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We analyze the quench dynamics of a one-dimensional bosonic Mott insulator and focus on the time evolution
of density correlations. For these we identify a pronounced propagation front, the velocity of which, once
correctly extrapolated at large distances, can serve as a quantitative characteristic of the many-body Hamiltonian.
In particular, the velocity allows the weakly interacting regime, which is qualitatively well described by free
bosons, to be distinguished from the strongly interacting one, in which pairs of distinct quasiparticles dominate
the dynamics. In order to describe the latter case analytically, we introduce a general approximation to solve the
Bose-Hubbard Hamiltonian based on the Jordan-Wigner fermionization of auxiliary particles. This approach can
also be used to determine the ground-state properties. As a complement to the fermionization approach, we derive
explicitly the time-dependent many-body state in the noninteracting limit and compare our results to numerical
simulations in the whole range of interactions of the Bose-Hubbard model.
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I. INTRODUCTION

In the past two decades, progress in atomic physics,
quantum optics, and the nanosciences has propelled quantum
many-body theory to meet new challenges. It is indeed now
possible to engineer systems that are concrete realizations of
some paradigmatic models, which were once introduced to
grasp fundamental properties of more complex materials. New
frontiers thus have to be explored, among which the dynamics
of these isolated quantum models far from equilibrium is
probably the least well understood and one of the most
exciting.

One of the fundamental questions that has to be addressed is
how correlations propagate in these systems. The Schrodinger
equation allows in principle for correlations between distant
points to build up in arbitrarily short times [1]. This contrasts
with relativistic quantum field theories, where physical effects
cannot propagate faster than the speed of light and causality
relations between two points in space-time can exist only if one
lies within the light cone of the other. In a seminal work [2],
Lieb and Robinson, however, showed that nonrelativistic quan-
tum many-body systems can still exhibit some sort of locality:
In generic one-dimensional spin models with finite-range
interactions, the propagation of correlations appears to be
bounded by an effective light cone, outside which correlations
are exponentially suppressed. Here the role of the speed of
light is played by a velocity which is an intrinsic property
of the many-body Hamiltonian. The existence of so-called
Lieb-Robinson bounds has many far-reaching implications.
For example, they make it possible to simulate on classical
computers the ground-state properties as well as the dynamical
evolution of such quantum systems [3—6]. They also provide
a general link between the presence of a finite spectral gap
and the existence of a finite correlation length in the ground
state of certain lattice systems [7—10]. However, the extent to
which Lieb-Robinson bounds can be generalized beyond spin
systems remains an open question. Proofs or evidence for the
existence of such bounds have indeed been reported in various
systems, ranging from harmonic chains to the Bose-Hubbard
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model [11-16]. But it is also possible to construct models
in which the propagation velocity of correlations is explicitly
unbounded [17].

Dynamical properties of correlations in a closed system can
be probed by studying the time evolution following a sudden
change of parameter in the Hamiltonian, a situation referred
to as a quantum quench. The quench has a particular appeal in
the context of ultracold gases in optical lattices, as the relevant
parameters in the Hamiltonian governing these systems can
be easily varied in time [18]. In addition to the existence of
an effective light cone, it was discovered in recent theoretical
studies that the time evolution of correlations in quenched
systems is characterized by a pronounced propagation front
[11,12,15,16,19-26]. As for a Lieb-Robinson bound, the
velocity at which this front propagates can involve a broad
range of the spectrum of the Hamiltonian since the system is far
from equilibrium. This makes the understanding of this feature
particularly challenging: Covariant low-energy effective the-
ories would provide a natural description [11,12,20-22], but,
due to the presence of high-energy excitations, realistic lattice
models [11,12,15,16,19,23-33] show a much richer behavior
than their corresponding field theories. Gaining more insight
into the nonequilibrium properties of quantum systems thus
urges the development of new effective models.

In a recent work [19], the propagation of correlations in a
quantum many-body system was studied both theoretically and
experimentally in a one-dimensional bosonic gas in an optical
lattice, and a propagation front could be clearly identified. The
observed behavior was interpreted using an exactly solvable
effective model derived from the Bose-Hubbard Hamiltonian
and describing noninteracting fermionic quasiparticles. The
key idea behind this model is to use a Jordan-Wigner
transformation to cure some of the problems inherent to
the slave-boson methods proposed previously [34,35]. In the
present article, we describe this approach in more detail and
use it to derive the ground state as well as the quench dynamics
in the Mott-insulating phase. We show that its predictions are
quantitatively correct in a regime of strong and intermediate
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interactions. Our model, being exactly solvable, allows us to
explore the time evolution of the system at long times, and we
can show that the velocity of the propagation front exhibits a
generic scaling behavior. Using numerical simulations, we find
that this behavior holds in all interaction regimes, down to the
noninteracting limit of free bosons, where explicit solutions
are available. The asymptotic value of the velocity of the
propagation front, which strongly differs between the strongly
and the weakly interacting limits, can be used to characterize
the crossover between these two regimes.

This article is organized as follows: In Sec. II we present
the model that we will study; in Sec. III we carry out the
fermionization procedure and derive general relations that
enable the calculation of equilibrium (Sec. IV) and nonequi-
librium (Sec. V) properties. The velocity of the propagation
front for weak and strong interactions is analyzed in Sec. VI.
In Sec. VII we present our conclusions.

II. ONE-DIMENSIONAL SYSTEM OF BOSONIC ATOMS
IN AN OPTICAL LATTICE

In this work we consider a one-dimensional system of
bosonic atoms in an optical lattice. If the lattice is deep
enough, this system can be described by the one-dimensional
single-band Bose-Hubbard Hamiltonian

H = Z {—J(a}a,-H +Hc)+ %(nj - ﬁ)2} . (D
J

where a; and a]; represent the annihilation and creation

operators of a bosonic atom at site j and n; = aj.a j counts
the number of atoms at that site. We use a lattice constant
ajye = 1 and the system is considered to be infinitely large and
homogeneous. The kinetic part of the Hamiltonian is char-
acterized by the hopping amplitude J; the on-site interaction
strength U is related to the s-wave scattering length. We work
at fixed commensurate filling 7, where the model exhibits a
quantum phase transition between a superfluid phase at low
interaction strengths U/J < (U/J). and a Mott-insulating
phase at large interaction strengths U/J > (U/J).. At the
specific filling 7 = 1, the critical value is given by (U/J), ~
3.4[36,37]. The Bose-Hubbard model is nonintegrable [38,39]
and exhibits complex many-body properties; in particular, its
nonequilibrium properties are far from being fully understood.

In order to benchmark the analytical approaches, we will
perform exact numerical simulations of model (1) by means of
the density-matrix renormalization group (DMRG) [40,41], an
algorithm based on matrix product states [5]. While the DMRG
algorithm gives highly accurate results for the ground state,
time evolution [42—44] can be calculated only for relatively
short periods of time.

III. FERMIONIZATION APPROACH TO THE STUDY
OF THE BOSE-HUBBARD MODEL

In the following, we will describe in detail how the Bose-
Hubbard model can be mapped onto an effective model of
noninteracting auxiliary fermions. The procedure consists of
four main steps: (i) The local Hilbert space is reduced to only
three states and (ii) auxiliary bosonic operators are introduced
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that allow switching between these states (Sec. III A); (iii) the
auxiliary boson operators are fermionized by a Jordan-Wigner
transformation (Sec. III B); (iv) a constraint on the fermionic
operators is relaxed so that the effective Hamiltonian becomes
quadratic and can be diagonalized (Sec. III C).

A. Auxiliary boson representation

In the Mott-insulating phase and away from the critical
point, the local density fluctuations around the average filling
fi are limited. It is thus possible to truncate the local basis on a
single site j to three states only: |7 + m);, withm = —1,0,1.
Within this reduced basis, one can represent the bare atomic

operators a;“ in terms of constrained auxiliary boson operators

b% with two flavors o0 = £1 = &+
ab =i+ 1b!, +ibj_. 2)

The + bosons correspond to excess particles, b}, L) =
|7+ 1);, and — bosons to holes, b;7|ﬁ>j = |a —1);. The
local Fock state |i7) ; represents the vacuum state of the aux-
iliary particles b; i) ; = 0. Bosonic commutation relations
are obeyed:

[bjo bl o1 =8 180, [b]

J,0

b0’ = [bjg.bj.e'] =0,
(3)

which allow for the unphysical situation of single sites being
occupied by more than one auxiliary boson. Therefore, the
auxiliary operators have to fulfill the hard-core constraint

b )% = (bj0) =0, &)

and double occupancies of different species need to be
eliminated by imposing

bt b bl _b;_=0. (5)

This representation in terms of doubly flavored constrained
bosons is slightly different from the one used in slave-
particle techniques [34,35,45-48], in which one introduces one
auxiliary operator for each of the three local states |7 +m);,
and the number of auxiliary bosons per site is constrained to
be exactly 1.

B. Fermionization

It is difficult to ensure the operator constraints (4) and (5)
in general, and one often resorts to mean-field [46—48] and
perturbative [34,35,48] approximations. In the special one-
dimensional case, however, it is possible to use Jordan-Wigner
transformations [49,50] which allow on the one hand for the
exact treatment of the hard-core constraint (4) and on the other
for suppression of local pairing of auxiliary particles.

Here, we follow the standard procedure of Jordan and
Wigner [49] and introduce auxiliary fermion operators c; o
with number operators n;, = cj.,ac .0 and anticommutation
relations

{Cjorch o} = 8; 1800, {c]y.ch 0} = {Cjorciia} = 0.

(6)
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Using nonlocal string operators,

Zj,J,» — im Za./’<j n/-rya, ijf — Zj'+einnj'+,
(7
we relate the auxiliary bosonic operators to the fermionic ones:
bjo = ZjoCjo- ®)

The string operator Z; , counts the parity of the number of
fermions accumulated over all sites j* < j (including the +
fermion on site j if o = —) and obeys the relations

Z,=Zjs Zi,=1 ©

As a consequence, the number operators within both fermionic
and bosonic representations coincide:

bl bie =cl o (10)
and the original atom number operator can be written as
njznj,+—nj’_+ﬁ. (11)

Due to the fermionic statistics, the hard-core conditions (4)
are satisfied automatically. The remaining constraint (5) can
be formally accounted for by the global projector P = [ | i Pjs
with P; = (1 — nj n; ) eliminating states with both species
on the same site. It is now possible to show that, within the
truncated Hilbert space, the original Hamiltonian (1) can be
exactly represented by the following fermionic model:

H = Z’P{ —J@a+ l)c;+ci,~+1_+ - Jﬁchl,_c‘j,_
J

Py A
—Jyam+ 1)(cj7+cj+1’_

U
+ E(I’lj_+ + nj,_)}’P.

— C_/'Y_C_]‘_t,_]’_‘_) + H.c.
(12)

We note that the effective hopping amplitudes for the two
different flavors differ by the bosonic enhancement factor of

Eq. (2).

C. Exact diagonalization within the approximation
of unconstrained fermions

In practice, it is difficult to take care analytically of
the projector P. We will thus carry out the calculations in
the approximation of unconstrained fermions (UFs), P — 1,
leading to a quadratic Hamiltonian that can be diagonalized
exactly. We will see that the UF approximation is justified
because the main source of creation of double occupancies
would be a local pairing mechanism, which, in the fermionic
representation, is suppressed by the statistics of the auxiliary
particles.

The Hamiltonian (12) with P =1 can be rewritten in
momentum space as

Hur = Y Eo()c) yoro + > AKX ol — i),

ok k
13)
with the bare dispersions
E (k)= -2J@@+ 1)cos(k) +U/2, (14a)
E_(k) = —2Jacos(k)+ U/2, (14b)
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and an antisymmetric pairing parameter

A(k) = i2J /(@ + 1) sin(k), (15)

which obeys A(—k) = —A(k) = A*(k). In analogy to the
Gutzwiller approximation [51-53], the accuracy of the UF
approximation can be estimated via the translation-invariant
expectation value of the local projector,

pio=1—(Pi0) = (nj4n;_).

This quantity is a measure for the population of unphysical
states and gives the order of magnitude of the error in local
observables (due to translational invariance site indices of
observables can be dropped). Additionally, we will study the
quality of the relaxation of the constraint (5) by comparison to
the numerically exact DMRG method.

The quadratic Hamiltonian Hyp can be diagonalized via a
Bogolyubov transformation by introducing the quasiparticle
operators

(16)

Vi = ulk)e) , + vk, (17a)
Vi = uk)e, - — v(k)e_g - (17b)
The functions u(k) and v(k) fulfill the relations
u(—k) = u(k) = u*(—k), (18a)
v(—=k) = —v(k) = v*(k), (18b)
and are determined by the following expressions:
u(k) = cos |:arctan (ﬂ) /2] (19a)
E_ (k) + E_(k)
J2
=140 <ﬁ> , (19b)
v(k) = isin [arctan (ﬂ> /2:| (19¢)
E (k) + E_(k)
= i—zJ@ sin(k) + O (é—:) . (194d)

We infer from the above equations that the + modes are excess
particles each dressed with absent holes and the — modes are
holes dressed with absent excess particles. This is particularly
evident from the perturbative expressions (19b) and (19d). We
also note that the quasiparticle operators (17) can be interpreted
as Dirac spinors [54].

Using the quasiparticle operators, the Hamiltonian can be
written in the diagonal form

HUF = Z €0 (k)y]:rg Vk,o -
k,o

(20)

The dispersion relation of the individual quasiparticles is
€5(k) = —o J cos(k) + hw(k). (21)

Here 2hw(k) is the energy of a pair of two distinct types of
quasiparticle with opposite momenta, which is given by

Yho(k) = \/ [EL(k) + E_(K)]* + 4| A(k))2 (22a)

2
=U —2JQ2i + 1)cos(k) + O (%) . (22b)
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FIG. 1. (Color online) Quasiparticle dispersions [Eqs. (21) and (22a)] at 77 = 1 for different interaction strengths (thin lines). Curvatures
can deviate significantly from the cosine form of the strong-coupling limit (thick lines). The width and the gap of the quasiparticle bands
depend on the type of quasiparticle. At U/J = 8§, the gap of the + particle closes, signaling the breakdown of the UF approximation.

The exact dispersion relations for different interaction
strengths are displayed in Fig. 1, together with the first-order
expansion in J/U (strong-coupling expansion). One can see
that the profiles rapidly differ from their limiting cosine shape
as the interactions are lowered. Equations (14) and (22a)
show that the width of the energy bands depends only on
the hopping amplitude J and on the average filling 7 (via
the Bose enhancement factor), but does not depend on the
interaction strength. At large interaction strengths, the energy
gap is proportional to the interaction strength and the gap of
the + quasiparticles is strictly positive when the interaction is
above a certain threshold:

U/J > 4@+ 1). (23)

Below this threshold our UF approximation breaks down. For
i1 = 1, the range of validity of our model is thus limited to
U/J > 8, which is above the superfluid—to—Mott-insulator
transition (U/J). &~ 3.4, but significantly lower than the
mean-field transition (U/J). =~ 12. A description of the phase
transition might be achieved by introducing auxiliary operators
on the basis of a coherent-state representation (see, e.g., [35]),
but this goes beyond the scope of this work.

The slope of the dispersion relations €, (k) describes the
group velocity of the quasiparticles. Of particular interest will
be the relative velocity of pairs of quasiparticles of distinct
types and opposite momenta:

d
k) =2—w(k 24
v(k) dkw( ) (24)
whose maximal value

Unax = Maxg|v(k)| (25)

plays an important role in the characterization of the nonequi-
librium properties. This maximal velocity corresponds to the
point where the curvature of w(k) changes sign. It is located at
|k| ~ /2 at large interaction strengths and is shifted toward
lower momenta at smaller interaction strengths, as can be seen
in Fig 1. In the relevant interaction regime (23), the maximum
velocity is well approximated by

_2JQ2i+ 1) 8i(ii + 1)J? J*
fmax = T (1 Tt 1)2U2) +0 (ﬁ) - (@9

In particular, one sees that v, is a decreasing function of
u/J.

For the strictly positive quasiparticle energies (23), the
ground state at a value of U and J is the quasiparticle vacuum

oW/ D) = [v ' Cveryr.-17) (27a)
k

= [t + vioe] .t _1a).  (@7b)
k

The ground state at infinitely strong interactions, i.e., the Fock
state with 7 particles per site, |71), represents the vacuum of
the bare excess particles and holes.

D. Local observables and correlation functions

We summarize in this section some general properties of
the correlation functions in the quasiparticle formalism that
will be used later to derive ground-state and nonequilibrium
properties of the system. For the ground state (27), but also
for the time-dependent wave functions (48) which will be
introduced in Sec. V, the only nonvanishing single-particle
correlation functions are

847 = {Chraotio)
| I 4
=— | dke ™) cro), (28a)
27 J_, ’
877 = (Cjra0Cis) = (el ychiy o)
_ [ —ikd )
= dk e " (croCrs)s (28b)
27 J_,
where & = —o and the thermodynamic limit has been taken.

Possible time dependence (equal time) is implicit, and ex-
pectation values are site independent for the homogeneous
systems under consideration. We note that the correlations of
the different types are equivalent:

sit=gr". e =g (29)

Therefore, also the quasiparticle densities do not depend on
the flavor and we can define a single density of excitations:

Nex = (nj4) +(nj-) = 283’0- (30)

Since the Hamiltonian is quadratic, correlations of the occu-
pancies can be related to the single-particle correlations using
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Wick’s theorem, which gives us
Gy = (Njsdanjo) — (Mjtao)nja) 31)

=—00'|g5” > (32)

In the special case d = 0, the fermionic statistics, together with
the symmetry with respect to exchange of fermionic flavor,
imply that the on-site correlator G52 = [g5:%|* vanishes and
the local double occupancy factorizes:

(njonjs) = (njo)ns) =n /4. (33)

The density of excitations thus fully determines all local
properties, including the atom number fluctuations:

f=A{nj =) = nex(1 = nex/2). (34)

Atom correlations can be related to correlations of auxiliary
particles. Making use of Eq. (11), we can, for example, express
atomic density correlations in the following way:

Co=nnjrg) — nj)njia) (35)
=3, (63" - G7°) (36)
= —2(lg; 1>+ 1g; 1. (37)

Ultracold-atom experiments with single-site resolved imaging
[55,56] can access the parity s; = /7"~ rather than the
density itself. The expression for parity correlations turns out
to be similar to that for density correlations:

Sa = (8jSj1a) — (s;)(Sj4a) (38)

=4y (G7° +G5°). (39)

Both density and parity correlations are particularly simple to
evaluate within the present approach. Correlations including
the nonlocal string operator (7), such as the single-particle
correlations (a;a i+d)» can also be computed, but they require
the evaluation of the Toeplitz determinant [57]. Interestingly,
the fermionic string (7) is equivalent to the string operator
recently measured by Endres et al. [58].

IV. EQUILIBRIUM PROPERTIES OF THE
MOTT-INSULATING PHASE

In this section we discuss the equilibrium properties of
the Mott-insulating phase derived within the unconstrained-
fermion approximation. As argued in the preceding section,
the observables are related to single-particle correlations
(28), which for the ground state (27) can be evaluated
straightforwardly:

(C;ockgﬂ = =& wv3(k), (40)

(CkoCr5) = Sku(k)v(k), (41)

with the coefficients u(k) and v(k) given in Eq. (19). The local
density of excitations (30) can thus be calculated from

1 I
Nex = —— | dk v*(k). (42)

4 —7T
In the case of strong interactions, one can also derive an
explicit expression from the expansion (19b) and (19d) of
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the coefficients u(k) and v(k):

2J% J4
Nex = Wn(n +1)+ 0 i) (43)
Combining Eqs. (33) and (43) gives an estimate of the
occupation of unphysical states (16),

P =nZ /A S8+ /i) 72, (44)

where the right-hand side stems from the evaluation of (43) at
the lowest interaction considered (23). For 77 = 1, p4_ is less
than 6%, and we expect the error on local expectation values
to be of similar magnitude. With this at hand, we can now
consider the behavior of the density correlations in the ground
state. In Fig. 2(a), the atom number fluctuation f = ne (1l —
nex/2) is evaluated numerically using (42) and compared to
the strong-coupling expansion (see also [59])

2J% J*

as well as to the results obtained from DMRG simulations
with a truncation of the site occupancy to Np,x =2 or
Nmax = 6 (the system size is 256 sites and 400 DMRG
states are retained). The predictions of the UF approximation,
both from the numerical integration of (42) and from the
strong-coupling expansion, are in excellent agreement with the
DMRG simulations for all interaction strengths satisfying (23).
The accuracy of the truncation of the local Hilbert space to
three states only is also confirmed by the DMRG simulations.
Higher occupancies start to be important only for interaction
strengths below the point where the UF approximation breaks
down.

We further compare our results with the ones derived
within a Holstein-Primakov approximation of the slave-boson
representation used, e.g., by Huber et al. [35]. This approach
is equivalent to the auxiliary boson representation (2) when
the constraints (4),(5) are fully relaxed. We find that the
local observables cannot be well described at intermediate
interaction strengths, even though the density of excitations
is small (Fig. 2). A similar instability has been observed
with slave bosons in Ref. [47]. We will analyze the slave-
boson approach in more detail later in the context of the
nonequilibrium dynamics (Sec. V D).

We can also evaluate analytically nonlocal density correla-
tions to second orderin J/U:

J? J

Cy = —m”(n +1Dég1 + O (m> ) (46)
As shown in Fig. 2(b), the above expression only slightly
overestimates the amplitude of the correlations compared to
the full numerical evaluation of the integrals (28) and (37)
with (41). We therefore conclude that local observables and
nearest-neighbor correlations in the Mott-insulator regime are
well described by a perturbation expansion to order J2/U?2.
This is no longer the case for longer-range correlations, which
are simply vanishing according to the expansion to second
order, whereas the exact DMRG predicts that they should be
finite and exponentially decaying. As can be seen in Fig. 2(c),
the numerical evaluation of the UF equations provides a much
better agreement with the DMRG results. The correlations at
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FIG. 2. (Color online) Ground-state properties atii = 1. The numerical evaluation of the UF equations is compared with the strong-coupling
expansion, as well as with exact DMRG simulations of the Bose-Hubbard model with the local Hilbert space truncated at a maximum
site occupancy of either Np,x =2 or Np.x = 6. (a) Atom number fluctuation f as a function of the final interaction strength U/J. (b)
Nearest-neighbor density correlation C,—; as a function of the final interaction strength U/J. (c) Density correlations as a function of the

distance d.

d = 2 can be almost perfectly reproduced and a similar decay
length is found. The amplitude of the correlations for d > 2 is
overestimated, however, and the discrepancy becomes worse
as d increases.

V. QUENCH DYNAMICS: GENERAL DESCRIPTION

We analyze the quench dynamics of a system prepared
initially in a deep Mott-insulating state. We first derive the
general results for the time evolution of the wave function and
the correlation functions and then give explicit expressions
for the case where the initial state is a Fock state (infinite
interactions). These results form the basis for the detailed
discussion of the physical properties of the quench dynamics
in the subsequent Sec. VI.

A. Time-dependent wave function and correlations

The initial state considered is the ground state at some
values of J and U satisfying the condition (23) and takes the
form

Winit) = [ [[uo(®) + vo(k)ef et _117).

k

(47)

The time evolution of this state under the Hamiltonian Hyr
reads

[Y(@) = e )
= [rat — st ® !y, e/ 1)),
k

(48)

with
(k) = u(k)ug(k) — v(k)vo(k), (492)
v(k) = v(k)ug(k) — u(k)vo(k). (49b)

For the wave function (48), the nonvanishing equal-time
single-particle correlations evaluate to

(cro(t)e_r 5(1))
= S pu)ak)e M uk)vk) — a(kyv(k)]

+8i v (k) O (k)[e* P y(k)ia(k) — D(kuk)]  (50a)

and

<c,1,a(t)ck/,a(t)> = Sk.x {2 cos[2a(k)t Ju(k)ii(k)v(k)v(k)
xu*(k)v* (k) — v (k)i (k) } . (50b)

Based on these expressions, the expectation values of any
observables can be either calculated analytically, when the
strong-coupling expansion holds, or computed numerically for
lower interactions (see Sec. III D).

B. Strong-coupling expansion
For concreteness, we focus now on a quantum quench
starting from the Fock state with filling 71 by setting ug(k) = 1,
vo(k) = 0 and thus it(k) = u(k), v(k) = v(k). In this case, the
expansion in J /U leads to

{ero(t)e—rs(1) = iw sin(k)[e~2®" — 1]
J2
+0 (ﬁ) : (51a)
2=
(e (eta (1) = % sin(k) {cos[2w (k)] — 1}

J4
to (W) , (51b)
where w(k) stands for the dispersion in the strong-coupling
expansion (22b).

Within this expansion, the dynamics of the local density of
excitations can be expressed in terms of the Bessel functions
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of the first kind, 7, (z) = % ST dke=izeos®Fnk Ope gets

87 + 1)J?

gz U- cos(Ut /M J2(J1) + To(J D]} ,

(52)

nex(t) ~

with J = 2J (27 + 1)/A. In the relevant interaction regime, the
population of unphysical states p () thus remains as small as
in the ground state (44), and we expect the UF approximation
to be well behaved in general. It is, however, important to
note that the expansion is not rigorous since the approximate
dispersion (22b) is multiplied by time, which is unbounded.

The single-particle correlators required to derive nonlocal
density correlations (37) read

2J«/n(n+_1 / ko

IAMOES sin(k)[e =0 — 1]

nJ . - .
_ (—i>d+1—”(”[j) (VT T+ Tt (T)]

+ 84,1} (33)
Making use of the identity

2d
Tar1(2) + Ta-1(2) = ?\741(2), (54)

we obtain the following expressions for the nonlocal density
correlations:

— = 2
Cam(t) ~ — (2”(” +DJ d) <‘7"J” D cos(Ut/m) + 1)

U
(552)
(i 4+ 1)Jd \> J
Camn(t) ~ — (”(” = ) (jdj(t ”) (55b)

We note that the interaction strength U is involved only in the
magnitude of the correlations for d > 1, via the dimensionless
parameter J/U. In the case of nearest-neighbor correlations, we
find an additional oscillation of the amplitude with frequency
U/h.

C. Accuracy of the UF approximation

In this section, we analyze the accuracy of the successive
approximations that lead from the Bose-Hubbard model to the
UF approximation and its strong-coupling expansion. For this
purpose, we introduce the root-mean-square differences

Jo a0 — 0]’
Jy di[cP o]

where C((Il) and Cf,z) are the density correlations predicted
using two different level of approximation. By observing the
dependency of Xj on the distance d, we can verify, in particular,
whether a given approximation breaks down at large times. For
nonaveraged results we refer to Sec. VI. We use i, = 30/ J,
the maximal time accessible by our DMRG simulations. We
use a DMRG algorithm in the thermodynamic limit [60,61],
with a second-order Suzuki-Trotter decomposition of time step
At = 0.022/ U, and we retain 2400 states. The numerical error
is always smaller than the symbol size and linewidth.

X3 = , (56)
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In Fig. 3, we first compare the strong-coupling expansion
(55) and the numerical evaluation of the UF approximation. We
find that the expansion is relatively accurate (x7 < 10~!) down
to interactions U/J ~ 10, except for the d = 2 correlation,
which only slowly converges to the exact results when U/ J is
increased. We recall here that a similar accuracy is reached for
the ground-state correlations (Fig. 2).

In Fig. 3(b), we then compare the numerical evaluation of
the UF approximation with the exact DMRG simulation of the
Hamiltonian (12), i.e., the Bose-Hubbard model when the site
occupancy is truncated to Ny,x = 2. The UF approximation
appears to be accurate within X,% <107 forU/J 2 12. Aswe
will show in Sec. VI C, the UF approximation still qualitatively
describes the dynamics between U/J ~ 12 and U/J =8,
which marks the breakdown of the quasiparticle picture.

Finally, we compare in Fig. 3(c) the predictions of the
DMRG simulation when the local Hilbert space is truncated
to a maximum site occupancy Ny.x = 2, corresponding to the
model (12), or Np.x = 6. We observe that the error due to
the truncation starts to be significant (Xd > 10~!) only for
U/J < 6, i.e., when the interaction energy becomes larger
than the width of the quasiparticle band.

D. Comparison with the Holstein-Primakov approximation
for auxiliary bosons

In order to generalize the description to higher dimensions,
it may appear tempting to fully relax the hard-core constraint
(4) and work with bosons instead of fermions. The resulting
Hamiltonian is then equivalent to the one derived by Huber
et al. [35] using Holstein-Primakov (HP) bosons. The resulting
equations for the quasiparticles and their dispersions are very
similar to those derived in the fermionic model, except that the
coefficient v(k) becomes symmetric instead of antisymmetric.
As a consequence, local pairing of different species is no
longer suppressed and the occupation of the unphysical states
becomes much larger than in the fermionic approach. In order
to quantify this effect, one first has to calculate the single-
particle correlations. To lowest order in J/ U, the quasiparticle

coefficient takes the form v(k) ZJV"("H cos(k), and one
finds
HP 2J ./
Zﬂ(t) Zn(r[l]+ /dk etkd Cos(k)[ellcos(k)t _ 1]7

(57)

which can be compared to the fermionic version (53). In
particular, one finds that the integral (57) has a finite value
at d = 0 and the overcompleteness

2 1) J?
pe %Jlu 0 (58)

becomes of the same order as the density of excitations and the
density correlations. This means that physical and unphysical
states play an equally important role in the HP approximation
and this approach fails to describe the quench dynamics even
in the limit U > J, where the density of excitations is low.
This can be observed, for example, in the density correlations,
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FIG. 3. (Color online) Root-mean-square differences x> of the density correlations (56) obtained from different degrees of approximation.
(a) The strong-coupling expansion is compared to the numerical evaluation of the UF approximation. (b) The numerical evaluation of the UF
approximation is compared to the exact DMRG simulation of the Bose-Hubbard model with a local site occupancy truncated at Np,x = 2.
(c) The DMRG simulation with N,,x = 2 is compared to the DMRG simulation truncated at Ny, = 6.

which now read
A+ 1)J
2U

The change of sign between the two Bessel functions compared
to the UF expressions has a dramatic effect, since the function
in square brackets is now proportional to the derivative of
a Bessel function, instead of a Bessel function itself (54).
This leads in particular to the smearing out of one of the
main features of the quench dynamics, namely, the propagating
correlation peak that we will describe in Sec. VIC.

HP 2 - .
Ca=1(1) = —< ) [(Ta—1(J1) = Taa(JDI". (59)

E. Limit of noninteracting bosons

In this section, we complement the preceding analysis
of quenches on the strongly interacting side by the extreme
situation of a quench from infinite to zero interactions [33,62].
At U/J = 0, the time evolution is readily described in the
Heisenberg picture,

L
aj(ty="y_V;ptaj,
j'=1

in which individual bosons propagate with free dispersion. In
the thermodynamic limit, this yields the propagator

b/

dkexp {—i[2J cos(k)t/h — kd]}

2Jt)

@) Ty (7

Using the following relation for the initial Fock state:

Vi j+a(®) 7

(60)

(Ailalagalas|i) = 18,48, + @ + (1 = 8,.)8p.58,.r-

we can derive explicit equations for the density correlations:
2

Caty = | Y J7@Jt/n)
J

2

G+ 1) | Y Tiva@It/1)T; (20t /)

J

—A+ 1) Y TH QI /T 2Tt /h) — 7
J

—i+1) Z T raQRIt /T 2Jt/h).  (61)
J

Here we have used the properties J,(u£v)=
> oo Tnzm W) T (v) and J4(0) = 0 for d # 0.

VI. HOW QUASIPARTICLE PAIRS CARRY DENSITY
CORRELATIONS ACROSS THE SYSTEM

We now analyze in detail how correlations spread in the
quench dynamics starting from the Fock state with 71 atoms per
site within the Bose-Hubbard Hamiltonian (1). The description
in terms of fermionic quasiparticles for intermediate and strong
interactions (48), as well as the noninteracting solution (61),
provide a firm basis for the interpretation of the outcome of the
DMRG simulations and of recent experimental results [19] and
allow for their extrapolation at long times, where no analytical
solution is available so far.

A. Quasiparticle pairs

For concreteness, we restrict our discussion in the following
to the filling 7 = 1, where the + quasiparticles (17a) corre-
spond to doublons and — quasiparticles (17b) to holons. The
relevant processes involved in the quench dynamics can be
best understood in the expansion of the wave function (48) to
lowest order in the auxiliary fermion operators:

2327 . _
W) = 1) +i— > sintef ety _17) (62a)
k
2327 ) o
—i *{]_ > sin(kyel® @il cfja). (62b)
k

In this representation, the state decomposes into two parts:
a time-independent part (62a) consisting of the Fock state
and the symmetric superposition of bound nearest-neighbor
doublon-holon pairs, and a time-dependent part (62b) describ-
ing the superposition of propagating doublon-holon pairs. The
dynamics following the quench is driven by the propagating
pairs, whereas the steady state is solely determined by the
bound pairs, as the contribution of the propagating pairs phases
out at long times. At lowest order in J/U, the steady state
simply corresponds to the ground state at the final interaction
strength. Higher-order terms in the strong-coupling expansion
would describe the population in the excited states. At ¢t = 0,
the bound and propagating pairs interfere destructively and
one recovers the initial Fock state |72). Finally, we note that the
wave function (62) is equivalent to the one obtained within a
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time-dependent perturbation theory in the Appendix and can
be used to derive the perturbative results presented in Sec. V B.

The doublon and the holon forming a propagating pair
are produced initially on neighboring sites by a single
hopping event and then move in opposite directions. The two
quasiparticles are entangled, since the pair is described by a
superposition state:

(ch el — el el D).

This ensures a constant atomic density and leads to strong
bipartite entanglement as the pairs are stretched across the
system [11]. The momentum distribution of the quasiparticle
pairs is sine shaped, from which it follows that the quasi-
particles propagate as a wave packet. The maximal weight
of the momentum distribution is located at the wave vector
|k| = /2, where the dispersion relation (22b) is close to being
linear, and is characterized by the maximal group velocity
vmax = 0J/h. The wave-packet structure of the propagation
can also be made explicit by turning the sum over the momenta
in (62b) into a sum over the lattice sites:

Z Sin(k)eiﬁf COS(k)t/hc]L+Cik’, |}’_l>
k

l)d
= Z Ja®Jt/mct el 1. (63)

In the above expression, one immediately recognizes the
propagation velocity 6J/h in the argument of the Bessel
functions. However, we expect a large dispersion of the wave
packet due to the width of the momentum distribution. A
detailed description of the propagation of the quasiparticle
pairs is left for Sec. VIC.

The situation is somewhat different for weakly interacting
bosons. In the noninteracting solution (61), the correlation
functions result from the interference between free bosons
propagating with a relative velocity 4J /h. Unlike the auxiliary
particles in the strongly interacting case, the number of free
bosons per site is not limited, which leads to some qualitative
differences that we will discuss later.

B. Correlation signal in the density correlations

The equal-time density correlations C,(f) in the strongly
interacting limit exhibit a very peculiar feature for d > 2,
namely, the presence of a negative signal, a dip, propagating
to larger distances at longer times. This can be seen, for
example, in Fig. 4, where we display the time evolution
of these correlations for U/J = 18, as predicted by the
UF approximation and the DMRG simulation (which are in
remarkable agreement). This characteristic signal is already
present in the perturbative result and can be attributed to the
propagating quasiparticle pairs, illustrating the interest of this
picture.

The structure of the nearest-neighbor correlation is more
complicated. In the long-time limit and within the strong-
coupling expansion, the nearest-neighbor correlation reaches
the value corresponding to the ground state at the final
interaction strength. At short time, it exhibits oscillations
driven by the interaction strength U and corresponding to the
interaction of a holon (doublon) of the bound pair (62a) with a
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FIG. 4. (Color online) Dynamics of density correlations at dis-
tance d > 1 after a quench from the Fock state |) at infinite
interactions to a final interaction U/J = 18. The results for different
distances d are shifted for clarity by 0.005(d — 1). We display
the results obtained from the numerical evaluation of the UF
equations, from their strong-coupling expansion and from exact
DMRG simulations. The shaded blue profiles figure a Gaussian
fit of the correlation signal from the DMRG simulation, after the
high-frequency oscillations have been filtered out. The filled blue
circles mark the center of the fitted profile, i.e., the position of the
signal. The filled red circles mark the position of the correlation signal
obtained in the same way from the numerical evaluation of the UF
approximation (fit not shown). The Airy function that appears in the
analytical formulas derived from the UF approximation is plotted in
the inset.

doublon (holon) of a propagating pair (62b). In the first order
of the strong-coupling expansion (62), the bound pairs extend
only over a distance d = 1 but in the full numerical integration
they can spread over larger distances [cf. Fig. 2(c)], leading to
additional oscillations for d = 2. These oscillations are clearly
visible in numerical evaluations of the correlations within
the UF approximation, as well as in the DMRG simulations
(Fig. 4).

While the UF approximation is almost exact at short
distances, it overestimates the weak oscillations with period
h/U at larger distances. We found that these stem from
terms of order J*/U* dominating the doublon-doublon and
holon-holon correlations. These oscillations are also present
in the DMRG simulations, but with a much lower amplitude.
Interestingly, these terms cancel in the parity correlations
studied in [19], where the UF approximation is in even better
agreement with the exact simulations.
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FIG. 5. (Color online) Dynamics of density correlations after a
quench from the Fock state |7) at infinite interactions to a final
interaction U/J = 9. See Fig. 4 for more information.

For quenches to intermediate values of the interaction
strength, the dynamics of density correlations exhibits es-
sentially the same features as described above. This can
be seen in Fig. 5, where the dynamics following a quench
to U/J =9 is depicted. In particular, the characteristic dip
corresponding to the propagating quasiparticles is still present.
We note that the propagation of this correlation signal is still
remarkably well described by the UF approximation, even
though this model is close to breaking down at this interaction
strength. However, one sees that the strong-coupling expansion
significantly overestimates the amplitude of the correlations at
d = 1 and that the amplitude of the unphysical oscillations in
the numerical evaluation of the UF approximation increases.

In the weakly interacting regime, one could expect a
different behavior since the relevant quasiparticles are of
different nature. However, the main features that characterize
the dynamics of density correlations at strong and intermediate
interactions are remarkably preserved, as can be seen in Fig. 6.
In particular, a propagating dip can be identified in all cases.
The main difference between the noninteracting (61) and the
strongly interacting (55) cases is the lower velocity and very
slow decay of correlations at long times when U = 0. At
U/J = 2, this long tail is already strongly suppressed at short
distances, but is still visible at longer distances. For U/J = 4
(Fig. 6), one sees that the overall profile of the propagating
correlation signal is already very similar to that in the more
strongly interacting case (Figs. 4 and 5).
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FIG. 6. (Color online) Dynamics of density correlations after a
quench from a Fock state |71) at infinite interactions to weak final
interactions. The results for different distances d are shifted for clarity
by 0.25(d — 1). Unlike in Figs. 4 and 5, here the position of the
correlation signal of the DMRG results is identified with the position
of the absolute minimum and it is denoted by the circles in the
corresponding colors.

At low interaction strengths, one has to be careful when
using the DMRG simulations since the truncation of the
local Hilbert space to a finite number of states can intro-
duce significant errors. By comparing DMRG simulations to
the exact formula (61) obtained in the “worst” case U/J = 0,
we found that a maximal site occupancy Nyx = 6 represents
a fairly safe approximation, whose accuracy improves with the
distance for the times considered (see Fig. 6).

To summarize the analysis conducted in this section, we
observe that the dynamics of the density correlations is
dominated by the propagation of a negative signal (dip). For
strong interactions, this dip results from the propagation of the
quasiparticle pairs described in Sec. VI. In the next section
we will investigate in more detail the shape of that signal and
characterize its propagation velocity quantitatively.

C. Analysis of the signal propagation

We can get a lot of insight into the propagation of the signal
from the following approximation of the density correlations
at large distances (we recall that the lattice constant ay, is set
to 1):

a 2422k ?
c,® —<T> Ai*(— /d)'P(6J1/h — d)). (64)

In the above expression, derived from (55b), we made use of
the relation existing between the Airy function Ai(—z) and the
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high-order Bessel functions [63]:
Jad + zd'?) =2'Pd P AI(=2"z) + 0@d™").  (65)

The Airy function is plotted in the inset of Fig. 4. It exhibits
a peak located at zp ~ 1.02 and surrounded by an exponential
tail on the side z < zop and by an algebraically decaying
oscillating tail on the side z > zo.

Disregarding the monotonically and slowly varying prefac-
tor in Eq. (64), the profile of the Airy function alone allows
us to understand several features of the propagation of the
correlation signal. For example, it reveals the existence of
a well-defined propagation front, since the correlations are
exponentially suppressed for times ¢ < fyeak, With

Jtoeae 1 a\'”?
;k%6|:d+Zo<§) ] (66)

The signal in the density correlations corresponds to the peak
of the Airy function. Once this peak has passed, that is,
for t > tpeax, the correlations show an algebraic decay with
oscillations. From the definition of fp., one sees that two
terms contribute to the propagation of the correlation signal:
the first is simply proportional to the distance, corresponding
to a well-defined velocity, whereas the second is proportional
to d'/3. The linear contribution dominates at large distances,
leading to a light-cone-like spreading of the correlations. At
small distances, however, the dynamics deviates significantly
from the asymptotic light cone. This behavior can be accounted
for by defining an “instantaneous” propagation velocity:

Vd = [tpcak(d +1) - tpeak(d)]_l

Z _ _
- voo(l - 2703341 2/3) + 0d™). (67)

One sees immediately in the above equation that the asymp-
totic light cone is characterized by the velocity v, = 6J/h
and is reached algebraically at large distances, whereas the
propagation velocity can go down to approximately 4./ /h at
short distances.

A similar analysis can be carried out for the case U/J =
0. It turns out that the correlation dip is almost completely
described by a single term in the infinite sum (61). For even d,
for example, we obtain

Ca(t) = =27, /h)
= 2d7BAIN—dVP@It/h—d)/2).  (68)

The same expression for the instantaneous velocity (67)
therefore holds in the noninteracting case as well, but with
U0 = 4J /h, whichis the velocity of freely propagating bosons.
The behavior at U/J = 0 mostly differs from the strongly
interacting case once the correlation dip has passed (f > fpear):
further terms (61) beyond Eq. (68) then become important,
which causes correlations to decay very slowly (see Fig. 6).

The width and the height of the correlation dip can
also be derived from the expressions (64) and (68). For
both the interacting and the noninteracting cases, the width
increases proportionally to d'/3 while the height decreases
with d=*3J2/U? in the strongly interacting case and with
d=*3 for U/J = 0. We note that similar power laws have
been found for the quantum Ising model [23].

PHYSICAL REVIEW A 85, 053625 (2012)

In the following, we show that the approximate scal-
ing of the velocity found in the strongly interacting and
noninteracting limits holds for any interaction strength. We
first concentrate on large interaction strengths. Within the
UF approximation, we can evaluate the correlations up to
arbitrarily long times and make a rigorous scaling analysis
of the instantaneous propagation velocity. We determine the
position of the dip by means of a Gaussian fit after having
filtered out oscillations with a period shorter than /4 /U using
a low-pass filter. Figure 7(a) illustrates for a few interaction
strengths that the analytical scaling behavior |v; — v o< d ™
is accurately reproduced at sufficiently large distances d > 5.
Extracting the asymptotic velocities vy, and the exponents
o with a fit over distances 6 < d < 400, we obtain values
in very good agreement with the approximated analytical
predictions. For example, the exponent is found to be the same
for all interactions: & = 0.650 £ 0.002. The small difference
from the value o = 2/3 expected from the Airy functions
(67) is most probably due to the prefactor in (64), which
we neglected when deriving (67). The asymptotic velocities
match the ones that we expect from the quasiparticle dispersion
relation Eq. (25), as shown in Fig. 7(c). Close to the breakdown
of the UF approximation, the oscillation frequencies due to the
interaction and the finite bandwidth become similar and one
cannot easily filter out the first one anymore. The instantaneous
velocity v, therefore shows an oscillatory behavior even at
very large distances d < 50. Nevertheless, the scaling behavior
remains perfectly obeyed on average and in the long-distance
limit. In the noninteracting case, shown in Fig. 7(a), we extract
accurately the position of the correlation signal by simply
locating the first minimum. We again find the scaling exponent
o = 0.650 £ 0.002 and the extracted asymptotic velocity is
close to the expected value v, = 4J /I [cf. Fig. 7(c)].

Using DMRG simulations, we can calculate the dynamics
exactly for all interaction strengths, but we are restricted to
short time and length scales. We therefore fix the scaling
exponent to « = 0.650 in order to extract the asymptotic veloc-
ities. In Fig. 7(b) we show that the scaling |v; — vso| o< d =06
becomes accurate as the distance increases for both strong
(U/J > 8, extracted with a low-pass filter and Gaussian fit)
and weak (U/J < 4 extracted directly from the peak without
the low-pass filter) interactions. Despite the limited number of
data points available in the scaling region, we can determine
the asymptotic velocities with a reasonably small uncertainty.
The values that we obtain, gathered in Fig. 7(c), are in good
agreement with those predicted by the UF approximation. The
lack of data in the range 4 < U/J < 8 results from the mixing
of the time scales related to kinetic and interaction processes,
which prevents us from locating accurately the position of
the correlation signal. The asymptotic velocities in Fig. 7(c)
can be seen as a characterization of a crossover between a
regime of quasifree bosons (U/J < 4), with a renormalized
velocity and the strongly interacting regime described by two
flavors of fermions. This crossover is not directly related to the
ground-state phase diagram of the Bose-Hubbard model since
the propagation velocity reflects the dispersion in the center
of the Brillouin zone (at wave vectors k ~ £7), rather than
low-wavelength modes. As a consequence, v, is considerable
higher than the sound velocity in the superfluid regime [64,65]
and a linear propagation with vy, < 6J/h is found at strong

~
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FIG. 7. (Color online) (a) Instantaneous propagation velocity in the UF approximation or in the noninteracting case as a function of the
distance d (filled symbols). Light symbols represent DMRG data. Lines show the fits |1, — v | o< d . The data have been shifted vertically
for a better visibility. (b) Instantaneous propagation velocity obtained by DMRG simulation as a function of the distance d (filled symbols).
Lines show the fits |1; — v | o< d™* with fixed exponent = 0.65. (c) Asymptotic velocities 7., extracted from the finite-distance data versus
interaction strength using |v; — 7| o< d %, Error bars denote the 20 uncertainty of the fit that yields the asymptotic velocity.

interactions, even though at equilibrium the system would be
in the Mott-insulating phase.

As a final remark, we note that the dependency of the
propagation velocity on U/J in that system has been studied
before by Lauchli and Kollath [15], who considered the case
of a quench from a small interaction strength to a larger
one. Surprisingly, the instantaneous spreading velocity has
been found to exhibit a maximum at intermediate interaction
strength. A possible explanation for this effect could be
that bosonic atom number fluctuations present in the initial
superfluid state may lead to enhanced velocites as compared
to the quench from the Fock state. A quantitative comparison
between our predictions and this previous work would require
an extrapolation of the velocity to large distances, which is
difficult in the absence of an analytical model.

VII. CONCLUSIONS

In order to describe accurately the quench dynamics of the
one-dimensional Bose-Hubbard model in the Mott-insulating
regime, we have developed an analytical approach relying
on the fermionization of auxiliary bosons. Its predictions
regarding both the ground-state and the dynamical properties
are found in quantitative agreement with exact numerical
simulations for large and intermediate interaction strengths
U/J > 8. This constitutes a great improvement with respect
to the analytical models introduced previously.

Using this model, we are able to investigate the time
evolution of density correlations in the quenched system over
exceedingly long times. We observe a characteristic light-cone
dynamics, meaning that there exists a distance, linearly grow-
ing in time, beyond which correlations between distant sites are
exponentially suppressed. More precisely, correlations spread
as a wave packet along this light cone, forming a propagation
front whose position can be unambiguously identified. A
careful analysis of the velocity with which this front propagates
reveals a generic scaling behavior characterized by a universal
exponent and an asymptotic velocity dependent on the interac-
tion strength. The same behavior is found in the noninteracting

limit of freely propagating bosons, where an explicit solution is
available, as well as in the intermediate regime 0 < U/J < 8,
where we rely on exact numerical simulations. The asymptotic
velocity, which varies significantly between the weakly and the
strongly interacting regimes, is a useful quantity to characterize
abroad spectral range of the Hamiltonian as it does not depend
only on its low-lying modes.

Building upon this success, we envisage that the repre-
sentation of the Bose-Hubbard model in terms of fermionic
quasiparticles could shed additional light on the mechanism
for thermalization or serve as a tool to interpret the outcome
of spectroscopic measurements on laboratory systems, such as
modulation spectroscopy or Bragg spectroscopy for ultracold
gases in optical lattices.
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APPENDIX: PERTURBATION THEORY

In this appendix we develop a complementary perturbative
approach to recover the behavior in the strong-coupling limit
to first nonvanishing order in J/U. The situation we consider
is the quench from the Fock state | (0)) = |n) at filling 72 to a
large final interaction strength U/ J.

In all generality, the wave function after a sudden change
of parameters can be written in the eigenbasis |¢,) (with
corresponding eigenenergies E,,) of the final Hamiltonian as

W) = 3 e E G, [90) ).

n

(AL)

Usually the difficulty lies in determining the eigenstates |¢,)
and their corresponding energies E, in a many-body problem.
In this appendix we determine |¢,) and E, by perturbation
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theory in J/U in a system of length L with periodic boundary
conditions. Note that this is not a full perturbative expansion,
since we will not expand the exponential in the corresponding
power.

We consider the interaction term of the Bose-Hubbard
Hamiltonian as the unperturbed Hamiltonian and the kinetic
part as the perturbation. The eigenenergies of the unperturbed
Hamiltonian are multiples of the interaction strength U and
the corresponding states are Fock states. More precisely, the
ground state is the Fock state |77) with vanishing energy. The
lowest excited states are the states with a single particle-hole
excitation with energy U. These we denote by |¢(m,d))
with an occupation 7 for all the sites except for site m
with 7+ 1 atoms and site m +d with # — 1 atoms, i.e.,
|p(m,d)) = \/ﬁbmwb; |77). Using degenerate perturbation
theory (restricted to the same symmetry sector as the ini-
tial state) at first order in J/U, the ground-state energy
remains zero and the ground state of the final Hamiltonian is
given by

o) ~ |A) + —————

)J
D S 0m 1) + 1, — D)1

m=0
(A2)

The lowest band of excited states resulting from the single
particle-hole excitations is formed by

J2n(n+1)J

I6p) 1) ——F

npsinGrp/ L)) +J/U Y |fa)

(A3)

PHYSICAL REVIEW A 85, 053625 (2012)

with corresponding energies
E,~U—2Q2ii+ 1)J cos(mwp/L).

Here |¢2) (p=0,...,L —1) are the symmetric states that
diagonalize the kinetic part of the Hamiltonian given by

(A4)

L—1L-1
%) = TZ D> sin(rpd/L)g(m.d)).
d=1 m=0

Note that the index d only starts at 1 to avoid the double
counting of the Fock state. We employed the notation 7, =
[1 — (=1)7]. As we are interested in the time evolution of the
initial Fock state, we abbreviated unimportant terms as |¢,);
these are the states in addition to the Fock state that are directly
coupled via the kinetic term to the states |¢>2).

Using these eigenenergies and states to first order, we can
now write the time-evolving state |1/ (¢)) as

YINGTGE™S)
= D_lleen,1

[ (n) = In) + ) +1om, — 1)]

V2 + DJ
R

sinGep/Lye~ 0| 40).

(AS5)

This formula corresponds to the expression (62) which one
obtains in the unconstrained fermionic approach up to first
order. As discussed in the unconstrained fermionic approach,
this expression gives a lot of insight into the formation and
propagation of singly and doubly occupied sites and can be
used to compute all the observables that we are interested in.
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