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The properties of Bose-Einstein-condensed systems of hard spheres at high density are studied by taking into
account higher-order corrections beyond the Hartree-Fock-Bogoliubov approximation. Based on a diagrammatic
technique of the perturbation expansion starting from the Bogoliubov approximation, we show that the effective
interactions separate into two distinct parts: the screened and condensate-mediated interactions. The latter
is described by the exchange of virtual quasiparticles between noncondensate bosons via the Bose-Einstein
condensate and is attractive for small energy transfer. We calculate the condensation temperature, excitation
spectrum, and condensate density in the whole region of the gas parameter. It is shown that the condensate
temperature decreases compared to that of an ideal Bose gas due to hard-sphere interactions. We find that
the condensate-mediated attraction between noncondensate bosons leads to an enhancement of the anomalous
self-energy and, as a consequence, to the emergence of a roton minimum in the excitation spectrum and to the
strong suppression of the condensate fraction in the region of high density.
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I. INTRODUCTION

The physical properties of Bose-Einstein-condensed sys-
tems are currently a topic of intensive research. The most
thorough studies have been accomplished for weakly inter-
acting Bose gases [1–7], where the Bogoliubov theory [8] is
applicable and the interparticle interactions can be modeled
by a contact potential. Extension of the Bogoliubov theory to
Bose systems with strong interactions and high density, such
as superfluid 4He, is of long-standing interest. Present-day
Feshbach-resonance techniques do allow for the variation of
the interaction strength in a very wide range for trapped alkali
gases [9–11].

A natural extension of the Bogoliubov theory is a self-
consistent theory within the Hartree-Fock-Bogoliubov (HFB)
approximation. The self-consistent HFB approximation, how-
ever, has well-known problems [1], such as the violation of
various conservation laws and the presence of an energy gap in
the excitation spectrum. Proukakis et al. [12] have argued that
these problems arise because the actual interaction potential is
simply replaced with a contact potential, which is equivalent
to a t matrix, approximated to first order in the s-wave
scattering length. As a matter of fact, the use of the first-order
approximation for the t matrix in the HFB approximation is not
really consistent since it involves an overcounting of diagrams
that contribute to the anomalous self-energy [1,13].

There have been several attempts to make the HFB
approximation self-consistent by neglecting the anomalous
self-energy diagrams [14,15], by adding to this approxima-
tion some higher-order terms [16–19], or by introducing
an additional normalization condition [3]. Recently we [20]
have developed a self-consistent t matrix theory of the HFB
approximation for Bose systems of hard spheres by replacing
the actual potential by a t matrix obtained from the Lippmann-
Schwinger equation. The self-consistent HFB spectrum has the
Brueckner-Sawada form [21] with modified coefficients, being
gapless and linear for small wave vectors. As wave vectors
become large, however, this spectrum changes from linear

to quadratic monotonously without a roton minimum. The
phonon-roton spectrum of superfluid 4He has been deduced
by Landau [22] in the course of analyzing thermodynamic
properties and has been confirmed by many experiments.

In this paper, we investigate the effects of higher-order
self-energy diagrams beyond the HFB approximation for
Bose systems of hard spheres at high density. Based on a
diagrammatic technique of perturbation theory starting from
the Bogoliubov approximation, we show that the effective in-
teractions between noncondensate bosons separate two distinct
parts: one is the screened interaction, which can be represented
as the sum of repeated polarization functions, and another
part is the sum of the remaining diagrams, which cannot be
represented as the form of a screened interaction. The latter is
a quasiparticle-exchange interaction between noncondensate
bosons via the Bose-Einstein condensate, which becomes
attractive for small energy transfer. For Bose systems of hard
spheres, the screened interaction and vertex corrections can be
neglected and the leading higher-order corrections to the HFB
approximation come from the self-energy diagrams involving
the condensate-mediated attraction at low temperature. Using
the condensate-mediated attraction calculated in the HFB ap-
proximation, we calculate the excitation spectrum, condensate
density, and condensation temperature as a function of the gas
parameter. We use the system of units with h̄ ≡ 1 and kB ≡ 1.

II. SELF-ENERGY AND EFFECTIVE INTERACTIONS

The system we are concerned with consists of N bosons
with zero spin, enclosed in a box of volume V and interacting
through the two-body potential v(r). In the presence of a
Bose-Einstein condensate, the U(1) symmetry of the system
is spontaneously broken and the field operator is separated by
means of the Bogoliubov prescription [8] into two parts:

ψ(r) = n
1/2
0 + ϕ(r), (1)

053629-11050-2947/2012/85(5)/053629(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.053629


KIM, KIM, HUANG, SONG, AND YI PHYSICAL REVIEW A 85, 053629 (2012)

where n0 = N0/V is the condensate density, and the field
operator

ϕ(r) = V −1/2
∑
k �=0

ake
ik·r (2)

describes noncondensate bosons.
With this Bogoliubov prescription, we obtain for the grand-

canonical Hamiltonian of Bose-Einstein-condensed systems
the sum of five terms,

H = H (0) + H (1) + H (2) + H (3) + H (4), (3)

depending on the power of ϕ(r). The zero-order term is free
of ϕ(r), which is given by a c-number,

H (0) = [
1
2n0v(0) − μ

]
N0. (4)

The first-order term vanishes, that is, H (1) = 0, because this
would violate momentum conservation. The second-, third-,
and fourth-order terms are given by

H (2) = 1

V

∑
k �=0

{
[(εk − μ) + N0v(0) + N0v(k)]a+

k ak

+ N0

2
v(k)[a+

k a+
−k + aka−k]

}
, (5)

H (3) =
(n0

V

)1/2 ∑
k,q

′v(q)[a+
k a+

q ak+q + a+
k+qakaq], (6)

H (4) = 1

2V

∑
k,k′,q

′v(q)a+
k+qa

+
k′−qak′ak, (7)

respectively. Here, v(q) is the Fourier transform of the
interparticle potential v(r), μ is the chemical potential, and
εk = k2/2m. The primes on the summation symbols imply
that the summation does not include any zero-momentum
operators.

In order to evaluate the thermodynamical properties of the
system, we can use the single-particle Green’s function for
noncondensate bosons, which is defined as

G11(k,τ ) = −〈Tτak(τ )a+
k (0)〉, (8)

with the modified τ−dependent Heisenberg picture

ak(τ ) = eHτ ake
−Hτ , a+

k (τ ) = eHτa+
k e−Hτ . (9)

Here, the brackets 〈· · ·〉 denote the grand canonical en-
semble average. In the above Bogoliubov broken-symmetry
prescription, the condensate acts like a classical particle
reservoir, which noncondensate bosons can enter and leave via
scattering, and the number of bosons in the system described
by noncondensate operators a+

k and ak is no longer a constant
of motion. Therefore, we must also introduce two anomalous
Green’s functions,

G12(k,τ ) = −〈Tτak(τ )a−k(0)〉, (10)

G21(k,τ ) = −〈Tτa
+
−k(τ )a+

k (0)〉, (11)

which represent the disappearance and appearance of two
noncondensate bosons. The Green’s function G11(k,τ ) is
usually called the normal Green’s function, which represents
the propagation of a single boson.

The Dyson equations for the normal and anomalous
Green’s functions in Bose-Einstein-condensed systems were
first derived by Beliaev [23] and can be compactly written in
a 2 × 2 matrix form as

G−1(p) = G−1
0 (p) − �(p), (12)

with

G(p) =
(

G11(p) G12(p)

G21(p) G11(−p)

)
, (13)

�(p) =
(

�11(p) �12(p)

�21(p) �11(−p)

)
, (14)

G−1
0 (p) =

(
g−1(p) 0

0 g−1(−p)

)
, (15)

where g(p) = [iωn − εk + μ]−1 is the free-boson Green’s
function. We use the letter p to represent the four-dimensional
vector (k,iωn), where ωn = 2πnT , with n = 0,1,2, . . . , is the
boson Matsubara frequency. In the self-energy matrix �(p),
the diagonal element, �11(p), is the normal self-energy, and the
off-diagonal elements, �21(p) and �12(p), are the anomalous
self-energies.

Since � is a 2 × 2 matrix, it can be expanded in the
complete set consisting of the unit matrix 1 and the Pauli
matrixes τ = (τ 1,τ 2,τ 3) as follows:

�(p) = iωn[1 − Z(p)]τ 3 + S(p)1 + 	(p)τ 1, (16)

where Z, S, and 	 are defined by

iωn[1 − Z(p)] = 1
2 [�11(p) − �11(−p)], (17)

S(p) = 1
2 [�11(p) + �11(−p)], (18)

	(p) = �21(p) = �12(p). (19)

The Dyson equation, Eq. (12), can be solved to give

G(p) = 1

D(p)
{iωnZ(p)τ 3

+ [ε(k) − μ + S(p)]1 + 	(p)τ 1}, (20)

with

D(p) = [iωnZ(p)]2 − [ε(k) − μ + S(p)]2 + 	2(p). (21)

This equation expresses the Green’s function in terms of the
exact self-energy and is therefore entirely general. Approxi-
mate solutions are determined by our choice of self-energy.

The Green’s function can be used to calculate the physical
quantities of Bose-Einstein-condensed systems. The poles of
the Green’s function give the energy spectrum of elementary
excitations. It is easy to check that, in the k → 0 limit, the
Green’s function has a pole at iωn = 0 if

μ = �11(0,0) − �12(0,0). (22)

In fact, this relation can be shown to be true to all orders
in perturbation theory and is known as the Hugenholtz-Pines
theorem [24,25]. The density of particles in the system is given
from its definition by

n = n0 − T

∫
d3k

(2π )3

∑
n

eiωn0+
G(k,iωn). (23)

053629-2



BOSE-EINSTEIN-CONDENSED SYSTEMS OF HARD . . . PHYSICAL REVIEW A 85, 053629 (2012)

This relation may be used together with Eq. (22) to find the
condensate density n0(n,T ). The problem is thus reduced to the
evaluation of the Green’s functions within an approximation
for the self-energies.

The Bogoliubov approximation consists of keeping the
lowest-order self-energy diagrams that contain condensate
lines. The self-energy in the Bogoliubov approximation can
be written as

�B(p) = n0v(0)1 + n0v(k)(1 + τ 1). (24)

Using Eq. (24) in Eq. (12), we obtain

G−1
B (p) = G−1

0 (p) − �B(p)

= iωnτ
3 − [εk − μ + n0v(0) + n0v(k)]1

− n0v(k)τ 1. (25)

This is the Green’s function in the Bogoliubov approximation.
Note that it is the exact result obtained from a quadratic
approximation to the Hamiltonian, i. e., by neglecting the third-
and fourth-order terms H (3) and H (4) in Eq. (3).

The Bogoliubov approximation can be made the starting
point for a systematic perturbation expansion, in which the
unperturbed operator is the quadratic Bogoliubov Hamiltonian
H0 = H (0) + H (2) and the perturbation is given by HI =
H (3) + H (4). In this perturbation theory, the Dyson equation
can be written as

G−1(p) = G−1
B (p) − �̃(p), (26)

where �̃(p) is the sum of all higher-order self-energy diagrams
beyond the Bogoliubov approximation. Combining this equa-
tion with the Dyson-Beliaev equation (12), the self-energy is
obtained by

�(p) = �B(p) + �̃(p)

= n0v(0)1 + n0v(k)(1 + τ 1) + �̃(p). (27)

We develop a diagrammatic technique of perturbation theory
starting from the Bogoliubov approximation and calculate the
higher-order corrections �̃(p) to the self-energy �(p). With
this result for �̃, we show the diagrammatic representation for
the self-energy � = �B + �̃ in Fig. 1(a).

It is very important to emphasize that the interaction lines
of H (3) included in the perturbation HI = H (3) + H (4) can
have only one condensate line either coming out or going
in. Therefore, the diagrams of the higher-order self-energy
�̃ cannot involve the interaction lines with two condensate
lines. From this fact, we see that the interaction diagrams can
separate into two distinct parts. One is the usual screened
interaction Vs(q), shown in Fig. 1(b), which is represented as
the sum of repeated polarization functions and can be written
as

Vs(q) = v(q) + v(q)
(q)v(q) + v(q)
(q)v(q)
(q)v(q) · · ·
= v(q) + v(q)
(q)Vs(q), (28)

where 
(q) is the polarization function.
Another part, Vk , is the sum of the remaining diagrams,

shown in Fig. 1(c), which cannot be represented as the form
of the screened interaction in Eq. (28). This interaction Vk is
a quasiparticle-exchange interaction between noncondensate
bosons via the Bose-Einstein condensate. We shall call this

FIG. 1. Diagrammatic representation for the self-energy (a),
screened interaction (b), and condensate-mediated interaction (c). A
solid line with momentum p represents the Green’s function matrix
G(p), a dotted line denotes the matrix n̂0 = n0(1 + τ 1) having zero
momentum, a dashed line is the bare interaction v(q), � is the vertex
function, and 
 is the polarization function.

interaction the condensate-mediated interaction. Note that the
condensate-mediated interaction exists only between noncon-
densate bosons, but neither between condensate bosons nor
between the condensate and noncondensate bosons.

The self-energy diagrams shown in Fig. 1(a) can be written
explicitly as

�(p) = nv(0)1 + n0Vs(p)(1 + τ 1)�(0,p; p)

− T

∫
d3q

(2π )3

∑
iωn

[Vs(q) + Vk(q)]G(p − q)

×�(p − q,q; p), (29)

where � is the vertex function. In the weakly Bose-Einstein-
condensed limit (n0/n � 1), the condensate-mediated inter-
action Vk can be neglected and then Eq. (29) reduces to that
proposed by Pashitskii et al. [26]. Our main aim in the present
paper is to investigate the effects of the condensate-mediated
interaction Vk on the properties of Bose-Einstein-condensed
systems.

III. BOSE-EINSTEIN CONDENSATION TEMPERATURE

In this section, we study the properties of Bose systems of
hard spheres near the Bose-Einstein condensation temperature
Tc. Since the condensate density n0 is very small near Tc,
we can neglect the higher-order corrections and use the HFB
approximation defined by Eq. (29) with Vk = 0, Vs = v, and
� = 1. The self-energy �(p) in the HFB approximation is
written explicitly as

�(k) = nv(0)1 + n0v(k)(1 + τ 1)

−
∫

d3q

(2π )3
v(k − q)T

∑
iωn

G(q,iωn). (30)
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Since v(k) does not depend on the frequency, one sees that
neither does �(k). With the separation into the normal and
anomalous components,

�(k) = [nv(0) + φ(k)]1 + 	(k)τ 1, (31)

the Dyson-Beliaev equation, Eq. (12), yields

G(k,iωn) = iωnτ
3 + e(k)1 − 	(k)τ 1

[iωn − E(k)][iωn + E(k)]
, (32)

where E(k) =
√

e2(k) − 	2(k) is the excitation spectrum
given by the poles of Green’s functions, with the notations
e(k) = ε(k) − μ̃ + φ(k) and μ̃ = μ − nv(0).

By substituting Eq. (32) into the self-energy equation (30)
and performing the frequency sum, we obtain the following
equations for φ(k) and 	(k):

φ(k) = n0v(k) + 1

2

∫
d3q

(2π )3
v(k − q)

×
[

e(q)

E(q)
coth

E(q)

2T
− 1

]
, (33)

	(k) = n0v(k) − 1

2

∫
d3q

(2π )3
v(k − q)

	(q)

E(q)
coth

E(q)

2T
. (34)

By introducing the quantity T (k) defined by 	(k) = n0T (k),
Eq. (34) can be rewritten for T (k) as follows:

T (k) = v(k) +
∫

d3q

(2π )3
v(k − q)K(q)T (q), (35)

with K(q) = −[2E(q)]−1 coth E(q)/2T . For free particles
with E(q) = ε(q) = k2/2m at the zero temperature T = 0,
Eq. (35) reduces to the Lippmann-Schwinger equation for a t

matrix t(k) = t(k,k′ = 0):

t(k) = v(k) +
∫

d3q

(2π )3
v(k − q)K0(q)t(q), (36)

with K0(q) = −[2ε(q)]−1. This t matrix describes a transition
due to the collision between two particles in vacuum via the
interparticle potential v(k). When comparing Eq. (35) with
Eq. (36), one sees that the quantity T (k) is a t matrix describing
the similar effect in a medium with the quasiparticle energy
E(k).

In a similar way in our previous work [20], we use the
Lippmann-Schwinger equation, Eq. (36), to eliminate the bare
interaction v(k) in Eq. (35) for the t matrix T (k), arriving at

T (k) = t(k) +
∫

d3q

(2π )3
t(k − q)[K(q) − K0(q)]T (q). (37)

This is the equation for T (k) expressed in terms of the t matrix
t(k) instead of the bare interaction v(k). In order to eliminate
the bare interaction v(k) in Eq. (33) for φ(k), we use Eq. (35)
for T (k) to obtain

φ(k) = n0T (k) + 1

2

∫
d3q

(2π )3
T (k − q)

×
[
e(q) + φ(q)

E(q)
coth

E(q)

2T
− 1

]
. (38)

This equation expresses φ(k) in terms of the t matrix T (k),
while T (k) in turn is expressed in terms of the vacuum t

matrix t(k) determined by Eq. (36). In other words, through the

intermediate function T (k), we can relate φ(k) directly to the t

matrix t(k). Thus, we have obtained a set of the self-consistent
equations for the normal and anomalous self-energies φ(k) and
	(k) in terms of a t matrix t(k) within the HFB approximation
for a finite temperature.

We are now ready to calculate the excitation spectrum by
solving Eqs. (36)–(38) for a hard-sphere interaction with radius
a. By solving Eq. (36), we obtain

t(k) = 4πa

m

sin ka

ka
, (39)

with k = |k|. Since the t matrix t(k) in Eq. (39) depends only
on k = |k|, we can put the solutions of Eqs. (37) and (38) in
the forms

T (k) = zt(k), (40)

φ(k) = δT (k) = δzt(k). (41)

Then, the chemical potential is given from Eq. (22) by

μ̃ = z(δ − n0)
4πa

m
(42)

and the excitation energy E(k) =
√

e2(k) − 	2(k) reduces to

E(k) = 1

2ma2
ξ (ka), (43)

with

ξ (x) =
{[

x2 − (η − η0)z + ηz
sin x

x

]2

−
[
η0z

sin x

x

]2
}1/2

.

(44)

Here the parameters η = 8πδa3 and η0 = 8πn0a
3 have been

introduced.
The equations for parameters z and δ are obtained by

substituting Eqs. (40) and (41) into Eqs. (37) and (38):

z = 1 − z
2

π

∫ ∞

0
dx sin2 x

[
1

ξ (x)
coth

ξ (x)

2t
− 1

x2

]
, (45)

η = zη0 + 2

π

∫ ∞

0
dxx sin x

×
(

x2 − z(η − η0) + 2zηx−1 sin x

ξ (x)
coth

ξ (x)

2t
− 1

)
,

(46)

with t = 2πa2T being the dimensionless temperature. From
Eq. (23) the parameter η0 = 8πn0a

3 is given by

η0 = 8πna3 − 2

π

∫ ∞

0
dxx2

×
(

x2 − z(η − η0) + zηx−1 sin x

ξ (x)
coth

ξ (x)

2t
− 1

)
.

(47)

Given a temperature t and gas parameter na3, Eqs. (45)–(47)
enable us to determine the parameters z, η, and η0.

We start by calculating the Bose-Einstein condensation
temperature tc. This is the temperature at which all the particles
can be accommodated in the excited states and is determined
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by η0(tc) = 0. We obtain from Eq. (47) the following equation
for tc:∫ ∞

0
dxx2

[
coth

x2 − �1(1 − x−1 sin x)

2tc
− 1

]
= 4π2na3,

(48)

with �1 = zn. Here, the parameters z and η are determined by
Eqs. (45) and (46) with η0 = 0 and t = tc. From Eq. (46) the
parameter �1 = zn is given by

�1 = z
2

π

∫ ∞

0
dxx sin x

[
x2 − �1(1 − 2x−1 sin x)

x2 − �1(1 − x−1 sin x)

× coth
x2 − �1(1 − x−1 sin x)

2tc
− 1

]
. (49)

Equation (45) yields

z−1 = 2

π

∫ ∞

0
dx

sin2 x

x2 − �1(1 − x−1 sin x)

× coth
x2 − �1(1 − x−1 sin x)

2tc
. (50)

Given the gas parameter na3, Eq. (48) together with Eqs. (49)
and (50) enable us to determine the condensate temperature.

First, we find an analytic expression for tc in the low-density
limit (na3 � 1). The integrals come mainly from the range of
small x, where we can use x−1 sin x 
 1 − x2/6. In this case,
Eqs. (49) and (50) yield z = 1 and �1 = 8πna3, and we get
from Eq. (48)

tc − tc0

tc0
= − 2π

9.93
n1/3a, (51)

where tc0 is the condensation temperature of the ideal Bose gas.
Thus the condensation temperature Tc decreases compared to
that of an ideal Bose gas and the relative shift is linear with
n1/3a in the low-density limit. This linear relation has first
been predicted by Baym et al. [27,28], using effective-field-
theory methods, but an increase in Tc has been obtained in their
calculations and other calculations (see review article [1]). We
show that Tc decreases due to hard-sphere interaction in good
agreement with the experiments on liquid 4He.

In order to investigate the dependence of the condensa-
tion temperature Tc on the parameter γ = n1/3a, we solve
numerically the system of Eqs. (48)–(50). Figure 2 presents

FIG. 2. Bose-Einstein condensation temperature shift 	t = (tc −
tc0)/tc0 as a function of the gas parameter γ = n1/3a.

the shift 	t = (tc − tc0)/tc0 calculated as a function of the gas
parameter γ . At small γ , up toγ = 0.2, the shift is proportional
to γ . For γ = 0.61 corresponding to liquid 4He, we have
	t = −0.33, yielding Tc = 2.11 K, which is close to the
superfluid transition temperature 2.17 K. In the region of larger
γ > 0.7, the shift is almost constant as 	t = −0.35.

We now turn to the calculation of the excitation spectrum
E(k) and condensate density n0 by solving Eqs. (45)–(47)
self-consistently. At the condensate temperature Tc, we have
η0 = 0 and then Eq. (44) reduces to

ξ (x) = x2 − �1(1 − x−1 sin x), (52)

with x = ka. The parameter �1 is determined by solving
Eqs. (49) and (50) together with Eq. (48), which is given as
a function of the gas parameter n1/3a. In the long-wavelength
limit k → 0, ξ (x) = (1 − �1/6)x2 and the excitation spectrum
E(k) behaves like a free-particle spectrum k2/2m∗, with the
effective mass m∗ = m/(1 − �1/6). Since the parameter �1

is very small, we can neglect it in the calculation. At the
low-density limit na3 � 1, we obtain �1 = 8πna3, which is
the order of 10−4 for 87Rb with na3 = 0.39 × 10−6. For a
high-density system such as 4He with na3 = 0.23, we solve
Eqs. (49) and (50) numerically and obtain �1 = 0.33 × 10−3.
In the following, we neglect the parameter �1 in the calculation
of the excitation spectrum, which is a good approximation.

At T < Tc, the above approximation corresponds to η =
zη0, neglecting the second term in Eq. (46). Using this
approximation in Eq. (43) for the excitation spectrum E(k),
we obtain

E(k) =
[(

k2

2m

)2

+ 2�

(
k

2ma

)2 sin ka

ka

]1/2

, (53)

with the parameter � = zη0. The equation for � is obtained
from Eq. (45) by

η0 = �
2

π

∫ ∞

0
dx

sin2 x

(x4 + 2�x sin x)1/2

× coth
(x4 + 2�x sin x)1/2

2t
. (54)

This equation gives us � as a function of the parameter η0 =
8πn0a

3. The equation for � is obtained from Eq. (47) for the
condensate density n0 as

η0 = 8πna3 − 2

π

∫ ∞

0
dx

[
x4 + �x sin x

(x4 + 2�x sin x)1/2

× coth
(x4 + 2�x sin x)1/2

2t
− x2

]
. (55)

Equations (53)–(55) constitute the equations of the excitation
spectrum E(k) and the condensate density n0 for Bose systems
of hard spheres in the self-consistent HFB approximation.

Note that the spectrum (53) formally has the same form
as the Brueckner-Sawada spectrum [21], but now Eq. (54)
for the parameter � is different from their equation. The
Brueckner-Sawada equation for � can be obtained by ne-
glecting the anomalous self-energy term (�x−1 sin x)2 in
the denominator (x4 + 2�x sin x)1/2 = [(x2 + �x−1 sin x)2 −
(�x−1 sin x)2]1/2 in Eq. (54) for T = 0. Brueckner and Sawada
put n0 = n, thus neglecting the depletion of the condensate.
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For na3 = 0.23 corresponding to the experimental density
of liquid 4He with hard-sphere radius a = 0.22 nm, the
Brueckner-Sawada equation then gives � = 40. The excitation
spectrum calculated by Eq. (53) with Brueckner and Sawada’s
value of � = 40 is shown to have the essential features of
the phonon-roton spectrum deduced by Landau [22] from
experiments. However, the Brueckner and Sawada’s result
leads to serious errors in the calculation of other quantities.
Using � = 40, Eq. (55) gives n0 = −1.7n, which is a
physically senseless negative value for the condensate density.

For a given temperature T and gas parameter na3 with
hard-sphere radius a, Eqs. (54) and (55) must be solved
simultaneously for the parameters � and η0. The excitation
spectrum E(k) is given by Eq. (53) and the condensate density
n0 is calculated by n0/n = η0/8πna3. For na3 = 0.23, the
same values as Brueckner and Sawada’s values, we obtain
� = 14 and n0/n = 0.64 at T = 0. When � > 20, as shown
by Parry and ter Haar [29], the Brueckner-Sawada spectrum
(53) has the essential feature of a phonon-roton spectrum
of liquid 4He. In the high-density limit na3 → 1, we find
� = 19 and n0/n = 0.52. Our calculations show that the
HFB approximation is insufficient to explain the presence of
a roton minimum in the excitation spectrum of liquid 4He.
In order to resolve this problem, we investigate the effects
of the higher-order self-energy diagrams beyond the HFB
approximation in the following section.

IV. ATTRACTIVE INTERACTION VIA THE
BOSE-EINSTEIN CONDENSATE

We now turn to the investigation of the effects of higher-
order self-energy diagrams beyond the HFB approximation.
For the Bose system of hard spheres, it seems reasonable to
neglect the screening effects and vertex corrections in Eq. (29)
and keep the self-energy diagram containing the condensate-
mediated interaction VK (q). With the approximations 
 = 0
and � = 1, we obtain

�(p) = �HFB(p) + �K (p), (56)

with

�K (p) = −T

∫
d3q

(2π )3

∑
iωn

Vk(q)G(p − q), (57)

where �HFB(p) is the self-energy in the HFB approximation
and VK (q) is the condensate-mediated interaction represented
by Fig. 1(c).

In the one-loop approximation, VK (q) can be written
explicitly as

VK (q) = n0v
2(q)T r[(1 + τ 1)G(q)]. (58)

By using the Green’s function in the HFB approximation and
replacing the bare interaction v(q) by the many-body t matrix
T (q) in the first-order approximation for Eq. (35), we have

VK (q,ν) = 2n0T
2(q)

ε(q) − 	(q)

ν2 − E2(q) + i0+ , (59)

with E(q) = [ε(q)2 + 2n0ε(q)T (q)]1/2. It is clear from
Eq. (59) that VK (q,ω) becomes an attractive interaction when
the energy transfer ν is small, that is, |ν| � E(q). In the static

FIG. 3. Self-energy diagrams in the second-order approximation.

limit ν → 0, Eq. (59) reduces to

VK (q,ν = 0) = −λ(q)T (q), (60)

with

λ(q) = 2n0T (q)

q2/2m + 2n0T (q)
. (61)

Thus, the condensate-mediated interaction can be attractive
when energy transfer between noncondensate bosons is small.
This attraction can lead to pairing between noncondensate
bosons in the states k and −k and to the enhancement of the
corresponding anomalous self-energy.

We here note that �K (p) is one of the second-order self-
energy diagrams containing one condensate line n0(1 + τ 1),
as shown in Fig. 3. The self-energy �K (p) represented by
Fig. 3(a) involves v2(q), while Figs. 3(b) and 3(c) involve
v(q) · v(p − q). Since v(q) ∼ sin ka/ka, Figs. 3(b) and 3(c)
give the negligible contributions for a finite p. Thus, the
leading contribution comes from the self-energy diagram
�K (p) involving the condensate-mediated interaction VK (q).

Using �HFB(p) and VK (q) calculated in the HFB approx-
imation, we calculate the self-energy given by Eq. (56). In
Eq. (57) for �K (p), the integral comes mainly from the range
of small q and we can use the static potential VK (q,ν = 0) =
−λT (q), with λ = λ(q → 0) = 1. With this approximation,
one can then perform the frequency sum in Eq. (57) to obtain

�(p) = [nv(0) + φ(k)]1 + 	(k)τ 1, (62)

with

	(k) = n0T (k) + λ

∫
d3q

(2π )3
T (k − q)

	(q)

2E(q)
coth

E(q)

2T
,

(63)

φ(k) = 	(k) − λ

∫
d3q

(2π )3
T (k − q)

×
[
e(q) + 	(q)

2E(q)
coth

E(q)

2T
− 1

2

]
, (64)

where E(k) =
√

e2(k) − 	2(k) is the excitation spectrum
determined by the poles of the Green’s functions. Here, we use
the notation e(k) = ε(k) − μ̃ + φ(k), with μ̃ = μ − nv(0).

As discussed above, the second term in Eq. (63) is very
small and can be neglected, leading to φ(k) = 	(k). Putting
the solution of Eq. (64) in the form 	(k) = Dn0T (k), we have

D = 1 + λ
2D�

πη0

∫ ∞

0
dx

sin2 x

(x4 + 2D�x sin x)1/2

× coth
(x4 + 2D�x sin x)1/2

t
, (65)
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where the parameter � is given by Eq. (54) in the HFB
approximation. The excitation spectrum can be written as

E(k) =
[(

k2

2m

)2

+ 2D�

(
k

2ma

)2 sin ka

ka

]1/2

, (66)

with k = |k|. Comparing this with Eq. (53) shows that the
parameter D describes the effect of pairing between noncon-
densate bosons due to the condensate-mediated attraction. If
this attraction is neglected, namely, λ = 0, then D = 1 and
Eq. (66) reduces to the Brueckner-Sawada spectrum. If we take
into account the presence of this attraction (λ = 1), we obtain
an enhancement of the anomalous self-energy in Eq. (63) and
D > 1, which can yield the appearance of a roton minimum
in the spectrum.

Equation (65) must be solved self-consistently together
with the equation for η0 = 8πn0a

3, which is given by

η0 = 8πna3 − 2

π

∫ ∞

0
dx

[
x4 + D�x sin x

(x4 + 2D�x sin x)1/2

× coth
(x4 + 2D�x sin x)1/2

t
− x2

]
. (67)

Given a gas parameter γ = n1/3a and temperature T , Eqs. (65)
and (67) enable us to determine the parameters D and η0, using
the parameter � obtained in the HFB approximation. If we use
the same value a = 0.22 nm as Brueckner and Sawada for the
hard-sphere radius so that na3 = 0.23 (γ = 0.61) for liquid
4He at T = 0, we find D� = 29, with � = 14, and n0/n =
0.11. Figure 4 shows the excitation spectrum calculated from
Eq. (66) with D� = 29 and its HFB approximation (53) with
� = 14 and D = 1. The calculated spectrum has the essential

FIG. 4. Excitation spectrum for the Bose system of hard spheres
at zero temperature. The solid line is the result obtained from
taking into account the condensate-mediated attraction (λ = 1), while
the dashed-dotted line is the HFB approximation (λ = 0). The
dotted line is the spectrum of free bosons above the condensation
temperature Tc.

FIG. 5. Condensate density n0 as a function of the gas parameter
γ = n1/3a at T = 0. The dashed-dotted line corresponds to the HFB
approximation and the dashed line is the result of the Yukalov-
Yukalova theory [30].

features of the phonon-roton spectrum deduced by Landau [22]
from experiment. The excitation spectrum of Bose systems
of hard spheres has the Bogoliubov form in the low-density
region γ < 0.54, while it has the essential features of the
phonon-roton spectrum in the high-density region γ > 0.54.

For the whole region of γ , we solve numerically the system
of Eqs. (65) and (67) at T = 0, showing the condensate density
n0 as a function of γ in Fig. 5. The dashed-dotted line is the
condensate density in the self-consistent HFB approximation
[20] and the dotted line is the results obtained in the Yukalov-
Yukalova approximation [30]. At small γ , up to γ ≈ 0.3,
n0 practically coincides with the HFB approximation, where
the excitation spectrum has the Bogoliubov form without a
roton minimum. For γ > 0.54, the excitation spectrum has
a roton minimum and n0 becomes smaller than the HFB
approximation and approaches the nearly constant value 0.08
as γ → 1. At γ ≈ 0.61 corresponding to liquid 4He, we have
n0/n = 0.11, which is close to the condensate fraction n0/n ≈
0.1, measured in experiments (as is reviewed in Refs. [31,32])
as well as obtained by Monte Carlo simulations [33]. We see
that the strong suppression of the condensate fraction at high
density is related to the appearance of a roton minimum in the
excitation spectrum.

V. CONCLUSIONS

The properties of Bose-Einstein-condensed systems of hard
spheres at high density have been studied by taking into
account higher-order corrections beyond the HFB approxima-
tion. Based on a diagrammatic technique of the perturbation
expansion starting from the Bogoliubov approximation, we
have shown that the effective interaction diagrams separate
into two distinct parts: the screened interaction and the
condensate-mediated attraction. The latter exists only between
noncondensate bosons in the presence of a Bose-Einstein
condensate. For Bose systems of hard spheres, the screened
interaction and vertex corrections can be neglected and the
leading higher-order corrections to the HFB approximation
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come from the self-energy diagram involving the condensate-
mediated attraction in low temperature.

Near Tc, the higher-order corrections can be neglected
because the condensate density n0 is very small and we use
the self-consistent HFB approximation. We have calculated
the Bose-Einstein condensation temperature Tc as a function
of the gas parameter for Bose systems of hard spheres. It is
shown that Tc decreases compared with that of an ideal Bose
gas; the shift is proportional to the gas parameter γ = n1/3a in
the low-density limit, while it is still finite, though small, in the
high-density limit. For γ = 0.61 corresponding to liquid 4He
with hard-sphere radius a = 0.22 nm, we have Tc = 2.11 K,
which is very close to the critical temperature Tc = 2.17 K of
liquid 4He.

We have calculated the excitation spectrum and condensate
density as a function of the gas parameter for Bose systems
of hard spheres at low temperature by taking into account
the effect of the condensate-mediated attraction between
noncondensate in the static approximation. The excitation
spectrum of Bose systems of hard spheres has the Bogoliubov

form at low-density region γ < 0.54, while it has the essential
features of the phonon-roton spectrum deduced by Landau
[22] in the high-density region γ > 0.54. It is shown that
the condensate density in the high-density region becomes
smaller than the results of the HFB approximation and the
Yukalov-Yukalova theory [30] due to the appearance of a roton
minimum in the spectrum.

Summarizing, we can state that the condensate-mediated
attraction between noncondensate bosons leads to an enhance-
ment of the anomalous self-energy and, as a consequence, to
the emergence of a roton minimum in the excitation spectrum
and to the strong suppression of the condensate fraction in the
region of high density.
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