (t) = 2π� Re
∫

dk
(2π )3

[ei(δμt−ϕLR )f̃L(k)∗f̃R(k)δ̃t (	 − ωk+q) + e−i(δμt−ϕLR )f̃R(k)∗f̃L(k)δ̃t (	 − δμ − ωk+q)], (26)

with

δμ = (μL − μR)/h̄ (27)

and

ϕLR = ϕL − ϕR. (28)

Equation (26) indicates that the interference contribution is
an oscillating signal. The phase of the oscillation, however,
depends on time and oscillates with a frequency determined
by the difference δμ between the chemical potentials, while
the phase offset is determined by the relative phase between
the two (quasi)condensates. This relative phase will be defined
only for a single experimental run, with the two quantum gases
being independent [3,45–50].

C. Discussion

1. Which-way information and quantum erasers

Some remarks on the oscillating behavior of the interference
term are now in order. For the example considered in Eq. (26),
the photon flux oscillates in time with frequency δμ. This

oscillation is observed when one chooses a time window at the
detector 
t such that δμ
t � 1. The interference arises from
the overlap of the atomic beams from both condensates. It is
analogous to the interference between two lasers at different
frequencies: interference fringes are observed provided that
the time window of the detector is sufficiently small so not to
resolve the detuning between the lasers [51,52]. As in the case
of two independent lasers, there is no well-defined phase offset:
the relative phase is defined only for a single experimental run,
while the average over a statistically significant number of runs
gives no interference pattern [3,45,46,48].

Differing from the situation of two laser beams [51],
however, photon scattering here creates correlations among
the scattered photon, the corresponding outcoupled atom, and
the quantum gas. This correlation is a form of a which-way
information, which in general washes out any interference
in the photon flux [53] and can be considered as a form of
photon-atoms entanglement [54]. Oscillations in the photon
flux, and hence interference, can be recovered if the following
two conditions are fulfilled: (i) the beam of atoms outcoupled
from one well overlap spatially with the wave function of the

053635-5



STEFAN RIST AND GIOVANNA MORIGI PHYSICAL REVIEW A 85, 053635 (2012)

atoms in the second trap, and (ii) if there are either initial
correlations between the atoms in the two wells or if they both
possess a nonvanishing condensate fraction.

In order to better understand these conditions, we first notice
that the outcoupled atoms are distinguishable from the trapped
atoms since they are in different quantum states. Nevertheless,
the Raman beams can, in principle, outcouple one atom from
one trap and then load the same atom into the second trap.
This effective coupling is at the basis of the analogy with a
Josephson junction that was drawn in Refs. [30,31], and is
the essential element leading to interference. In these terms,
it corresponds to a quantum eraser [32]: when it is fulfilled,
in fact, the outcoupled atom becomes disentangled with the
scattered photon and with the scattering system. Condition
(ii) consists in assuming that there exist classical spatial
correlations between the wells. It is important since we assume
that at t = 0, there are no quantum correlations between the
two scattering systems [55].

2. Onset of the time-dependent oscillations

We now analyze the onset of oscillations in time. We have
argued that the photon flux starts oscillating after a finite time
has elapsed from the beginning of the experiment [30,31]. This
can be also seen in our theory by performing the integral over
k in Eq. (26). In Appendix A, we show that FI can be recast
in the form FI (t) = FL→R(t) + FR→L(t), with

FL→R(t) ≈ � Re ei(δμt−ϕLR )
∫ t

0
dτ ei(ωq−	)τ hLR(d,τ ), (29a)

FR→L(t) ≈ � Re e−i(δμt−ϕLR )
∫ t

0
dτ ei(ωq−	+δμ)τ hRL(−d,τ ).

(29b)

Here,

hjl(d,τ ) =
∫

drfj (r + d − vqτ )fl(r) (30)

is the overlap between the left and the right condensates,
with one being displaced by the amount vqτ − d. Here, we
introduced the recoil velocity

vq = h̄q
m

(31)

that is acquired by the outcoupled atom by scattering the
photon. This overlap vanishes at time τ = 0, i.e., when the
outcoupling lasers are switched on (recall that the two clouds
initially do not overlap). We note that the overlap integral is
zero at all times if d and q are orthogonal. It may be finite
and reach a maximum after a certain time when d and q
are parallel, say, pointing along the positive x axis. In this
case, the component FL→R(t) may not vanish and can be
interpreted as the contribution to the interference flux FI (t)
from the outcoupled atoms that propagate from left to right
[for the term FR→L(t), this is just opposite). Interference will
be observed provided that a sufficiently long time has elapsed
to warrant overlap. This corresponds to times t > tc with

tc ∼ deff

vq

,

where deff = d − (ξL + ξR)/2 is the effective distance of the
two systems taking into account their width ξj . In other words,
for times t > tc the which-way information has been erased
and oscillations in the photon flux can be observed.

In interferometric setups, the amount of visibility and
which-way information is related by an inequality [53]. It
is therefore useful to determine a visibility of the oscillating
signal because it contains information on the properties of the
scattering systems. A visibility can be defined for sufficiently
long times by averaging over several oscillating periods after
the instant tc. In this case, it will be proportional to the
amplitude of the oscillations of the photon flux, hence, to
the product of the condensate fractions of both systems. We
remark, once again, that oscillations can be observed only
in a single experimental run, while they will disappear after
performing an ensemble average. Therefore, this behavior can
only be measured in systems, the properties of which are not
deeply modified by the outcoupling of atoms. When this is
not verified, the presence of a condensed fraction in the right
system can be revealed by performing an ensemble average
over a sufficient large number of experiments in which the
signal is monitored for sufficiently short times, warranting that
the properties of the quantum gas have not been significantly
modified, and taking the statistical distribution of the intensity
of the photon flux at a given instant of time. An amplitude can
be extracted from the width of this distribution by taking into
account the finite width of the diffraction function.

IV. HOMODYNE DETECTION OF A QUANTUM GAS

The theory presented so far will be now applied to some
specific examples. The idea is to use the setup in Fig. 1 to
determine the mean value of the field operator of a quantum
gas by using a Bose-Einstein condensate at known temperature
as reference system. Such setup is a matter-wave analogon
of homodyne detection in quantum optics. The individual
elements can be so identified: the BEC acts as a local oscillator,
the outcoupling procedure as beam splitter, and the relative
phase can be varied by changing the interwell distance. The
information on the atomic gas is carried by both scattered
photons and outcoupled atoms: homodyne detection of the
scattered field, hence, allows one to determine the mean value
of the quadrature of the atomic field operator.

A. Interference between two Bose-Einstein
condensates at T = 0

We first discuss the case in which two BEC are trapped in the
left and right wells, respectively, and are both illuminated by
the pump and probe beams. The outcoupled atoms from both
condensates propagate along the direction determined by the
vector joining the minima of both wells. The two atomic beams
spatially overlap after the time tc has elapsed. The scattered
photons are revealed at a detector in the far field. This setup
has been realized in the experiment presented in Refs. [30,31]
where time-dependent oscillations in the atom and photon flux
were measured. We remark that the outcoupling process in the
setup of Refs. [30,31] was performed by Bragg scattering,
while we model it by Raman scattering into a different
hyperfine state. This difference does not affect the results:
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While in Refs. [30,31] the atoms are transferred into a
momentum state that freely propagates, here the atoms are
transferred into a hyperfine state that is not trapped. In both
cases, collisions between the outcoupled beam and the trapped
atoms can be neglected.

We assume two BEC with equal number of atoms NC

and temperature T , which are confined either in the left or
right well. (The assumption of equal number of atoms is a
convenient theoretical choice, but no substantial restriction to
the results presented in the following.) The wells are described
by the potential

V{j=L,R}(r) = V (r − rj ) + δj,L
V (32)

with V (r) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), and 
V denotes the

constant offset between the two traps. For simplicity, we take
that both BEC are at zero temperature T = 0, and the atoms
weakly interact, such that the contribution of the noncondensed
atoms to the photon flux is small and can be neglected. In
this limit, the chemical potential of both condensates is equal
and given by μ(0). With definition (32), then μR = μ(0) and
μL = μ(0) + 
V .

The photon flux is evaluated using the Thomas-Fermi
approximation for the condensate wave functions [29]

fj (r) = {[μ(0) − V (r − rj )]/g}1/2, (33)

where μ(0) = (15NCas/ā)2/5 h̄ω̄/2 is the chemical potential
at zero temperature and ā = √

h̄/(mω̄) is the size of the
ground state of a harmonic oscillator with frequency ω̄ =
(ωxωyωz)1/3. The condensate macroscopic wave function has

size r
(0)
{�=x,y,z} =

√
2μ(0)/(mω2

�). Its Fourier transform reads

as f̃L(k) = eik·d/2f̃0(k) [for the right condensate f̃R(k) =
e−ik·d/2f̃0(k)] where f̃0(k) is the Fourier transform of the
macroscopic wave function centered at the origin and is real
valued. In particular,

f̃0(k) = κ0
|J2(p0)|

p2
0

, (34)

where κ0 =
√

15π3NCr
(0)
x r

(0)
y r

(0)
z /2 is a scalar and J2(p0) the

Bessel function of second order for the variable p0 defined as
p2

0 = k2
xr

(0)2
x + k2

yr
(0)2
y + k2

z r
(0)2
z (see [29]). The integral for the

interference contribution to the photon flux in Eq. (26) can be
now cast in the form

FI (t) = 2πκ2
0 �

∫
dk

(2π )3

|J2(p0)|2
p4

0

Re[ei(δμt−k·d−ϕLR )δ̃t (	 − ωk+q) + e−i(δμt−k·d−ϕLR )δ̃t (	 − δμ − ωk+q)]. (35)

This equation can be simplified taking that both d and q point
along the positive x direction. Following the derivation in
Appendix B, we find that the total flux can be approximated
by the expression

F (t) ≈ 2π�NCKm

[
1 + V0 cos

(
δμt − ϕLR + (ωq − 	)

d

vq

)

× �

(
t − d − 2rx

vq

)]
, (36)

where

Km = [K(ωq − 	) + K(ωq − 	 + δμ)]/2

and K(x) =
√

1/(2πσ 2) exp[−x2/(2σ 2)] is a Gaussian of
width σ 2 = 2.5(vq/rx)2. Equation (36) shows that the photon
flux starts oscillating for times t > tc, with tc = (d − 2rx)/vq,
namely, when the outcoupled atoms from one condensate have
reached the second one. The time-dependent oscillations have
frequency δμ and amplitude

V0 = 2
K(ωq − 	)

K(ωq − 	) + K(ωq − 	 + δμ)
. (37)

The expression in Eq. (36) has been obtained neglecting the
momentum dependence of the trapped clouds (this approxi-
mation is verified in Appendix B) and the contribution of the
noncondensed fraction. We note that, although oscillations
as a function of time are observed provided that δμ 
= 0,
nevertheless their visibility (which corresponds to V0) is
always smaller than unity, V0 < 1 for δμ 
= 0. This can
be understood considering that a scattered photon carries

information about from which cloud it was scattered because
of energy conservation in the scattering process.

We now turn our attention to the phase offset characterizing
the oscillations of the photon flux as a function of time in
Eq. (36). This phase offset is here given by the quantity
� − ϕLR , where ϕLR is the relative phase between the two
BEC, which can take any value (we refer to the discussion in
Sec. III C), and by the quantity

� = d

vq

(ωq − 	 + δμ), (38)

which is the phase the outcoupled atoms accumulate when
traveling from the left to the right well (The corresponding
phase offset for the outcoupled atoms traveling from the right
to the left well is given in Appendix B.) This phase can be
varied by either tuning the laser frequency, and thus 	, or
changing the distance between the minima of the two wells.
The phase offset in Eq. (38) agrees with the one obtained
in Ref. [31], which was derived from a phenomenological
model [56].

We also note that our theory correctly predicts the oscilla-
tion period observed in the experiment and also reproduces the
behavior that the interference current needs some time to build
up. The linear response treatment we apply, however, does not
predict any decrease in the visibility of the interference pattern
with time. This is in marked contrast with the experimental
results. Possible reasons for the decrease in visibility in the
experimental data are depletion of the condensate and heating
of the sample, which could be due to spontaneous Rayleigh
scattering events [30]. These effects are not taken into account
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FIG. 2. (Color online) Photon flux F (t) [in units of the back-
ground contribution FB (t)] as a function of time (in units of δμ/2π )
and of the angle α at which the atoms are emitted. The photon flux is
computed by numerically integrating Eq. (35). The condensates are
composed by N = 106 sodium atoms in a spherical harmomic trap
of frequency ω = 325 Hz. The scattering length is as = 55a0 with a0

Bohr radius. The other parameters are vq = 6 cm
s , δμ0 = 2π103 Hz,

d = 5rx , 	 = ωq, α = 0, and ϕLR = 0.

in our model, but could be introduced by means of quantum
Langevin equations using a formalism similar to the one
developed in Ref. [35].

We finally discuss the dependence of the photon flux on time
and on the angle of emission of the outcoupled atoms, thus for
geometries where the direction of emission q of the outcoupled
atoms forms an angle α with the vector d. For simplicity, we
assume that both vectors lie in the x-y plane. The calculation
is performed by numerically integrating Eq. (35).

Figure 2 displays the photon flux F (t) as a function of
time and of the emission angle α. Oscillations as a function of
time are observed for values of the angle about α = 0,π cor-
responding to the atoms propagating in the direction parallel
to ±d. The oscillation period is 2π/δμ and is independent of
the angle of emission. The oscillations disappear for angles in
the interval π/8 � α � 7π/8: the photon flux is here solely
given by the background contribution FB(t). For these angles,
in fact, at all times there is no spatial overlap between the
wave function of the outcoupled atoms and the wave function
of the trapped atoms in the other well. Indeed, from a simple
geometric argument, one finds that the overlap vanishes for
angle α > arctan 2rx

d
≈ π/8 and α < π − π/8. This implies

that the setup must be so constructed that the atoms outcoupled
from one well could in principle be transferred, by a Raman
process, into the second well. This property is the key element
on which the analogy to a Josephson junction has been drawn
[31]. It is also basically the way in which a quantum eraser is
realized in this setup. We refer the reader to the discussion
on the properties of this quantum interference process in
Sec. III C.

B. Interference between two Bose-Einstein condensates at
different temperatures

We now show how the setup of Ref. [30] could be used
to determine the condensate fraction of a Bose-Einstein
condensate at a different temperature, using as reference a
second BEC at known temperature. For this purpose, we make
the same assumptions as in the previous section, with the

difference that while the left gas is a BEC at temperature
T = 0, the gas in the right well is a BEC at temperature
T . We further assume that the Thomas-Fermi approximation
can be performed also for the right condensate. Hence, the
chemical potential of the second condensate can be written as
μ(T ) = μ(0)(1 − T 3/T 3

c )2/5, with Tc the critical temperature
for the noninteracting gas in a harmonic trap, while the size
of the macroscopic wave function of the right condensate
scales with r

(T )
� = r

(0)
� (1 − T 3/T 3

c )1/5 (see [29]). Using these
relations, the integral for the interference contribution to the
photon flux can be cast in the form

FI (t) = 2π�κ2
0 nC(T )

∫
dk

(2π )3

|J2(p0)J2(pT )|
p4

T

×Re[ei[δμ(T )t−k·d−ϕLR ]δ̃t (	 − ωk+q)

+ e−i[δμ(T )t−k·d−ϕLR ]δ̃t (	 − δμ(T ) − ωk+q)], (39)

with pT = (1 − T 3/T 3
c )1/5p0. The integral depends on the

temperature both through a scaling factor as well as the
function J2(pT )/p4

T in the integrand, while the phases
depend on the temperature of the second BEC via the
chemical potential of the right BEC, which enters in the
quantity

δμ(T ) = δμ(0) − F(N,T )/h̄, (40)

with F(N,T ) = μ(T ) − μ(0). We note that FI (t) oscillates
as a function of time with both frequency and amplitude,
which depend on the temperature of the second condensate.
For T � Tc, in particular, the integral in Eq. (39) delivers the
factor 1/

√
nC(T ), and thus FI (t) ∝ √

nC(T ), where nC(T ) =
NC(T )/N = 1 − (T/Tc)3 is the condensate fraction in the
right trap.

Figure 3(a) displays FI (t) as function of time and tempera-
ture T of the right condensate when the trap is a spherical
harmonic oscillator. The oscillations are visible for times
t > tc. The oscillation frequency depends on T , as one can
clearly observe from the figure [57]. The dependence of the
amplitude of the oscillation on the temperature is visible in
Fig. 3(a) and is singled out in Fig. 3(b) where the amplitude
evaluated at times t > tc,

C(T ) = {max[FI (t)] − min[FI (t)]}, (41)

is displayed as a function of T in units of C(0). The red
dashed curve represents the squared root of the condensate
fraction

√
nC(T ), and is shown for comparison. Function C(T )

decreases monotonically as the temperature increases from
T = 0, and vanishes at the critical temperature T = T i

C [where
the superscript i indicates that we take into account the effect
of the interactions and T i

C is determined from the condition
nC(T i

c ) = 0] [58].

V. FIRST-ORDER CORRELATION FUNCTION

Several methods that are based on time-of-flight techniques
for determining the first-order correlation functions have been
proposed in the literature (see, for instance, Refs. [3,59,60]).
Measurements of the first-order correlation function have been
performed on Bose-Einstein condensates in Refs. [61,62].

In the following, we will show how an extension of our
previously considered setup may allow one to determine the
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(a)

(b)

FIG. 3. (Color online) (a) Interference term of the photon flux
FI (t) [Eq. (39)] [in units of the background current obtained when
both condensates are at zero temperature FB (T = 0)], as a function
of time (in units of 2π/δμ) and temperature T (in units of critical
temperature T i

c ). (b) Amplitude C(T ) [Eq. (41)] [in units of C(0)] as
a function of the temperature T (in units of T i

c ). The red dashed line
corresponds to the squared root of the condensate fraction in the right
BEC,

√
nC(T ). The other parameters are as in Fig. 2.

spatial first-order correlation function of a quantum gas by
the scattered photons. In this case, the lasers shall illuminate
two spatially separated regions of a quantum gas confined in a
single well potential. More specifically, the spatial dependence
of the laser-atom interaction in Eq. (3) will be characterized
by the Gaussian envelope

|γj (r)| = γ0 exp[−(r − rj)
2/
r2]/(

√
π
r)1/2,

with width 
r � |d| between the two regions. (We remark that
the excitation could be realized with subwavelength resolution
[6,7,63].) The corresponding setup is shown in Fig. 4. For this
setup, the photon flux reads as

F (t) = �
∑

j,k=L,R

Re
∫ t

0
dt ′

∫
dr

∫
dr′

×γj (r)γk(r′)f (r,t ; r′,t ′)G(1)(r,t ; r′,t ′), (42)

where

G(1)(r,t ; r′,t ′) = 〈ψ†
1(r,t)ψ1(r′,t ′)〉 (43)

is the first-order correlation function and f (r,t ; r′,t ′) is
defined in Eq. (15). Let the pump-probe excitation be a
pulse of mean duration t such that ω̃t � 1, but ωαt � 1,
with ωα the typical frequency characterizing the excitation

FIG. 4. (Color online) Setup for measuring the first-order corre-
lation function of an ultracold atomic gas. The pump-probe lasers
are tailored in such a way that atoms are only outcoupled from the
two shaded regions around r1,2. Measurement of the photon flux of
one beam as a function of q allows one to determine the first-order
correlation function G(1)(r1; r2) of the atomic gas.

spectrum. In this limit, we can approximate G(1)(r,t ; r′,t ′) �
G(1)(r,0; r′,0) in Eq. (42). For convenience, we denote by
G(1)(r; r′) ≡ G(1)(r,0; r′,0) the spatial correlation function.
For 
r sufficiently small, so that it can be approximated with
a δ-like excitation, the photon flux can be recast in the form

F (t) � K(1 + Re{eiq·dG(1)(d/2; −d/2)}/n0(d/2)),

(44)

where K is a constant which is determined by the details of the
excitation scheme and n0(d/2) = G(1)(d/2; d/2) is the density
at r = ±d/2 (assuming the system has reflection symmetry
about r = 0). Therefore, the photon flux exhibits oscillations
with a visibility which is determined by the spatial first-order
correlation function. By varying the scattering wave vector q,
one would thus measure the first-order correlation function
as a function of d. Realistic excitation schemes are of course
characterized by finite spatial resolution 
r. This results in
averaging the correlation function in Eq. (44) over the finite
size of the illuminated region and hence to a diminution of the
contrast [55].

This setup could be extended to measure time-dependent
correlation function by applying a pair of laser pulses:
Assuming that the photon scattered after the first pulse can
interfere with the photon scattered after the second pulse, then
the photon flux at the detector will exhibit oscillations, the
amplitude of which is proportional to the first-order correlation
function Eq. (43). A possible realization could use a mirror
placed in front of the quantum system as realized in Ref. [64].

VI. CONCLUSIONS

In this work, we have discussed a setup which allows one to
measure the condensate fraction and the first-order correlation
function of a quantum gas by means of photodetection. The
photons are scattered by the quantum gas in a pump-probe
type of excitation, such that the scattered photon is associated
with an outcoupled atom with which it is entangled. In
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addition, photon and atom are correlated with the quantum
gas. This correlation is detected in the photon flux, provided
that certain conditions are fulfilled, which we have identified
and discussed.

Our analysis is based on the impulse approximation [45]
corresponding to neglecting the back action of the scattering
process on the quantum gas. It is therefore valid for short-time
transients. From the point of view of collecting a sufficient
statistics, hence, time-of-flight techniques are a more conve-
nient tool than in situ measurements by photodetection. Never-
theless, one could consider to modify existing techniques, such
as the one successfully demonstrated in Refs. [6,7], to access
the same kind of information that the setup here discussed
provides.

An interesting outlook is to identify a setup, along the
lines of the proposal Ref. [65], which permits one to perform
a quantum-nondemolition measurement of any correlation
functions of the external degrees of freedom of atomic gases,
and more in general, which realizes quantum-state transfer
between matter and light. This would open several interesting
perspectives for quantum communications [66].
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APPENDIX A

We recast the interference term, Eq. (13b), in the form
FI = FL→R(t) + FR→L(t), with

FL→R(t) = � Re eiδμt

∫ t

0
dt ′

∫
dk

(2π )3
e−i(	−ωk)(t−t ′)

×
∫

dr dr′ei(q−k)·(r−r′)�L(r′)∗�R(r) , (A1a)

FR→L(t) = � Re e−iδμt

∫ t

0
dt ′

∫
dk

(2π )3
e−i(	−ωk−δμ)(t−t ′)

×
∫

dr dr′ei(q−k)·(r−r′)�R(r′)∗�L(r). (A1b)

We now show that the term FL→R(t) [FR→L(t)] is the
contribution due to the atoms which are outcoupled and
propagate from the left to the right (right to the left). For
this purpose, we perform the k integral in Eq. (A1) and obtain

FL→R(t) = � Re ei(δμt−ϕLR )
∫ t

0
dτ

( i m

2πh̄τ

) 3
2

×
∫

dr
∫

dr′ ei[q·(r−r′)−	τ ]

× exp

[
− i

h̄

m(r′ − r)2

2τ

]
fL(r′)fR(r), (A2)

where ϕLR is the relative phase of the macroscopic wave
functions defined in Eq. (28). With the change of variables
r̄ = r − r′, R = (r + r′)/2, we can rewrite Eq. (A2) as

FL→R(t) = � Re ei(δμt−ϕLR )
∫ t

0
dτ

( i m

2πh̄τ

) 3
2
ei(ωq−	)τ

×
∫

d r̄
∫

dr exp

[
i

h̄

m

2τ

(
r̄ − h̄q

m
τ

)2
]

× fL

(
R − r̄

2

)
fR

(
R + r̄

2

)
. (A3)

The exponential in the integral over r̄ oscillates very fast
with respect to the wave functions fj (r). Therefore, the main
contribution to the integral over r̄ comes from r̄0 = h̄q

m
τ ,

where the term in the exponential vanishes. By means of the
saddle-point approximation, we take the wave functions at the
point r̄0 out of the integral. By performing the r̄ integration
using the Fresnel integral [28]∫ ∞

−∞
dt eiγ t2 =

√
π

|γ |e
isgn(γ )π/4, (A4)

we obtain

FL→R(t) ≈ � Re ei(δμt−ϕLR )
∫ t

0
dτ ei(ωq−	)τ

×
∫

dr fL(r + d − vqτ )fR(r), (A5)

where vq is the recoil velocity [Eq. (31)]. The calculation
that leads to Eq. (A5) is exact in the limit of homogeneous
atomic systems. In such a case, the momentum distribution
of the condensate fraction is a Dirac-delta function at zero
momentum, and all outcoupled atoms have exactly the same
momentum h̄q. The condensates we consider are confined by
an external potential and have a finite extension in space which
leads to a certain width δp in their momentum distribution,
and thus to a spread in the momentum of the outcoupled atoms
around the mean value h̄q. By taking the value of the atomic
wave functions at the point of the stationary phase of the
exponential in Eq. (A3), one neglects this momentum width:
the saddle-point approximation is thus applicable if h̄|q| � δp.
Equation (A5) agrees with the corresponding expression in
Eq. (29a). For completeness, we also give the contributions
of the macroscopic wave functions to the background con-
tribution [Eq. (13a)], making the same approximations as in
Eqs. (A5):

FL(t) ≈ � Re
∫ t

0
dτ ei(ωq−	)τ

∫
dr fL(r)fL(r − vqτ ),

FR(t) ≈ � Re
∫ t

0
dτ ei(ωq−	+δμ)τ

∫
dr fR(r)fR(r − vqτ ).

(A6)

APPENDIX B

We derive here approximate expressions of the Raman
scattering rate for the experimental setup of [30], which lead
to Eq. (36). Using Eq. (33) for the condensate wave functions
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FIG. 5. (Color online) Comparison of the integral G(z) as given
in Eq. (B4) (black solid line) with the Gaussian fit Eq. (B5) (red
dashed line).

in Eq. (A6), we find

FL(t) ≈ 2π�μ(0)rxR̄
3

g1vq

∫ z<(0)

0
dz cos

[
(ωq − 	)

zrx

vq

]
G(z),

(B1)

with

z<(x) = min

(
2,

vqt − x

rx

)
. (B2)

The length R̄ = (rxryrz)1/3 determines the typical size of the
condensates and can be written as [67]

R̄ = 151/5

(
Nas

ā

)1/5

ā. (B3)

The function G(z) in Eq. (B1) reads as

G(z) = 2
∫ 1

z/2
dx

∫ √
1−x2

0
r dr(1 − x2 − r2)1/2

×[1 − (x − z)2 − r2]1/2. (B4)

A numerical evaluation of G(z) is shown in Fig. 5, and is here
compared with a Gaussian of the form

G(z) ≈ 4

15
e−1.25z2

, (B5)

showing that this function provides a good approximation of
Eq. (B4). Using Eq. (B5) in (B1), one gets

FL(t) ≈ �NCt0

∫ z<(0)

0
dz cos[(ωq − 	)zt0]e−1.25z2

,

(B6)

with t0 = rx/vq. For times t > tc, with tc ∼ (d − 2rx)/vq, such
that z<(0) = z<(d) = 2, we find from Eq. (B6)

FL(t) ≈ �t0NC

∫ 2

0
dz cos

[
(ωq − 	)

zrx

vq

]
e−1.25z2

≈ π�NC

√
t2
0

5π
e− 1

5 [(ωq−	)t0]2
. (B7)

When performing the integral in Eq. (B7), we neglected
the imaginary part in the error functions, which one gets
from the exact integration. This is a good approximation for
|(ωq − 	)t0| � 5, as can be checked by numerical evaluation.
For values |(ωq − 	)t0| > 5, the exponential in Eq. (B7)

is negligible compared to the resonant case ωq = 	: The
oscillating tails of the error functions given by their imaginary
parts will only play a role for parameters where the outcou-
pling efficiency vanishes and which are thus not relevant to
our treatment. Using the same argumentation for the other
contributions to the photon flux, we find

FL(t) ≈ π�NCK(ωq − 	), (B8a)

FR(t) ≈ π�NCK(ωq − 	 + δμ), (B8b)

FL→R(t) ≈ 2π�NCK(ωq − 	)F�(q,t)

× cos

[
δμt − ϕLR + (ωq − 	)

d

vq

]
, (B8c)

FR→L(t) ≈ 2π�NCK(ωq − 	 + δμ)F�(−q,t)

× cos

[
δμt − ϕLR − (ωq − 	 + δμ)

d

vq

]
,

(B8d)

with

K(x) =
√

t2
0

5π
e− t20

5 x2
, (B9)

F�(q,t) = �(q)�

(
t − d − 2rx

vq

)
. (B10)

From Eqs. (B8), one then obtains Eq. (36) for q > 0. The phase
difference between FL→R(t) and FR→L(t) as measured in [31]
is obtained from Eqs. (B8c) and (B8d) and reads as

� = d

vq

(2	 − 2ωq − δμ). (B11)

Figure 6 displays the total photon flux computed from
Eq. (36) (dashed line) and the one calculated from Eq. (35)
(solid line) for the experimental parameters of [30]. Quantita-
tive agreement between the two solutions is found, showing
that neglecting the initial momentum distribution is well
justified for the considered parameters.

FIG. 6. (Color online) Total photon flux F (t) in units of back-
ground contribution FB (t) as a function of time in units of δμ

2π
. The

solid black line is computed by numerically integrating Eq. (35)
and compared to the approximate result Eq. (36) (dashed red line).
Parameters are as in Fig. 2 with α = 0.
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