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We present a density-functional theory for the one-dimensional harmonically trapped Bose-Fermi mixture
with repulsive contact interactions. The ground-state density distribution of each component is obtained by
solving the Kohn-Sham equations numerically based on the local density approximation and the exact solution
for the homogeneous system given by Bethe ansatz method. It is shown that for sufficiently strong interaction,
a considerable amount of fermions are repelled out of the central region of the trap, exhibiting partial phase
separation of Bose and Fermi components. Oscillations emerge in the Bose density curves, reflecting the strong
correlation with fermions. For infinitely strong interaction, the ground-state energy of the mixture and the total
density are consistent with the scenario that all atoms in the mixture are fully fermionized.
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I. INTRODUCTION

Ultracold atomic gases provide a highly controllable testing
ground to study fundamental problems in quantum many-
body physics [1], and many experimental observations can
be compared directly with exactly solvable theories. The
degenerate quantum gases with many components in low
spatial dimensions, especially in one dimension (1D), have
become an increasingly interesting topic [2]. Multicomponent
gases can be mixtures of the same species of atoms with
different hyperfine states (i.e., spinor condensate) or mixtures
of different species of atoms. The competition between the
inter- and intraspecies interaction makes the mixture system
more complicated and exhibit richer physical phenomena
than its single-component counterpart. Bose-Fermi mixture
is originally realized in experiments as a result of sympathetic
cooling technique, that is, cooling the fermions to quantum
degeneracy through the mediation of bosons [3–7]. Then many
theoretical studies have been performed on three-dimensional
mixtures, dealing with the phase separation [8], pairing
[9], superfluid and Mott insulator transition [10], BEC and
Bardeen-Cooper-Schrieffer (BCS) crossover [11], etc. On the
other hand, 1D systems attract attention for the simplicity
of theoretical models and for the significance of quantum
correlation effects therein [12]. Experimentally the 1D systems
can be realized by confining the cold atoms in two-dimensional
optical lattices or in strong anisotropic magnetic traps [13]. The
interaction among the atoms can be tuned in the whole regime
of interaction strength via the magnetic Feshbach resonance
and controlling the transverse confinement of the magnetic
trap [14]. Interestingly enough, the properties of these system,
including the ground-state, elementary excitations as well as
thermodynamics, are sometimes fairly well captured by the
exactly solvable models studied a few decades ago [15].

Many theories have studied 1D Bose-Fermi mixtures, both
homogeneous and trapped gases in external potentials. When
the system is homogeneous, Das [16] plots the ground-state
phase diagram based on the mean-field theory, which predicts
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the occurrence of phase separation (i.e., demixing) of the
two components. Luttinger liquid formalism shows that for
sufficiently strong repulsion the two components of the
mixture, with bosons either a quasicondensate or impenetrable
particles, repel each other sufficiently to demix [17]. However,
the exact Bethe ansatz solution for the 1D mixture with equal
mass and equal coupling constants points out the absence
of demixing [18,19]. It indicates that mean-field theory
and Luttinger liquid theory are reliable only for very weak
interaction. With the system loaded in optical lattices, the phase
diagram and correlation functions have been investigated with
the bosonization method [20] and quantum Monte Carlo (MC)
simulation [21]. For the trapped system, the local density
approximation (LDA) on the Bethe ansatz solution shows that
the harmonic trap 1D mixture would partially demix for strong
repulsive interaction [19]. The finite temperature Yang-Yang
thermodynamics and the quantum criticality analysis based
on thermodynamic Bethe ansatz (TBA) both support the
description of phase separation [22]. In the infinitely strong
interaction limit, that is, the Tonks-Girardeau (TG) regime,
the Bose-Fermi mapping method [23] shows that the density
profiles display no demixing among the two components,
where the exact ground state is highly degenerate and the most
symmetrical one is chosen [24–26]. Later detailed calculations
are done for all degenerate manifolds of the ground state [27],
and the conclusion of nondemixing remains for the mixture in
TG limit.

So far a method is not available for a 1D trapped Bose-Fermi
mixture suitable for the whole repulsive interaction regime.
However, numerical simulations such as the density matrix
renormalization group (DMRG) and quantum MC are limited
to a few atom numbers in lattice models [21,27]. In this
paper, we develop a Hohenberg-Kohn-Sham density-
functional theory (DFT) to investigate the ground-state proper-
ties of 1D harmonically trapped Bose-Fermi mixture. It is well
known that DFT is a successful and widely used approach for
treating electron systems with long-range Columb interaction
[28,29]. Recently it has been successfully generalized to cold-
atom systems with short-range contact interaction for three-
dimensional bosonic atoms [30,31] and three-dimensional
Bose-Fermi mixtures [32]. In the framework of DFT, in order
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to investigate the ground-state properties of an inhomogeneous
interacting system, a homogeneous interacting system is often
needed in the process of LDA for the exchange correlation
energy [28]. Because Bethe ansatz method can give exact
solutions for 1D homogeneous systems, several authors de-
veloped the DFT based on Bethe ansatz results to solve the 1D
bosons [31,33,34] and 1D Fermi cold-atom systems [35,36].
Here we apply this method for 1D Bose-Fermion mixture.
As can be seen below, the key points of our scheme include
a suitable fitting formula for the ground-state energy and
appropriate choices of the functional orbitals for boson and
fermions.

The paper is organized as follows. In Sec. II we derive
the universal Kohn-Sham equations with LDA for a 1D Bose-
Fermi mixture and then present the expression of exchange
correlation energy. From the exact result of Bethe ansatz
for homogeneous gas with equal masses of atoms and equal
interaction of boson-boson and boson-fermion we find a fitting
formula for the ground-state energy to simplify the numerical
iterations. Then the equations are solved numerically and the
ground-state energy and density distribution are discussed in
Sec. III. Finally we conclude our result in the last section.

II. THEORY

A. Kohn-Sham equations

We consider a 1D trapped mixture of NB bosons and NF

spin-polarized fermions with two-body contact interactions.
N = NB + NF is the total atom number. The system is
described by the Hamiltonian

H =
NB∑
i=1

[
− h̄2

2mB

d2

dx2
i

+ VB(xi)

]

+
NF∑
j=1

[
− h̄2

2mF

d2

dx2
j

+ VF (xj )

]

+ gBB

2

NB∑
i,i ′=1

δ(xi − xi ′ ) + gBF

NB∑
i=1

NF∑
j=1

δ(xi − xj ).

(1)

Here mB , mF are boson and fermion masses, VB(x), VF (x)
are external potentials, and gBB , gBF are the effective 1D
Bose-Bose and Bose-Fermi interaction parameters, which can
be tuned experimentally [14,37]. The Fermi-Fermi interaction
is not considered because the Pauli exclusion principle
suppresses the contact s-wave scattering and their p-wave
scattering can be neglected.

According to the Hohenberg-Kohn theorem I of DFT [28],
the ground-state density of a bound system of interacting
particles in some external potential determines this potential
uniquely. It thus gives us the full Hamiltonian (1) and
particle number N . Hence the density determines implicitly
all properties derivable from H through the solution of the
time-independent or time-dependent Schrödinger equation.
Though proved originally for fermions, the theorem can be
straightforwardly generalized to bosons as well as the mixture
of bosons and fermions studied here. Denote the densities of
bosons and fermions as nB(x) and nF (x), respectively, and

the total density is then obviously n(x) = nB(x) + nF (x). The
number of bosons and fermions are conserved separately;
that is,

∫
nB(x)dx = NB ,

∫
nF (x)dx = NF and

∫
n(x)dx =

N . The ground-state energy, defined as 〈g|H |g〉 with |g〉
the ground state of system, is a functional of the densities
E0[nB(x),nF (x)], which can be decomposed as

E0 = T ref
B [nB,nF ] + T ref

F [nB,nF ]

+
∫

dxnBVB(x) +
∫

dxnF (x)VF (x)

+ gBB

2

∫
dxn2

B (x) + gBF

∫
dxnB (x)nF (x)

+Exc[nB,nF ]. (2)

The first two terms are Bose and Fermi kinetic energies of
a reference noninteracting system. The next two terms in
the second row are external potential energies, and those
in the third row are Hartree-Fock energies (i.e., the mean-
field approximation of the interaction energy). The last term
is the exchange correlation energy, which includes all the
contributions to the interaction energy beyond mean-field
theory.

We assume the bosons are in a quasicondensate state and
fermions are in a normal state. Thus we introduce a single Bose
functional orbital φ(x) and NF Fermi functional orbitals ψj (x)
(j = 1, . . . ,NF ), which are orthogonal and normalized. This is
different from the way of Ref. [38], where only one condensed
orbital of fermionic pair is considered for the mixture of bosons
and paired two-component fermions in a superfluid state or
BCS state. With φ(x) and ψj (x), the densities are expressed as

nB(x) = NBφ∗(x)φ(x), nF (x) =
NF∑
j=1

ψ∗
j (x)ψj (x). (3)

and the kinetic energies are

T ref
B = −NB

∫
dxφ∗(x)

h̄2

2mB

d2

dx2
φ(x), (4)

T ref
F = −

NF∑
j=1

∫
dxψ∗

j (x)
h̄2

2mF

d2

dx2
ψj (x). (5)

As far as the exchange correlation energy Exc[nB,nF ] is
concerned, when the confinement is weak, we adopt the LDA;
that is, the system can be assumed locally homogeneous at each
point x in the external trap. In this way Exc is approximated
with an integral over the exchange-correlation energy per
atom of a homogeneous interacting mixture εhom

xc (nB,nF )

Exc ≈
∫

dxn(x)εhom
xc (nB,nF ) , (6)

where the densities nB , nF are taken at point x.
For such a homogeneous interacting mixture,

εhom
xc = εhom − εhom

M − κhom
s , (7)

where εhom is the ground-state energy per atom; εhom
M =

gBBn2
B/2n + gBF nBnF /n is the mean-field interaction energy

per atom; κhom
s = h̄2π2n3

F /6mF n is the kinetic pressure terms,
that is, the total kinetic energy dividing by the total number
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of fermions and bosons in a noninteracting homogeneous
mixture. Here the kinetic energy of the bosons is easily shown
to be zero and the kinetic energy comes solely from the
exclusive quantum state occupation of fermions.

Hohenberg-Kohn theorem II [28] guarantees that the
ground-state density distributions are determined by varia-
tionally minimizing E0 with respect to nB(x) and nF (x),
which is equivalent to a variational calculation of Eq. (2) with
respect to the Bose and Fermi functional orbitals φ∗,ψ∗

j . After
substituting Eq. (7) into Eq. (6) and substituting Eqs. (3)–(6)
into Eq. (2), we carry out the functional derivatives

δ

(
E0 − εNB

( ∫
φ∗dxφ − 1

))/
δφ∗ = 0,

(8)

δ

⎛
⎝E0 −

NF∑
j=1

ηj

( ∫
ψ∗

j dxψj − 1

)⎞
⎠ /

δψ∗
j = 0,

where ε and ηj (j = 1,2, . . . ,NF ) are Lagrange multipliers
conserving the normalization of φ(x) and ψj (x). Then we can
get the Kohn-Sham equations (KSEs)[

− h̄2

2mB

d2

dx2
+ VB(x) + μhom

B ([nB,nF ]; x)

]
φ(x) = εφ(x),

(9)[
− h̄2

2mF

d2

dx2
+ VF (x) − h̄2

2mF

π2n2
F (x)

+μhom
F ([nB,nF ]; x)

]
ψj (x) = ηjψj (x). (10)

Here μhom
B = ∂(nεhom)/∂nB and μhom

F = ∂(nεhom)/∂nF are
Bose and Fermi chemical potentials of a homogeneous inter-
acting mixture. Physically ε and ηj are the lowest eigenvalues
of KSEs. In Eq. (3), the sum in nF (x) runs over the occupied
orbitals ψj with lowest ηj .

By left multiplying ψ∗
j on both sides of (10), performing

summation over j , and integrating over x, we get an expression
of T

ref

F defined in Eq. (5). Analogously from the normalization
of φ(x) we may get an expression for T ref

B defined in Eq. (4). By
inserting these two kinetic terms into Eq. (2), the ground-state
energy (2) is expressed as a function of ε and ηj :

E0 = NBε +
NF∑
j=1

ηj

+
∫

n(x)εhom(x)dx −
∫

nB(x)μhom
B (x)dx

−
∫

nF (x)μhom
F (x)dx + h̄2π2

3mF

∫
n3

F (x)dx. (11)

If εhom[nB,nF ] are known, we can solve the KSEs together
with Eq. (3) to find the density distributions nB(x), nF (x) and
then calculate the ground-state energy E0 from Eq. (11). In the
following we present the result of εhom[nB,nF ] by means of
the Bethe ansatz method.

B. Ground-state energy of homogeneous system

In the absence of an external trap the system is homoge-
neous, which can be solved exactly via Bethe ansatz method

for a more restrictive but simple case:

gBB = gBF = g > 0, mB = mF = m. (12)

It describes the situation where the interactions of boson-boson
and boson-fermion are repulsive with the same strength and
the masses of boson and fermion are the same too. Detailed
possible ways to realize this situation in cold-atom experiments
have been considered previously [19]. The first condition can
be satisfied using the combination of Feshbach resonance (to
control the interactions) and appropriate choice of the tuning
of the trapping laser frequencies (to adjust the the ratio of
the radial confinement of bosons and fermions). The second
condition is approximately satisfied with a mixture of two
isotopes of a species of atoms. The isotope mixture is widely
used in experiments because it can avoid the gravitational
sag of an external potential caused by different masses. The
experiments have realized three-dimensional (3D) isotope
mixtures 6Li-7Li [4], 173Yb-174Yb [6], 40K-41K [7], and we
see no obvious obstacles in 1D. Under these two conditions,
the Hamiltonian of 1D homogeneous Bose-Fermi mixture is

H = − h̄2

2m

N∑
i=1

d2

dx2
i

+ g
∑
i<j

δ(xi − xj ). (13)

This model is solved by means of Bethe ansatz method by
Lai and Yang in 1971 for the 1D mixture of bosons and
spin- 1

2 fermions [18]. Imambekov and Demler investigated
the ground-state properties in detail for the 1D mixture of
bosons and spin-polarized fermions [19], and extensive studies
have been done [22,39–41], including the thermodynamics
and correlation functions. Here we briefly review the main
results of Refs. [18,19,41], which are readily used as the
homogeneous reference system in our DFT theory. Under the
periodic boundary condition and in the thermodynamical limit
(the system size and the number of atoms are infinitely large
but the atomic densities are kept finite), the ground-state Bethe
ansatz integral equations are

ρ(k) = 1

2π

[
1 +

∫ B

−B

cσ ()d

c2/4 + ( − k)2

]
,

σ () = 1

2π

∫ Q

−Q

cρ(k)dk

c2/4 + ( − k)2
, (14)

where c = mg/h̄2, k, and  are the quasimomenta and spectral
parameters and ρ(k) and σ () denote their corresponding
density distributions. The integration limits B and Q are
determined by the normalization condition

nB =
∫ B

−B

σ ()d, n =
∫ Q

−Q

ρ(k)dk. (15)

The ground-state energy per atom is written in our notation as

εhom(nB,nF ,g) = 1

n

∫ Q

−Q

h̄2k2

2m
ρ(k)dk. (16)
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For convenience, let us define the fraction of bosons
α = nB/n and the dimensionless Lieb-Liniger parameter
γ = mg/(h̄2n). We then introduce variables x = k/Q and
y = /B such that ρ(k) = ρ (xQ) = gc(x) and σ () =
σ (yB) = gs (y), and Eqs. (14)–(16) are transformed into

gc(x) = 1

2π

[
1 + 1

λs

∫ 1

−1

gs(y)dy

1/4 + (y/λs − x/λc)2

]
,

(17)

gs(y) = 1

2π

1

λc

∫ 1

−1

gc(x)dx

1/4 + (y/λs − x/λc)2 ,

with

λc = γ

∫ 1

−1
gc(x)dx, λs = γ

α

∫ 1

−1
gs (y) dy, (18)

and

εhom(n,γ,α) = h̄2n2

2m
e(γ,α). (19)

Here the function

e(γ,α) = γ 3

λ3
c

∫ 1

−1
x2gc(x)dx (20)

can be solved numerically with the combination of Eqs. (17)
and (18) by the iteration method. In the limiting cases of α =
0,1, the system is purely fermions or purely bosons. e (γ,0) =
π2/3 is a constant while e (γ,1) coincides with eLL(γ ) in
the Lieb-Liniger model [42]. When the interaction is weak,
γ � 1, the mean-field result of Eq. (19) is already available in
Refs. [16,19]; when the interaction is strong, γ � 1, one can
neglect the dependence of the first integrand in Eq. (17) on x

and gc(x) can be approximated as a constant gc. Therefore we
get the asymptotic behavior of the function e (γ,α) for γ

e(γ → 0,α) = π2

3
(1 − α)3 + (2α − α2)γ,

(21)

e(γ → +∞,α) = π2

3

[
1 − 4F (α)

γ
+ 12F 2(α)

γ 2

]
,

where F (α) = α + sin (απ ) /π . In the limiting case of
γ = 0, e (0,α) = π2(1 − α)3/3, and therefore εhom (n,0,α) =
h̄2π2n3

F /6mn = κhom
s ; the energy comes solely from the

kinetic energy of free fermions. In the Tonks-Girardeau limit,
e (+∞,α) = π2/3, which means the energy of Bose-Fermi
mixture with infinitely strong repulsive interactions is equal
to the energy of all atoms treated as free fermions.

For practical use, we need calculate e (γ,α) for a lot of
points (γ,α). If we use numeric iteration method for every
point, it will be very time-consuming. To avoid this, we
managed to retrieve a parametrization formula for e (γ,α)
based on the above limiting cases, which reads as

ẽ(γ,α) = π2

3
(1 − α)3 + f1(γ ){1 + f2(γ )(1 − α)2

− [1 + f2(γ )](1 − α)3}. (22)

Here f1(γ ) is the approximation of eLL(γ ). We give

f1(γ ) = π2

3

γ 3 + a2γ
2 + a1γ

γ 3 + b2γ 2 + b1γ + b0
(23)

with b1 = 11.37, b2 = 4.68, a1 = 12 + b1 − 4b2, a2 = −4 +
b2, and b0 = π2a1/3, which exhibits the same asymptotic
behavior as eLL (γ ) in the weak and strong interaction cases to
the order of γ and 1/γ 2, respectively. The function f2(γ ) is
determined by the numerical iteration result for some sampled
values of γ , and we fit it as

f2(γ ) = c0 exp(c1γ ) − (c0 + 1) exp(c2γ ) (24)

with c0 = 0.21, c1 = −0.02, and c2 = −1.45. ẽ (γ,α) gives the
exact behavior at the limits α = 0,γ = 0,+∞ and approxi-
mates to eLL(γ ) at the limit α = 1. In intermediate values of α

and γ , ẽ (γ,α) deviates with a maximum relative error of 0.03
from the numerical result at γ ≈ 2.5,α ≈ 0.9. In Fig. 1, we
exhibit the result of exact numerical result of e (γ,α) compared
with the fitting formulas ẽ (γ,α) for various interaction strength
γ and the fraction of bosons α. Clearly the fitting formulas
represent quite well the Betha-Ansatz result for the whole
range of interaction and arbitrary fraction of bosonic atoms in
the mixture. These formulas are then adopted in the following
solution of the KSEs equations.

FIG. 1. (Color online) The function e(γ,α) for the ground-state
energy of homogeneous Bose-Fermi mixture system. Numerically
exact result (red dashed line), obtained from the solution of Eqs. (17)
and (18), is compared with the fitting formula (solid black line) given
by Eq. (22). (a) γ = 0, 0.5, 2,5, 10, 20, 100 from bottom to top;
(b) α = 0, 0.05, 0.1, 0.2, 0.3, 0.5, 1 from top to bottom.
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From εhom (n,α,γ ), the ground-state Bose and Fermi
chemical potentials can be obtained as

μhom
B (n,α,γ ) = h̄2n2

2m
fB(γ,α),

(25)

μhom
F (n,α,γ ) = h̄2n2

2m
fF (γ,α),

where

fB(γ,α) = 3e − γ
∂e

∂γ
+ (1 − α)

∂e

∂α
,

(26)

fF (γ,α) = 3e − γ
∂e

∂γ
− α

∂e

∂α
,

with fB (0,α) = 0,fF (0,α) = π2(1 − α)2, and fB (+∞,α) =
fF (+∞,α) = π2.

III. NUMERICAL RESULTS

Inserting Eqs. (25) into the KSEs (9) and (10), and assuming
bosons and fermions suffer from the same harmonic external
potentials VB(x) = VF (x) = mω2x2/2, with ω is frequency,
we can get the ground-state density profiles of each component
by solving the KSEs together with the constraint (3) by
means of numerical iteration. The ground-state energy follows
immediately from Eq. (11). Here we introduce the length unit
a = √

h̄/mω and a dimensionless interacting parameter U =
g/ah̄ω such that the space-dependent Lieb-Liniger parameter
is expressed as γ (x) = U/an(x). Before going into the details
of the DFT result, we first discuss the KSEs for some limiting
cases.

When there is no interactions in the mixture, U = 0, KSEs
correctly reduce to the equations for noninteracting bosons and
noninteracting fermions in the harmonic trap. The densities of
bosonic and fermionic components are respectively

nB(x) = NB

a
√

π
exp(−x2/a2), (27)

nF (x) = 1

a
√

π
exp(−x2/a2)

NF −1∑
l=0

H 2
l (x/a)

2l l!
, (28)

where Hl(x) is the Hermite polynomials. Here the noninter-
acting Bose density profile (see the topmost black line in
Fig. 2) is a standard Gaussian-like shape and Fermi density
profile (see the red dotted line in Fig. 2) is characterized by a
half-ellipse-like shape with NF oscillations. The ground-state
energies of these two components are

E0B = NB

2
h̄ω, (29)

E0F =
NF −1∑
l=0

(
l + 1

2

)
h̄ω, (30)

and the total ground-state energy is E0 = E0B + E0F .
When the interaction is weak, neglecting Exc in Eq. (2), the

KSEs reduce to our familiar mean-field formulas[
− h̄2

2m

d2

dx2
+ 1

2
mω2x2 + g (nB + nF )

]
φ = εφ,

(31)[
− h̄2

2m

d2

dx2
+ 1

2
mω2x2 + gnB

]
ψj = ηjψj .

FIG. 2. (Color online) Density distribution of NF = 10 nonin-
teracting fermions (red dotted line) and the density distributions of
NB = 10 bosons for different interaction parameter U . The six black
solid lines from top to bottom are respectively for bosons with U = 0,
0.1, 0.5, 1, 5, 10, +∞.

For bosons it is nothing but the Gross-Pitaevskii equation
for dilute gas. The equation for fermions, on the other hand,
reminds us the superfluid theory of the mixture of bosons and
paired BCS states of the two-component fermions where only
one fermionic orbital is considered [38].

When the interaction is strong, for system of large atom
numbers NB,NF � 1, one can safely use the Thomas-Fermi
approximation (TFA), that is, the kinetic energies T ref

B and
T ref

F in the energy functional (2) are approximated to zero and∫
n(x)κhom

s (x)dx, respectively. Minimizing E0 directly with
respect to nB(x) and nF (x), we get the TFA formulas

1
2mω2x2 + μhom

B ([nB,nF ]; x) = μ0
B,

(32)
1
2mω2x2 + μhom

F ([nB,nF ]; x) = μ0
F ,

where μ0
B and μ0

F are constants fixed by the normalization
conditions

∫
nB(x)dx = NB and

∫
nF (x)dx = NF . Equa-

tions (32) are explained as the LDA of the chemical potentials
at point x in Ref. [19] and have been used extensively [22,40].
That means in slowly varying external harmonic trap chemical
potentials at point x are related to those in the trap center x = 0
(μ0

B and μ0
F ).

When repulsive interactions are infinitely strong, μhom
B =

μhom
F = h̄2π2n2/2m, Eq. (32) reduces to a single equation:

1

2
mω2x2 + h̄2π2

2m
n2(x) = μ0, (33)
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with μ0 is decided by
∫

n(x)dx = N . This gives us the explicit
result for total density distribution

n(x) =
√

2N − x2/a2

πa
, (34)

and ground-state energy

E0 = N2

2
h̄ω. (35)

We see that they are exactly the density distribution and
energy of N free fermions in a harmonic trap. Equation (33),
however, gives nothing about the densities of Bose and Fermi
components. The method here is insufficient for the infinitely
strong interaction. We may, on the other hand, resort to the
Bose-Fermi mapping method [23,24], which gives the Bose
and Fermi density profiles as

nB,F (x) = NB,F

N
√

π
exp(−x2/a2)

N−1∑
n=0

H 2
n (x)

2nn!
. (36)

The two components are nondemixing, in agreement with the
generalized Bethe ansatz wave function [27],

The DFT results are summarized in Figs. 2–8. First,
for a pure bosonic system, Eq. (9) is just the generalized
Gross-Pitaevskii equation that appeared in Refs. [31,43]. We
show the density profiles for NB = 10 bosons in Fig. 2 for
the cases of U = 0, 0.1, 0.5, 1, 5, 10, and +∞, respectively.
With the increasing of U , the density profiles vary from a
standard Gaussian-like to a nonoscillating half-ellipse shape.
Comparing the density profiles of bosons at U = +∞ and
the noninteracting fermions, we find that they match each
other quite well except for the density oscillations. The results
mean the density distribution of bosons with infinitely strong
repulsive δ interaction is basically the same as that of a
noninteracting Fermi gas, which is consistent with Bose-
Fermi mapping theory [44]. Our theory fails to reproduce
the density oscillation due to the impenetrable property of
1D system with strong interaction because we adopt one
single functional orbital φ(x) for the 1D Bose liquid. The
exact oscillations reflecting the structure of the occupied
orbitals should be separated from the real wave function
by the exact diagonalization method [45] or the reasonable
analytical many-body wave function [46]. In the limit of large
particle number, the differences between the oscillating and
nonoscillating profiles become imperceptible.

The ground-state energy evolution as a function of U is
illustrated in Fig. 3. We can see that with the increase of
U , the kinetic energy T ref decreases slowly, indicating that
the interaction restrains the movement of atoms. The external
potential energy Epot increases as a result of wider occupied
regime of the trap. Both of these two energies evolve to
constant energies. The Hatree-Fock energy EHF increases
almost linearly while the exchange correlation energy Exc

decreases in the whole interaction regime. These two terms
play more important roles in the DFT theory for stronger
interaction and they approximately cancel each other. All
these energies contribute to the total energy E0, which starting
from the noninteracting value 5h̄ω approaches the strongly
interacting limit 50h̄ω. For U < 0.9, the exchange correlation
energy is much less than the total energy, |Exc/E0| < 0.1,

FIG. 3. (Color online) Evolution of energies of NB = 10 bosons
with increasing interaction parameter U . Contributions to the ground-
state energy E0 include kinetic energy T ref, external potential energy
Epot, Hatree-Fock energy EHF, exchange correlation energy Exc. Right
panel: Details in the mean-field regime.

which can be seen as the effective regime of mean field
theory. For a TG gas with U = +∞ and a chemical potential
μhom

B = h̄2π2n2/2m, numerically solving equation (9) gives
E0 = 50.5024h̄ω, which lies slightly above 50h̄ω because the
introduced Bose functional orbital φ(x) is only an assistant
variational function instead of the true wave function of the
interacting Bose system.

We now turn to illustrate the main result of a mixture
of NB = 10 bosons and NF = 10 fermions. The densities
of noninteracting mixtures (27) and (28) are taken as the
starting point of the iteration of KSEs [Eqs. (9) and (10)] for a
small interaction parameter (e.g., U = 0.1). The eigenvalues
ε,ηj and functional orbitals φ,ψj are found by iterating
to the desired degree of accuracy. The new densities are
initial densities for the next iteration for a larger interaction
parameter, and so on. The density profiles for different U

are displayed in Fig. 4. It shows that with increasing U , the
peak of the total density n(x) decreases monotonically and
atoms tend to occupy wider regime. The density of the Fermi
component changes smoothly in amplitude, while the Bose
component becomes more flat and ripples begin to appear
for stronger interaction. At weak interaction, U = 0.1,1 as in
Figs. 4(a) and 4(b), both bosons and fermions are located in the
center of the trap. For an intermediate interaction strength, for
example, U = 5 as in Fig. 4(c), some fermions are excluded
from the center of the trap while bosons are held mainly in the
center. We notice that oscillations emerge in the Bose density
curves reflecting the strong correlation with fermions. When
U becomes even stronger, U = 20,100 as in Figs. 4(d) and
4(e), more fermions are repelled from the center and a clear
signature of phase separation of bosons and fermions is seen
in the figures. High density of discrete bosons are surrounded
by fermions, which nevertheless still have chance to squeeze
between the opening space of bosons. The total density profile
approaches a half-ellipse-like shape for U = +∞ as shown
in Fig. 4(f). We may have a close inspection of the case of
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FIG. 4. (Color online) Density distributions of a mixture of NB =
10 bosons and NF = 10 fermions for different interaction parameter
U = 0.1, 1, 5 (left) and U = 20, 100, +∞ (right).

infinitely strong interaction. In Fig. 5, the DFT result of the
total density is compared with those from TFA and Bose-Fermi
mapping. It is clear that the agreement is fairly good except for
tiny differences in the number, position, and amplitude of the
oscillations, which are enlarged in the inset of Fig. 5. Again
for large atom numbers the differences between the oscillating
and nonoscillating curves are too small to be perceived.

Figure 6 describes the evolution of all contributed energy
terms in Eq. (2) as a function of U . The line types denote the
same energy terms as in Fig. 3 except that here the kinetic
energy and external potential energy respectively include two
terms relating to bosons (in red) and fermions (in blue). The
trend of these lines resemble those in Fig. 3 for the same
reason. In particular the exchange correlation energy here

FIG. 5. (Color online) The total density profiles n as a function of
x for a NB = NF = 10 mixture with U = +∞. The result of KSEs
(black solid line), TFA (blue dashed line), and Bose-Fermi mapping
(red dotted line) are compared, and the inset shows a zoom into the
structure of the ocsillations.

FIG. 6. (Color online) Ground-state energies as a function of U

for mixture of NB = NF = 10. Contributions to the ground-state
energy E0 are similar to those in Fig. 3. All terms but the exchange
correlation energy originate from bosons and fermions. Right panel:
Details in the mean-field regime.

contests with two Hatree-Fock terms representing the mean-
field energy of boson-boson and boson-fermion interaction
respectively. The total ground-state energy evolves from 55h̄ω,
the energy of 10 ideal bosons and 10 ideal fermions, to
200h̄ω, the energy of 20 fully fermionized atoms according
to Eqs. (29) and (30). In the parameter range of 0 < U < 2,
|Exc/E0| < 0.1, mean-field theory is regarded effective. At
U = +∞, we numerically obtain an upper bound for the
ground-state energy E0 = 200.1364h̄ω, which is very close
to the exact result of full fermionization E0 = 200h̄ω.

There exist two contradicting predictions, phase separation
and nondemixing, for the spatial structure of the components
densities of trapped mixture in the TG limit. In Ref. [19]
the authors use the Bethe-ansatz technique to prove that
the mixture in the absence of external potential is always

FIG. 7. (Color online) Density distributions of mixture with N =
20 for different mean fractions of bosons ᾱ = NB/N and different
interaction parameters U .
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FIG. 8. (Color online) Ground-state energy E0 as a function of
U for different fraction of bosons ᾱ in the mixture with total atom
number N = 20.

stable against demixing, that is, bosons and fermions are
mixed homogeneously showing no spatial structure. Then they
combine the exact results of Bethe ansatz and TFA formulas
(32) (where they called it LDA) to find the phase separation
phenomenon for a harmonically trapped mixture with strong
but finite interaction; for example, bosons and a small amount
of fermions are present in the central part and the outer
sections consist of fermions only. Both the thermodynamical
Bethe ansatz (TBA) at finite temperature [22] and our DFT
result for very strong and infinite repulsion as shown in
Figs. 4(e) and 4(f) tend to support this scenario. The only
difference is that the phase separation here is not complete:
The bosons still have very few chances to occupy the outer
Fermi sections. On the other hand, the nondemixing viewpoint
is proposed with Bose-Fermi mapping methods for a TG
mixture in Refs. [23,24], where it is shown that the component
distributions of the NB = NF mixture are completely the same
according to Eq. (36) and therefore display no demixing.
However, the authors of Ref. [24] have noticed that the ground
state given in this way is highly degenerate. They subsequently
used a generalized Betha ansatz wave function, in which the
“orbital” part of the wave function is essentially replaced by
a Slater determinant of a single-particle Schrödinger equation
in the trap potential, to give a nondemixing result at finite
large interactions. They further tested this nondemixing result
with numerical DMRG simulations for a lattice model of
NB = NF = 2 mixture [27]. We observe, however, an obvious
signature of phase separation in Fig. 4 of Ref. [27] for
relatively large interaction U = 100. The intrinsic nature
of the phase separation and nondemixing in the TG limit
originates from the Bethe ansatz and Bose-Fermi mapping
techniques respectively. We expect experimental verification
of the nature of spatial configuration about trapped ultracold
atomic mixtures.

Finally we discuss the effect of another system parameter,
the mean value of the fraction of bosonic atoms number
ᾱ = NB/N , on the density profiles. Figure 7 shows the density
of each component and the total density of N = 20 atoms in
the mixture with ᾱ = 0.25,0.75 and interaction parameters
U = 1,10. Figure 8 compares their energies. Bosons will
dominate the total density profile when more bosons are put
into the mixture for weak as well as strong interactions. When
more fermions are prepared in the gas, bimodal distribution is
clearly seen the total density where bosonic Gaussian shape
is superimposed onto the fermionic shell-like structure. In
the strong interaction limit the total density approaches the
typical half-ellipse no matter how many bosons or fermions
are involved in the mixture. The number of fermions contribute
to the ground-state energy more effectively in the weak
interaction case. This situation changes for strong interaction
where the energies for all values of ᾱ approximate to the limit
value of the full fermionization of the system.

IV. CONCLUSION

In conclusion, using the DFT we study the ground-state
energy and density distribution of the Bose-Fermi mixture
in a quasi-1D harmonic trap. Based on the Bethe ansatz
solution for the mixture, we managed to obtain a fitting
formula for the function e(γ,α) for the ground-state energy
of homogeneous system. The KSEs are obtained from the
variational minimization of the energy functional of the
trapped mixture with respect to the densities of Bose and Fermi
components. We found that when the interaction between the
atoms varies from zero to positive infinitely, the ground-state
energy of the mixture would evolve to the constants of the
noninteracting fermions and the total density approached a
half-ellipse profile. More fermions are repelled out of the
trap center, while bosons occupy the central region. Phase
separation of boson and fermion components occurs for strong
interaction in agreement with the the result Bethe ansatz
method plus LDA. The calculation here applies equally to
the pure bosonic case, different fraction of bosons, as well as
in the TG limit. Our DFT theory is also suitable for mixtures
in optical lattice and could be extended to study the dynamical
and thermodynamic phenomena of the mixture.
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