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We study the tunneling dynamics in a time-periodically modulated two-mode Bose-Hubbard model using
Floquet theory. We consider situations where the system is in the self-trapping regime and either the tunneling
amplitude, the interaction strength, or the energy difference between the modes is modulated. In the former two
cases, the tunneling is enhanced in a wide range of modulation frequencies, while in the latter case the resonance
is narrow. We explain this difference with the help of Floquet analysis. If the modulation amplitude is weak, the
locations of the resonances can be found using the spectrum of the nonmodulated Hamiltonian. Furthermore,
we use Floquet analysis to explain the coherent destruction of tunneling (CDT) occurring in a large-amplitude
modulated system. Finally, we present two ways to create a NOON state (a superposition of N particles in mode
1 with zero particles in mode 2 and vice versa). One is based on a coherent oscillation caused by detuning from
a partial CDT. The other makes use of an adiabatic variation of the modulation frequency. This results in a
Landau-Zener type of transition between the ground state and a NOON-like state.
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I. INTRODUCTION

Ultracold atomic gases are novel systems with a high
degree of controllability, making them very useful in the
studies on quantum phenomena. The possibility to control
the parameters during experiments is essential, for example,
in quantum information processing (e.g., Refs. [1,2]) and
matter-wave interferometry (e.g., Refs. [3–5]). In this paper,
we discuss the dynamics of an ultracold bosonic gas trapped
in a time-periodically modulated potential. The dynamics
of periodically modulated quantum systems has attracted
both theoretical (e.g., Refs. [6–32]) and experimental (e.g.,
Refs. [33–41]) interest during recent years. It is known that
a modulated system has resonances at which the tunneling
is either suppressed or enhanced. In the neighborhood of a
resonance, the behavior of the system is very sensitive to the
modulation frequency.

The suppression of tunneling by modulating the energy
difference between the modes is known as the coherent
destruction of tunneling (CDT) [6–8]. CDT was discovered
in Ref. [6], where the motion of a charged particle in a
lattice under the influence of an oscillating electric field was
studied. It was shown that an initially localized particle remains
localized in a one-dimensional lattice if the amplitude and
frequency of the electric field are chosen suitably. In Ref. [7],
CDT was found to occur in systems consisting of a particle
subjected to a periodic force and trapped in a double-well
potential. Recently, the coherent destruction of tunneling has
been actively studied in the context of ultracold bosonic atoms
(e.g., Refs. [16,17,20,22,23,26,34,36,38–40]).

Unlike the CDT, which is typically observed under the con-
dition that the tunneling coupling is larger than or comparable
to the interaction energy, the enhancement of tunneling by
modulation can take place in a system where the interaction
energy dominates over the tunneling coupling. In the absence
of modulation, the large interaction energy suppresses tunnel-

ing for energetic reasons [42,43]. This leads to a very long
tunneling period (the time needed for N particles to tunnel
from one mode to another and back). However, by modulating
the tunneling matrix element, it is possible to enhance the
many-particle tunneling and thereby reduce the tunneling
period [28]. In this paper, we analyze the reasons behind the
enhanced tunneling with the help of a detailed Floquet analysis.
In order to make the analysis more complete, we consider also
systems where either the interaction strength or the energy
difference between the modes is modulated. We find that these
two methods provide an alternative way to enhance tunneling.
It is shown that the width of the resonance, that is, the range of
modulation frequencies corresponding to the enhanced tun-
neling, depends strongly on whether the tunneling matrix
element, the interaction strength, or the energy difference
between the two modes is modulated; the resonance is wider in
the former two cases. We explain this difference with the help
of Floquet theory and the eigenvalues of the nonmodulated
Hamiltonian.

We analyze also the coherent destruction of tunneling using
Floquet theory. It is known that CDT can be caused by
modulating either the energy difference between the modes or
the interaction strength. We study only the Floquet spectrum of
the former system because it has not received much attention
in the literature, unlike the Floquet spectrum of the interaction-
modulated system [22,26]. In addition to this, we present two
ways to generate NOON-like (Schrödinger’s-cat–like) states.
The first is based on the CDT induced by a large-amplitude
modulation of interaction strength, whereas the second makes
use of a small-amplitude modulation of the tunneling coupling.

This paper is organized as follows. In Sec. II, we define
the modulated Bose-Hubbard Hamiltonian. In Sec. III, we
give a short summary of the Floquet theory used in this
article. Section IV discusses in depth the results of the Floquet
analysis for systems in the self-trapping regime subjected
to a small-amplitude modulation. In Sec. V, the coherent
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destruction of tunneling is examined using Floquet theory.
It is also shown that NOON states can be created with the
help of partial CDT. In Sec. VI, a way to create NOON states
using adiabatic sweep across an avoided crossing is presented.
Finally, the conclusions are in Sec. VII.

II. TIME-PERIODICALLY MODULATED TWO-SITE
BOSE-HUBBARD HAMILTONIAN

We consider a system described by the two-mode Bose-
Hubbard Hamiltonian. For definiteness, we assume that this
model is realized physically by bosons trapped in a double-well
potential. We consider situations where either the tunneling
amplitude, the interaction strength, or the energy difference
between the wells is modulated periodically in time. This
system is described by the Hamiltonian

Ĥ (t) = −J (t)(ĉ†1ĉ2 + ĉ
†
2ĉ1) + U (t)

2
(ĉ†1ĉ

†
1ĉ1ĉ1 + ĉ

†
2ĉ

†
2ĉ2ĉ2)

+V (t)

2
(ĉ†1ĉ1 − ĉ

†
2ĉ2) (1)

= −2J (t)Ŝx + U (t)Ŝ2
z + V (t)Ŝz. (2)

Here J is the tunneling matrix element, U is the on-site
interaction, and V is the energy difference between the wells
(tilt). We have introduced the SU(2) generators defined as

Ŝx = 1

2
(ĉ†1ĉ2 + ĉ

†
2ĉ1), (3)

Ŝy = 1

2i
(ĉ†1ĉ2 − ĉ

†
2ĉ1), (4)

Ŝz = 1

2
(ĉ†1ĉ1 − ĉ

†
2ĉ2), (5)

where ĉi (ĉ†i ) annihilates (creates) an atom in mode i.
We define the time-dependent tunneling matrix element as

J (t) = J0[1 + AJ sin (ωt + φJ )], (6)

where J0 is the amplitude of the time-independent part and
AJ ∈ [0,1] gives the relative amplitude of the time-dependent
tunneling matrix element. The modulated tilt and interaction
strength are defined as

U (t) = U0 + U1 sin (ωt + φU ), (7)

V (t) = V0 + V1 sin (ωt + φV ), (8)

where U0,V0 (U1,V1) are the amplitudes of the static (time-
dependent) part of the interaction and the tilt, respectively.
In the above equations, ω is the modulation frequency and
φJ , φU , and φV are the phase offsets. In this paper, time is
measured in units of

T0 = π

J0
, (9)

which is the tunneling period in the absence of the interaction
(U0 = U1 = 0) and the tilt (V0 = V1 = 0). Here and in what
follows, we set h̄ = 1.

III. FLOQUET OPERATOR

If the Hamiltonian Ĥ is periodic in time, Floquet theory
provides a powerful tool to analyze the dynamics of the system.

In the following, we denote the modulation period of Ĥ by
Tω. In our case, the modulation is sinusoidal and hence Tω =
2π/ω. According to the Floquet theorem (see, e.g., Ref. [44]),
the time-evolution operator ÛĤ determined by the Hamiltonian
of Eq. (2) can be written as

ÛĤ (t) = M̂(t)e−itK̂ , (10)

where M̂ is a periodic matrix with minimum period Tω and
M̂(0) = Î and K̂ is a time-independent operator. We define the
Floquet operator F̂ as

F̂ = ÛĤ (Tω) (11)

= T
{

exp

[
−i

∫ Tω

0
Ĥ (t)dt

]}
, (12)

where T is the time-ordering operator. At times t = nTω,
where n is an integer, we get ÛĤ (nTω) = e−inTωK̂ = F̂ n.
The Floquet operator is a mapping between the state at
t = 0 and the state after one modulation period Tω = 2π/ω:
�(Tω) = F̂�(0). The columns of the Floquet operator F̂ can
be obtained by following the time evolution of the basis
states for one modulation period. Each time-evolved basis
state forms a column of the matrix F̂ . The Hilbert space
of a two-mode system containing N bosons is CN+1. The
basis of this Hilbert space can be chosen to be {|�N〉 ; �N =
−N, − N + 2, − N + 4, . . . ,N}, where |�N〉 is a state with
(N + �N )/2 particles in mode 1 and (N − �N )/2 particles
in mode 2. Any pure state of the system can be written as

ψ =
N∑

�N=−N

C�N |�N〉, (13)

where the amplitudes {C�N } are complex numbers. If N is
even (odd), �N takes only even (odd) values.

In order to characterize the eigenstates of the Floquet
operator, we define the parity operator P̂ as

P̂ |�N〉 = | − �N〉. (14)

It can alternatively be written as P̂ = (−i)NeiπŜx . The eigen-
values of P̂ are 1 and −1, corresponding to even and odd parity,
respectively. Because P̂ †ŜzP̂ = −Ŝz, the Hamiltonian, and
consequently the time-evolution operator, commutes with P̂ if
the tilt vanishes. Then the eigenstates of F̂ are also eigenstates
of P̂ and either C�N = C−�N or C�N = −C−�N holds for
the components of the eigenvectors of F̂ . In the former
case, the eigenstate has even parity and is said to be sym-
metric, while in the latter case the parity is odd and the
eigenstate is called antisymmetric. Furthermore, the absolute
values of the coefficients {C�N } of an eigenstate have maxima
at �N = ±k, where k � 0 is an integer. We denote such an
eigenstate by ψ

(±)
k , where + (−) indicates that the eigenvector

is symmetric (antisymmetric). If J0 � U0N and the signs of
the eigenvectors are defined appropriately, we get

ψ
(±)
N ≈ 1√

2
(|N〉 ± | − N〉), (15)

which is valid to zeroth order in J0/U0N . For nonzero V0

or V1, the Floquet eigenstates are neither exactly symmetric
nor antisymmetric because Ŝz is not invariant under the parity
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operator. However, since the time average of the Ŝz term is zero
(we assume that V0 = 0), the Floquet eigenstates are almost
symmetric or antisymmetric, provided V1 is small. We thus
use the notation ψ

(±)
i also in this case. Note that, in the case of

large-amplitude modulation of the tilt, the Floquet eigenstates
cannot be classified in this way.

The Floquet operator is a unitary operator, and therefore
the eigenvalue corresponding to the eigenvector ψ

(±)
i can be

written as eiφ
(±)
i . The eigenvalue equation becomes

F̂ψ
(±)
i = eiφ

(±)
i ψ

(±)
i . (16)

In this paper, we call φ
(±)
i ∈ [−π,π ) the phase of a Floquet

eigenvalue.
Assume that the initial state is |N〉 ≈ (ψ (+)

N + ψ
(−)
N )/

√
2.

At t = nTω (n ∈ N), the state reads

F̂ n|N〉 ≈ einφ
(+)
N√
2

(ψ (+)
N + ein[φ(−)

N −φ
(+)
N ]ψ

(−)
N ). (17)

If n|φ(−)
N − φ

(+)
N | ≈ π , we get F̂ n|N〉 ≈ | − N〉; that is, the

system has tunneled from |N〉 to | − N〉. In this paper, we
define the tunneling period as the time needed for the system
to tunnel from |N〉 to | − N〉 and back. In terms of the phases
of the Floquet eigenvalues, the tunneling period reads

T ≈ 2πTω

|φ(−)
N − φ

(+)
N |

. (18)

Increasing |φ(−)
N − φ

(+)
N | reduces the tunneling period and vice

versa. When φ
(+)
N = φ

(−)
N , the tunneling period diverges.

IV. TUNNELING PERIOD AND FLOQUET ANALYSIS
IN THE SELF-TRAPPING REGIME

In this section, we consider the tunneling of bosons in the
self-trapping regime characterized by U0N/2J0 � 1. Assume
that in the initial state all N particles are either in site 1
or site 2. The reduction of the interaction energy by single-
particle tunneling is of order ∼U0N . This reduction cannot be
compensated by the increase of the kinetic energy, which is
approximately given by ∼J0. As a consequence, single-particle
tunneling is suppressed (self-trapping), and all N particles stay
in the same well for a long time. In this situation, oscillations
between the states |N〉 and | − N〉 occur through higher-order
cotunneling [45]. In Ref. [28] it was found that the tunneling
period of the higher-order cotunneling can be drastically
reduced by modulating the tunneling matrix element J . As
we show here, a similar phenomenon can be seen when the tilt
is modulated (we set V0 = 0). In Figs. 1 and 2, we show the
tunneling period T for the modulated tunneling matrix element
and tilt, respectively. As an example, we have set N = 5 and
U0/J0 = 4 in the both cases. We see that the behavior of T as
a function of the modulation frequency ω depends strongly on
whether J or V is modulated. This difference can be explained
using Floquet analysis.

Before analyzing the system in detail, we first summarize
two key points. One is the parity of the operator whose
coefficient is modulated, and the other is the shift in the phases
of the Floquet eigenvalues due to an avoided crossing. The
parity of Ŝx is even and that of Ŝz is odd. Therefore, Ŝx couples
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FIG. 1. (Color online) Tunneling period T in the case of
modulated tunneling matrix element J for N = 5, U0/J0 = 4, and
AJ = 0.1 (and V0 = V1 = U1 = 0). We have set φJ = 0, but there are
no noticeable differences for different values of φJ . There is a drastic
reduction of T in a wide range around ω/J0 	 16. Very narrow
resonances in the region ω/J0 � 10 are not shown. The vertical red
dotted lines and arrows show the positions of the resonances evaluated
from Eq. (22) using the energy eigenvalues of the time-independent
Hamiltonian. This figure is adopted from Ref. [28].

Floquet eigenstates of the same parity, and Ŝz couples those of
the opposite parity. This means that in the case of modulated J

(V ), there is an avoided crossing between Floquet eigenstates
of the same (opposite) parity. The differences in the behavior
of the tunneling period can be attributed to the parities of
the states undergoing an avoided crossing. Below we show
that usually φ

(+)
i > φ

(−)
i (φ(−)

i > φ
(+)
i ) holds for odd (even) N .

However, this is not necessarily the case near avoided crossings
where the values of φ

(±)
i are shifted. These shifts lead to either

suppression or enhancement of the tunneling.
We have chosen N = 5 and U0/J0 = 4 in this section. The

results can, however, be straightforwardly generalized to any
value of N and J0/U0, as long as N > 1 and U0N/J0 � 1.
We remark that Figs. 1, 3(b), and the top panel of Fig. 4 are
taken from Ref. [28], but the detailed Floquet analysis of the
J modulation, as well as the entire analysis of the effects of
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FIG. 2. (Color online) Tunneling period T in the case of modu-
lated tilt for N = 5, U0/J0 = 4, and V1/J0 = 0.2 (and V0 = AJ =
U1 = 0). We have set φV = 0, but there are no noticeable differences
for different values of φV . The vertical red dotted lines and arrows
show the positions of the resonances evaluated from Eq. (22) using
the energy eigenvalues of the time-independent Hamiltonian.
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FIG. 3. (Color online) Results of the Floquet analysis for the case of Fig. 1, i.e., modulated hopping parameter J . Panel (a), which is the
same as Fig. 1 (apart from the range of the horizontal axis), shows the tunneling period T as a function of the modulation frequency ω. Panel
(b) shows the phases of the Floquet eigenvalues, φ|�N |, as a function of ω. Panel (c) shows the schematic behavior of the Floquet eigenvalues
near the crossing points in panel (b). Each resonance observed in panel (a) corresponds to one of the three types of crossings shown in panel (c).
In panels (a) and (b), crossings of types 1, 2, and 3 are labeled by the magenta solid, green dashed, and blue dotted curves, respectively.

the tilt and interaction modulation, has not been presented
elsewhere.

A. Time-independent Hamiltonian

If the modulation amplitude is small and the system is
not near an avoided crossing, the Floquet eigenstates and
eigenvalues turn out to be close to the ones determined by
the time-independent part of the Hamiltonian, given by

Ĥ0 = −2J0Ŝx + U0Ŝ
2
z . (19)

As a consequence, some important properties of the modulated
system, such as the positions of the resonances, can be
explained by analyzing the spectrum of Ĥ0.

We assume that U0N � J0 and V0 = 0. In order to compare
the time-evolution operator of the original time-dependent
modulated system with that determined by Hamiltonian (19),
we define the Floquet operator F̂0 corresponding to Ĥ0 as

F̂0 = e−iTωĤ0 , Tω = 2π

ω
. (20)

We denote the eigenvalues of the time-independent Hamilto-
nian by E

(±)
0;k , where we use the same indexing as in the case

of the eigenvectors of the Floquet operator F̂ . The phases of
the Floquet eigenvalues are given by

φ
(±)
0;k = −E

(±)
0;k Tω mod 2π. (21)

We find that E
(+)
0;i < E

(−)
0;i for odd N and E

(+)
0;i > E

(−)
0;i for even

N . Because of the minus sign in Eq. (21), the opposite holds
for the phases of the Floquet eigenvalues φ

(±)
0;k . The situation

is similar in the presence of a small-amplitude modulation,
and thus, normally, φ

(+)
i > φ

(−)
i (φ(−)

i > φ
(+)
i ) for odd (even)

N . Now E0;k > E0;l if k > l � 0. Using this and the equation
∂ωφ

(±)
0;k = E

(±)
0;k 2π/ω2, we see that φ(±)

0;k , and therefore also φ
(±)
k ,

increases faster as a function of ω the larger k is. This means
that if k > l, φk approaches φl from below as ω increases [see
Fig. 3(b) for an example]. The phases {φ(±)

k } cross repeatedly
as ω increases. A crossing occurs when ω satisfies

nω ≈ |E0;k − E0;l|, (22)

with n = 1,2,3, . . . The last crossing between φk and φl is at
ω ≈ |Ek − El|. In the limit of ω → ∞, the phases of all the
Floquet eigenvalues approach zero from the negative side.

In the specific case N = 5 and U0/J0 = 4, corresponding
to Figs. 1 and 2, the crossing points between φ5 and the
other phases are at ω/J0 = 28.01 (crossing with φ

(+)
1 ), 22.63

(φ(−)
1 ), 15.93 (φ(+)

3 ), and 15.31 (φ(−)
3 ). These are obtained from

Eq. (22) with n = 1. Note that E
(+)
5 and E

(−)
5 , and thus φ

(+)
5

and φ
(−)
5 , are almost identical.

The crossing points corresponding to n = 1 and 2 in the
region ω/J0 > 10 are shown by the vertical red dotted lines
and arrows in Figs. 1 and 2. We see that the positions of all

053624-4



FLOQUET ANALYSIS OF THE MODULATED TWO-MODE . . . PHYSICAL REVIEW A 85, 053624 (2012)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 13  14  15  16  17  18

T
 /

 T
0

ω / J 0

φ3
(+)

φ3
(−)

φ5
(−)φ5

(+)

φ3
(+)

φ3
(−)

φ5
(−)φ5

(+)

φ3
(−)

φ5
(+)

φ5
(−)

φ3
(+)

φ5
(+)

φ5
(−)

Type 1’

FIG. 4. (Color online) The top panel (taken from Ref. [28])
shows the tunneling period T in the case of modulated tunneling
matrix element J for various values of the modulation amplitude.
The amplitudes used are AJ = 0.5 (red dotted line), 0.1 (black solid
line), 0.05 (green dashed line), and 0.01 (blue dashed-dotted line).
The other parameters are the same as in Figs. 1 and 3: N = 5 and
U0/J0 = 4 (and V0 = V1 = 0). The tunneling period does not depend
on φJ noticeably, and here we have set φJ = 0 for definiteness. The
bottom panel shows the schematic behavior of the phases of the
Floquet eigenvalues near the crossing between φ

(±)
5 and φ

(±)
3 for

small values of AJ (corresponding to, e.g., AJ = 0.01 in the top
panel) compared to the type 1 case shown in Fig. 3(c). We call this a
type 1′ crossing.

the resonances shown in Figs. 1 and 2 are well explained by
the energy eigenvalues of the time-independent Hamiltonian.
Based on this fact, we can say that the positions of the crossings
are the same irrespective of the modulated variable.

B. Modulated J

Next we consider the modulation of the tunneling matrix
element; see Figs. 1 and 3. The value 〈ψi |Ŝx |ψj 〉 can be
nonzero only if the Floquet eigenstates ψi and ψj have
the same parity. Consequently, there is an avoided crossing
between eigenstates with the same parity.

In Fig. 3(b), we show the phases of the Floquet eigenvalues
as a function of ω/J0 for the parameters used in Fig. 1 [and
Fig. 3(a)]. From Fig. 3 we see that a large change of T

occurs when φ
(±)
5 crosses the other φ

(±)
|�N |’s [circles and ellipses

in Figs. 3(a) and 3(b)]. The behavior of the phases of the
Floquet eigenvalues near the crossings is schematically shown
in Fig. 3(c). In an N -particle system, there are N − 2 different
types of crossings between φ

(±)
|�N |=N and other φ

(±)
i ’s [46].

Because now N = 5, we have three types of crossings; each

resonance corresponds to one of these. In the following, we
analyze in detail each of these three crossing types.

1. Type 1

A crossing between φ
(±)
5 and φ

(±)
3 leads to a reduction of

T in a wide range of ω around ω/J0 	 16. This crossing is
indicated in Figs. 3(a) and 3(b) by the solid magenta circle. The
detailed structure of the crossing is shown schematically in the
top figure in Fig. 3(c). Since φ

(+)
3 and φ

(−)
3 are almost equal,

the avoided crossings between φ
(−)
3 and φ

(−)
5 and between φ

(+)
3

and φ
(+)
5 occur almost simultaneously [the red solid circles in

Fig. 3(c)]. Because φ
(+)
i > φ

(−)
i for odd N outside the crossing

region (see Sec. IV A) and Ŝx couples Floquet eigenstates with
the same parity, the first avoided crossing occurs between φ

(−)
3

and φ
(−)
5 [the left red solid circle] as the modulation frequency

increases. Due to the repulsion between these two levels, the
splitting between φ

(±)
5 is increased near the avoided crossing

and thus the tunneling period is reduced. The second avoided
crossing takes place between φ

(+)
3 and φ

(+)
5 [the right red solid

circle]. Note that, after the first avoided crossing, the states
ψ

(−)
3 and ψ

(−)
5 have been interchanged [between the red solid

circles] and the energy splitting between φ
(±)
5 remains large

until the second avoided crossing at which ψ
(+)
3 and ψ

(+)
5 are

interchanged. These successive avoided crossings lead to a
reduction of the tunneling period in a wide range of ω/J0.

2. Type 2

Because of the large quasienergy splitting between φ
(+)
1 and

φ
(−)
1 , the points where φ

(±)
5 crosses φ

(+)
1 and φ

(−)
1 are far apart.

We call a crossing between φ
(±)
5 and φ

(−)
1 a type 2 crossing and

that between φ
(±)
5 and φ

(+)
1 a type 3 crossing. With increasing

ω, a type 2 crossing first yields a reduction and then an
enhancement of the tunneling period. We show the schematic
structure of a type 2 crossing in the middle figure in Fig. 3(c).
The resonances around ω/J0 	 11 and ω/J0 	 23, indicated
by the green dashed curves in Figs. 3(a) and 3(b), correspond
to type 2 crossings.

Suppose that the crossing is approached from the small
ω/J0 side. Far from the avoided crossing φ

(+)
5 > φ

(−)
5 , as

explained in Sec. IV A. Since Ŝx couples Floquet eigenstates
with the same parity, φ

(−)
1 undergoes an avoided crossing with

φ
(−)
5 (the large red solid circle). Near the avoided crossing,

the energy splitting between φ
(±)
5 is enhanced, which leads to

the reduction of the tunneling period. Just after the avoided
crossing (around the vertical dashed line), the states ψ

(−)
1

and ψ
(−)
5 are interchanged and, unlike in the usual situation,

φ
(−)
5 > φ

(+)
5 . Since φ

(+)
5 is larger than φ

(−)
5 far from the avoided

crossing also on the large ω/J0 side, φ
(+)
5 and φ

(−)
5 cross each

other (the small blue solid circle), which yields a divergence
of the tunneling period.

3. Type 3

As opposed to a type 2 crossing, a type 3 crossing (crossings
between φ

(±)
5 and φ

(+)
1 ) gives first an enhancement and then a

reduction of the tunneling period. The resonances at ω/J0 	
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GENTARO WATANABE AND HARRI MÄKELÄ PHYSICAL REVIEW A 85, 053624 (2012)

14 and ω/J0 	 28, which are indicated by the blue dotted
ellipses and circles in Figs. 3(a) and 3(b), correspond to type 3
crossings. A detailed schematic structure of a type 3 crossing
is shown in the bottom figure in Fig. 3(c). Suppose again that
we approach the crossing from the small ω/J0 side. In this
case, we have an avoided crossing between φ

(+)
1 and φ

(+)
5 . The

phase φ
(+)
5 , which is located above φ

(−)
5 far from the crossing,

is pushed downward due to the avoided crossing with φ
(+)
1 ,

and thus φ
(+)
5 and φ

(−)
5 cross each other (the small blue solid

circle). This leads to the divergence of the tunneling period.
After this, there is an avoided crossing between φ

(+)
1 and φ

(+)
5

(the large red solid circle), leading to an enhancement of the
quasienergy splitting between φ

(±)
5 . This yields a reduction

in the tunneling period. After the avoided crossing, the states
ψ

(±)
1 and ψ

(±)
5 are interchanged.

4. Type 1′: Small AJ

In the top panel of Fig. 4, we show the tunneling period
T for various values of the modulation amplitude AJ . With
decreasing AJ , the resonance around ω/J0 	 16 becomes
narrower and finally separates into two resonances (see the
case AJ = 0.01 shown by the blue dashed-dotted line). The
schematic behavior of the phases of the Floquet eigenvalues
near the crossing is shown in the bottom panel of Fig. 4. We
call this a type 1′ crossing. The major difference between type
1′ and type 1 crossings is the existence of two points where
φ

(±)
5 cross each other. These are indicated by the small blue

solid circles, and they are located between the two avoided
crossings (the large red solid circles). One can also view a type
1′ crossing as a combination of type 2 and type 3 crossings.

When AJ is small, the coupling between the two states
that undergo an avoided crossing is small. Thus the difference
|φ(+)

5 − φ
(−)
5 | remains very small even near the avoided

crossing. Therefore, unlike in a type 1 crossing, the inverted
configuration of φ

(±)
5 (i.e., the situation φ

(−)
5 > φ

(+)
5 ) cannot

be sustained throughout the region between the two avoided
crossings. This leads to the appearance of two crossing
points, indicating a diverging tunneling period. In Ref. [28]
it has been shown that the divergences are present if AJ �
N−1(J0/U0)N−3(N − 1)(N − 2)/(N − 3)!.

C. Modulated V

As can be seen from Figs. 1 and 2, the tunneling period
behaves differently when V is modulated. In Fig. 2, a
noticeable change in the tunneling period T can be seen
around ω/J0 	 16. There are also small, narrow resonances
at ω/J0 	 22.5 and ω/J0 	 28 [47]. Unlike in the case of
modulated J , the resonance at ω/J0 	 16 is not a wide
and smooth reduction of T for any value of the modulation
amplitude V1.

As in the case of modulated J , the resonance around
ω/J0 	 16 is caused by a crossing between φ

(±)
5 and φ

(±)
3 .

However, unlike Ŝx , the operator Ŝz has odd parity, and it thus
couples Floquet eigenstates of opposite parity. In Fig. 5, we
show the schematic behavior of the Floquet eigenstates near
ω/J0 	 16. Suppose that the crossing is approached from the
small ω/J0 side. As ω/J0 increases, the states ψ

(−)
3 and ψ

(+)
5

φ3
(+)

φ3
(−)

φ5
(−)φ5

(+)

φ3
(+)

φ3
(−)

φ5
(−)

φ3
(−)

φ5
(+)

φ5
(−)

φ3
(+)

φ5
(+)

φ5
(−)

φ5
(+)

FIG. 5. (Color online) Schematic behavior of the phases of the
Floquet eigenvalues near the resonance around ω/J0 	 16 in the case
of modulated V shown in Fig. 2.

undergo an avoided crossing, and φ
(+)
5 is pushed downward.

Far from the avoided crossing the relation φ
(+)
i > φ

(−)
i holds.

Because of this and the fact that φ
(+)
5 is pushed downward, the

phases φ
(+)
5 and φ

(−)
5 cross (the left small blue circle) before

the avoided crossing (the left large red circle). After the first
avoided crossing, the states ψ

(−)
3 and ψ

(+)
5 are interchanged.

Next, φ
(+)
3 and φ

(−)
5 undergo an avoided crossing (the right

large red circle), and the corresponding states are interchanged.
Because now φ

(−)
5 > φ

(+)
5 , these phases cross after the second

avoided crossing (the right small blue circle), so that φ
(+)
5 >

φ
(−)
5 far away from the crossing. The two crossing points and

the two avoided crossings correspond to the two divergences
and the two reductions of the tunneling period, respectively.
These are shown in Fig. 2 near ω/J0 	 16. Because in the
present case the avoided crossings occur between Floquet
eigenstates of opposite parity, the phases φ

(±)
5 necessarily

cross each other outside the region of the successive avoided
crossings. For this reason, a smooth reduction of T in a wide
region of the modulation frequency ω cannot be achieved by
modulating the tilt. This is one of the major findings of this
paper.

We note that all the other resonances are also much
narrower than in the case of modulated J . This is because
the operator Ŝz, which is related to the tilt, does not contribute
to the single-particle tunneling, unlike Ŝx . The range of ω

characterizing the width of the resonance is comparable to
the quasienergy separation at the avoided crossing. This is
approximately proportional to |〈ψ (±)

5 |Ŝx |ψ (∓)
i �=5〉|2 in the case

of J modulation and to |〈ψ (±)
5 |Ŝz|ψ (±)

i �=5〉|2 in the case of V

modulation. The latter is smaller than the former by a factor
∼(J0/U0)2. This will be discussed in more detail in Sec. VI.

D. Modulated U

Finally, we consider the case in which the on-site interaction
strength U is modulated weakly (U1/U0 � 1). The Hamilto-
nian in this case is Ĥ = −2J0Ŝx + U (t)Ŝ2

z , with U (t) given
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FIG. 6. (Color online) Tunneling period T in the case of U

modulation (red solid line). For comparison, the tunneling period
corresponding to J modulation is also shown (blue dashed line). Here
N = 5, U0/J0 = 4, and V0 = V1 = 0. In the case of J modulation
AJ = 0.1 and U1 = 0, while in the case of U modulation AJ = 0 and
U1/J0 = 0.4.

by Eq. (7). Since this Hamiltonian can be rewritten as

Ĥ (t) = A(t)
[ − 2Jeff(t)Ŝx + U0Ŝ

2
z

]
, (23)

with A(t) = 1 + (U1/U0) sin (ωt + φU ) and

Jeff(t) 	 J0

[
1 + U1

U0
sin (ωt + φU + π )

]
, (24)

we can expect that the dynamics can be reproduced by
modulating J with the amplitude AJ = U1/U0 and phase
φJ = φU + π instead of modulating U .

This observation is confirmed by the result shown in Fig. 6,
where we compare the tunneling period T as a function of
ω in the cases of modulated J and modulated U . In this
example N = 5 and U0/J0 = 4. The result for the modulated
J is taken from Fig. 1 (AJ = 0.1). By setting U1 = AJ U0,
i.e., U1/J0 = AJ U0/J0 = 0.4 in the present case, these two
results almost coincide with each other. Note that since T

does not noticeably depend on the phase of the modulation,
U1 = AJ U0 is a sufficient condition for the behaviors of the
tunneling periods to coincide.

An analysis of the phases of the Floquet eigenvalues in the
case of the U modulation shows that the schematic behavior of
these phases around each resonance is the same as in the case
of the J modulation shown in Fig. 3(c). This can be understood
by noting that Ŝx and Ŝ2

z have the same parity.

V. COHERENT DESTRUCTION OF TUNNELING
AND THE FLOQUET SPECTRUM

In this section, we first study a system characterized by
a weak interaction and a large-amplitude tilt modulation,
concentrating on the properties of the Floquet spectrum. After
this we examine the effects of a large-amplitude modulation
of the interaction. The Floquet spectrum of this system has
been analyzed elsewhere (see Refs. [22,26]) and will not
be discussed here. Instead, we propose a way to create
NOON states using selective tunneling originating from the
modulation of the interaction strength.

A. Modulated V

Next, we consider a case where the interaction is weak,
UN/J0 � 1, and the amplitude of the modulation of the tilt
is large, V1/J0 � 1. We assume that the tunneling matrix
element J and the interaction strength U are time independent,
that is, AJ = 0 and U1 = 0. Furthermore, we set V0 = 0. In this
case, it is well known that the effect of the modulation of the tilt
can be approximately described by a renormalized tunneling
term. In more detail, the original tunneling term T̂ ≡ −2J Ŝx

is replaced by an effective one [6,8,16,17,20,23,30]:

T̂eff = −2J0J0

(
V1

ω

) {
cos

[
V1

ω
cos φV

]
Ŝx

− sin

[
V1

ω
cos φV

]
Ŝy

}
, (25)

where J0 is the zeroth-order Bessel function (see Appendix A
for the derivation). Coherent destruction of tunneling takes
place when V1/ω is equal to one of the zeros of J0. In the
rest of this section, we discuss CDT in terms of the Floquet
eigenvalues. This discussion holds for any N � 1.

In Fig. 7, we show the tunneling period T as a function of the
modulation frequency ω in the regime of weak interaction and
large-amplitude modulation. In this calculation, we have set
N = 5, U0/J0 = 0.1, V0 = 0, V1/J0 = 10, and φV = 0, and
in the initial state all particles are in site 1. The first five zeros
of J0(V1/ω) are at V1/ω = 2.40, 5.52, 8.65, 11.79, and 14.93:
they correspond to ω/J0 = 4.16, 1.81, 1.16, 0.848, and 0.670,
respectively. These frequencies are shown by the vertical red
dotted lines in Fig. 7. There is good agreement between these
dotted lines and the actual positions of the peaks of T .

In Fig. 8, we plot the phases of the Floquet eigenvalues
for the parameters used in Fig. 7. When the CDT occurs, the
phases gather in pairs, the phases in each pair being almost
equal, and all the pairs gather in a narrow region (red arrows
in Fig. 8). This behavior can be understood by noting that
the Hamiltonian is effectively 	U0Ŝ

2
z at the point where CDT

occurs, and thus �N becomes a good quantum number, with
a twofold degeneracy with respect to ±�N .

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

T
/ T

0

ω / J0

FIG. 7. (Color online) Tunneling period in the weak interaction
regime with large-amplitude modulation of the tilt. The parameters
are N = 5, U0/J0 = 0.1, V0 = 0, and V1/J0 = 10 (and AJ = U1 =
0). We have set φV = 0 in this calculation, but the behavior of T does
not depend noticeably on φV . The vertical red dotted lines correspond
to the values of ω/J0 which give J0(V1/ω) = 0.
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FIG. 8. (Color online) Phases of the Floquet eigenvalues in the
case of Fig. 7. The parameters are N = 5, U0/J0 = 0.1, V0 = 0,
and V1/J0 = 10 (and AJ = U1 = 0). In this calculation we have set
φV = 0, but the phases of the Floquet eigenvalues do not depend on
φV . The vertical red dotted lines correspond to the values of ω/J0

which give J0(V1/ω) = 0. The red arrows show the actual positions
of the peaks of T (see Fig. 7).

Finally, we discuss the difference between even and odd
N cases. For even N , the number of the Floquet eigenvalues
is N + 1, which is odd. Therefore, when CDT occurs, the
Floquet eigenvalues are grouped into one trio and (N − 2)/2
pairs [cf. (N + 1)/2 pairs for odd N ]. A key point is that, for
even N , there is a Fock state |�N = 0〉, which does not have
a degenerate pair, unlike the other Fock states. In this case, the
Floquet eigenstates near the value of ω at which CDT occurs
can be classified into three types: (1) one Floquet eigenstate
that has maximum amplitude at �N = 0 component, (2) N/2
Floquet eigenstates that do not have maximum amplitude at the
�N = 0 component but that always have a nonzero �N = 0
component, and (3) N/2 Floquet eigenstates that do not have
maximum amplitude at the �N = 0 component and where
this component becomes zero when CDT occurs. The trio
consists of all the three types, and the (N − 2)/2 pairs consist
of the second and third types. We note that, for even N , the
degeneracies of the trio and of all the pairs are incomplete
provided U0 �= 0 [48], while all the pairwise degeneracies are
complete for odd N . Consequently, CDT is more complete for
odd N than even N .

B. Modulated U

Due to the nonlinear dependence of the interaction on
�N , the CDT caused by a large-amplitude modulation of the
interaction strength (U1 � J0, U0) is state dependent [26].
Here we assume AJ = V = 0 for simplicity. In this case, a
condition for partial CDT between the states |�N = m〉 and
|�N = m − 2〉 (m is a positive integer) is

J0

[
U1

ω
(m − 1)

]
= 0; (26)

see Appendix B for the derivation.
Unlike in the case of modulated V shown in Fig. 8, only

the Floquet eigenstates relevant to partial CDT show the
degeneracy in the phases of the Floquet eigenvalues (see, e.g.,
Fig. 1 of Ref. [26]). For odd N , each partial CDT is associated
with a perfect degeneracy of the phases of the Floquet

(c)
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t / T0
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FIG. 9. Time evolution of the normalized population imbalance
〈�N〉/N and its variance σ�N/N ≡ N−1

√
〈�N 2〉 − 〈�N〉2 under

large-amplitude modulation of U . Here N = 21 [panels (a) and (b)]
and N = 51 [panels (c) and (d)], and the initial state is |�N = N〉.
In the case N = 21 we have set U1/J0 = 10 and ω/J0 = 83.85,
and in the case N = 51 we have set U1/J0 = 4 and ω/J0 = 83.4.
Other parameters are U0 = J1 = V0 = V1 = 0. A coherent oscillation
between |N〉 and | − N〉 is realized by slightly detuning from a partial
CDT between Floquet eigenstates ψ

(±)
N .

eigenvalues while, for even N , some degeneracies (but not all)
are incomplete provided U0 �= 0. As in the case of modulated
V , these incomplete degeneracies are caused by the existence
of the Fock state |�N = 0〉. Consequently, partial CDT is gen-
erally more complete for odd N than for even N . The Floquet
spectrum in the case of large-amplitude modulation of U and
weak interaction has been studied in depth in Refs. [22,26].
We refer to these references for further discussion.

Finally, we point out that it is possible to create mesoscopic
Schrödinger’s-cat–like states [NOON-like states [49], i.e.,
states proportional to (|N〉 + eiθ | − N〉), where θ is a phase]
using the state-dependent CDT. In this scheme, we assume
that U0N/J0 � 1 and choose |N〉 as the initial state. We
modulate U at a frequency ω that corresponds to a partial CDT
between |N〉 and |N − 2〉, that is, J0[(U1/ω)(N − 1)] = 0.
At this frequency the phases of the Floquet eigenstates ψ

(±)
N ,

which are very close to NOON states, become degenerate
[50]. By detuning from this partial CDT, we have a coherent
oscillation (with period T ) between ψ

(+)
N and ψ

(−)
N . As a

result, the initial state |N〉 evolves into a NOON-like state
at t = T (2n − 1)/4, with n = 1,2,3, . . . With increasing the
absolute value of the detuning, the period T decreases but
the amplitudes of the components other than | ± N〉 increase,
so that the oscillation between the NOON states is disturbed.
Therefore, ω (more precisely, U1/ω) should be optimized.
In Fig. 9, we show the time evolution of the normalized
population imbalance 〈�N〉/N and its variance σ�N/N ≡
N−1

√
〈�N2〉 − 〈�N〉2 for N = 21 and N = 51 as examples.

Here 〈�N〉 ≡ 〈ψ |�N̂ |ψ〉 and 〈�N2〉 ≡ 〈ψ |(�N̂ )2|ψ〉 with
�N̂ ≡ ĉ

†
1ĉ1 − ĉ

†
2ĉ2. These are optimized cases with the am-

plitude of the wiggles in the oscillation of 〈�N〉/N being
� 0.05. When 〈�N〉 = 0, σ�N/N is almost equal to 1, which
is the largest possible value; this is a unique property of NOON
states. Note that the oscillation periods are comparable in the
two cases: T/T0 = 211.3 and T/T0 = 367.4 for N = 21 and
N = 51, respectively. This shows that an advantage of the
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present scheme is that the optimized T does not increase
exponentially with N unlike the tunneling period of the
higher-order cotunneling in the self-trapping regime. This may
be understood by the fact that the static part of the interaction
strength U0 is very small (U0N/J0 � 1). A disadvantage is
that we need to know the number of particles exactly and to
fine-tune U1/ω. This scheme can be used regardless of the
value of N if U0N/J0 � 1.

VI. CREATING A NOON STATE BY
AN ADIABATIC SWEEP

In this section we propose another scheme to create
NOON-like states. This scheme uses an adiabatic sweep of
the modulation frequency. It enables us to obtain NOON-like
states with N � 10 particles starting from the ground state ψg

of the time-independent Hamiltonian Ĥ0. The basic idea is
to create an avoided crossing between the Floquet eigenstate
corresponding to ψg and the one corresponding to the NOON-
like eigenstate ψh by time-periodic modulation, which changes
the geometry of the (quasi)energy space to be periodic. Here,
we modulate the hopping parameter J and set the tilt V = 0.
Since the phase φJ of the modulation does not affect the result,
we choose φJ = 0 for definiteness. The time-independent
part Ĥ0 of the Hamiltonian Ĥ (t) = Ĥ0 + ĤTω

(t) is given by
Eq. (19), while the time-dependent part ĤTω

(t) is

ĤTω
(t) = −2J0AJ sin ωt Ŝx. (27)

For even N , the crossing used in the creation of the NOON
state is the one between ψ

(+)
N and ψ

(+)
0 . For odd N , it is the one

between ψ
(+)
N and ψ

(+)
1 . We consider the regime U0N/J0 � 1,

where ψ
(+)
N is a NOON-like state. The ground state ψg of

Ĥ0 corresponds to ψ
(+)
0 (even N ) or ψ

(+)
1 (odd N ), and the

eigenvalue of Ĥ0 corresponding to ψg is denoted by Eg .
Similarly, the NOON-like eigenstate ψh of Ĥ0 corresponds to
ψ

(+)
N . State ψh has the highest energy among symmetric eigen-

states of Ĥ0, and its eigenenergy is denoted by Eh. Because
Ĥ0 ∼ U0N

2 � J0N ∼ ĤTω
, the eigenstates of Ĥ0 are almost

equal to the Floquet eigenstates except near the crossing points.
Therefore, |〈ψg|ψ (+)

0 〉|2 	 1 for even N , |〈ψg|ψ (+)
1 〉|2 	 1 for

odd N , and |〈ψh|ψ (+)
N 〉|2 	 1. As discussed in Sec. IV A, when

ω is decreased from a sufficiently large value, the first crossing
occurs between φ

(+)
N and φ

(+)
0 for even N and between φ

(+)
N and

φ
(+)
1 for odd N [51]. Therefore, in principle, this scheme can be

used without knowing precisely the total number of particles.
The avoided crossing between the phases φ

(+)
N and φ

(+)
0 or

φ
(+)
1 is approximately at ωres = Eh − Eg . In the N = 5 case

discussed earlier, this crossing corresponds to the rightmost
circle in Fig. 3(b).

Let us take ψg as the initial state. If we sweep ω

adiabatically across the avoided crossing, ψg undergoes an
almost perfect transition to ψh. We consider a linear sweep of
the form

ω(t) = ωres − αt, (28)

where ωres is the location of the crossing and α is the sweep
rate. The initial and final times of the sweep are denoted by ti
and tf , respectively.
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FIG. 10. (Color online) Probabilities pg(t) ≡ |〈ψg|�(t)〉|2 [blue
(dark gray) lines], ph(t) ≡ |〈ψh|�(t)〉|2 [red (medium gray) lines],
and pg + ph [green (light gray) lines] as a function of time for two
different values of the sweep rate α. Here N = 5, U0/J0 = 4, and
AJ = 0.5 (and V0 = V1 = U1 = 0). The dotted lines correspond to
the analytical prediction obtained using Eq. (30).

In the following calculations, we set N = 5 and U0/J0 = 4.
The avoided crossing is at ω/J0 	 28. In Fig. 10, we show the
time evolution of the probability pg(t) ≡ |〈ψg|�(t)〉|2 [blue
(dark gray) lines] at which the system stays in the initial state
ψg and the probability ph(t) ≡ |〈ψh|�(t)〉|2 [red (medium
gray) lines] at which the system undergoes a transition to
the target state ψh. Note that pg + ph shown by the green
(light gray) lines in Fig. 10 is very close to unity throughout
the calculations (the deviation is within 0.1%), and the system
is, to a very good approximation, restricted to the subspace
spanned by the two states. Thus the crossing can be described
by the Landau-Zener (LZ) model [52–55]. We denote the
modulation period at the crossing point by Tres ≡ 2π/ωres. The
difference between the phases of the Floquet eigenvalues at
ω(t) is �φ = (φ(+)

N − φ
(+)
0,1 ) 	 −(Eh − Eg)(Tω − Tres). Here,

we shift the phase difference so that the crossing at ω 	 ωres is
passed at t = 0, in accordance with the standard expression
of the LZ Hamiltonian. For the linear sweep of Eq. (28),
we get Tω(t) = 2π/ω(t) 	 (2π/ωres)(1 + αt/ωres). Here we
assume that αt � ωres. We obtain the quasienergy separation
�E corresponding to �φ near the crossing as

�E = �φ

Tres
	 −α t, (29)
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FIG. 11. (Color online) Asymptotic value pg of the transition
probability as a function of (a) the inverse sweep rate 1/α and (b)
the modulation amplitude AJ for N = 5 and U0/J0 = 4 (and V0 =
V1 = U1 = 0). We set AJ = 0.5 in (a) and αT 2

0 /π 2 = 0.005 in (b).
The circles show the numerical results, and the solid lines show the
semianalytic results obtained from the Landau-Zener formula (30).
The initial time ti of the time evolution is chosen such that ω(ti)/J0 =
29 in Eq. (28).

where we have approximated ωres ≈ Eh − Eg . The diagonal
matrix elements Hh and Hg of the LZ Hamiltonian are thus
Hh,g = ±�E/2, where the upper sign corresponds to Hh

and the lower one corresponds to Hg . We found that the
off-diagonal elements Hhg and Hgh = H ∗

hg of the effective
Hamiltonian are, to a good approximation, given by Hhg =
−J0AJ 〈ψh|Ŝx |ψg〉/

√
2. Consequently, the asymptotic value

pg of the transition probability pg(t), pg ≡ limt→∞ pg(t),
is [53]

pg = exp
[
−2π

|Hhg |2
|∂t (Hh−Hg )|

]

= exp
[
−πJ 2

0 A2
J |〈ψh|Ŝx |ψg〉|2

α

]
. (30)

In Fig. 11, we show the probability pg as a function of
the inverse sweep rate 1/α [Fig. 11(a)] and the modulation
amplitude AJ [Fig. 11(b)]. Since pg(t) and ph(t) continue to
oscillate around the asymptotic value until far after the crossing
(see Fig. 10), we calculate pg by taking the time average
of pg(t) after its oscillation amplitude becomes small and
almost time independent. These results are shown by circles
in Fig. 11. Semianalytical results obtained from Eq. (30) are
shown by the red solid lines. For the parameters used here
(N = 5 and U0/J0 = 4), we have Eg/J0 = 12.31, Eh/J0 =
40.31, |〈ψh|Ŝx |ψg〉| = 9.697 × 10−2, and ωres ≈ Eh − Eg =
28.00J0. The agreement between the semianalytical and
numerical results is very good.

Finally, we examine the experimental feasibility of this
scheme. According to Eq. (30), to obtain a NOON-like state,
we should satisfy the adiabaticity condition:

πJ 2
0 A2

J |〈ψh|Ŝx |ψg〉|2
α

� 1. (31)

In addition, the initial and the final frequencies should be
outside the crossing region. Since the range of ω characterizing
the crossing region is comparable to the level separation � =
2|Hhg| at the avoided crossing, the initial time ti and the final
time tf of the sweep have to satisfy |ω(ti, f) − ωres| = α|ti, f| �
2|Hhg|. Also the Landau-Zener formula is valid under this
condition. Taking into account the adiabaticity condition (31),
this leads to the requirement

|ti|,tf �
√

2

π2

T0

AJ |〈ψh|Ŝx |ψg〉|
. (32)

As an example, let us estimate the time scale given by this
equation by using the parameters used in the experiment
of Ref. [56]. In this experiment, the frequency of the pair
tunneling is 4J 2

0 /U0 	 550 Hz for U0/J0 = 5; thus T0 	 0.72
ms. If AJ = 0.5, the right-hand side of Eq. (32) is 9 ms for N =
6, 40 ms for N = 7, and 214 ms for N = 8. Therefore, a NOON
state with N � 7 could be created within an experimentally
accessible time, provided the value of ω can be controlled with
a sufficiently high accuracy. We note that, more generally, an
upper limit for N for this scheme to work is N 	 10. Since the
width of the peaks in the probability distribution (in the Fock
space) of ψg and ψh scales as ∼N1/2, a few times N1/2 should
be larger than N in order to have an overlap between ψg and
ψh and to have a significant nonzero value of |〈ψh|Ŝx |ψg〉|.

In the present scheme, the modulation of the hopping
parameter works much better than the modulation of the
tilt. This can be seen using perturbation theory. A straight-
forward calculation shows that for odd number of particles
〈ψh|Ŝx |ψg〉 ∼ (J0/U0)(N−3)/2 and for even number of particles
〈ψh|Ŝx |ψg〉 ∼ (J0/U0)(N−2)/2. In the same way, perturbation
theory shows that 〈ψ ′

h|Ŝz|ψg〉 ∼ (J0/U0)(N−1)/2 for odd N

and 〈ψ ′
h|Ŝz|ψg〉 ∼ (J0/U0)N/2 for even N . Here ψ ′

h is the
antisymmetric eigenstate of Ĥ0 with the highest energy.
We see that |〈ψ ′

h|Ŝz|ψg〉|2/|〈ψh|Ŝx |ψg〉|2 ∼ (J0/U0)2, and
consequently, the off-diagonal elements of the LZ Hamiltonian
are much smaller when the tilt is modulated than when the
tunneling is modulated.

VII. CONCLUSIONS

In this paper, we have considered a time-periodically
modulated two-mode Bose-Hubbard model. We have dis-
cussed three types of modulations, one where the tunneling
amplitude is modulated, another where the interaction strength
is modulated, and a third where the energy difference between
the modes (tilt) is modulated. We focused mainly on the self-
trapping regime, characterized by U0N � J0, and assumed
that the amplitude of the modulation is small. It is known that
a modulation of the tunneling amplitude can lead to a drastic
reduction of the tunneling period [28]. We found that a similar
effect can be induced by modulating the interaction strength or
the energy difference between the modes. We have analyzed
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this phenomenon using Floquet theory as the main tool. We
found that regardless of the modulated variable, the system has
resonances at some modulation frequencies, corresponding
to either greatly reduced or enhanced tunneling periods. To
a good approximation, the locations of the resonances can
be obtained with the help of the energy eigenvalues of the
time-independent part of the Hamiltonian. Consequently, the
locations of the resonances are almost independent of whether
the tunneling, interaction, or tilt is modulated.

We found numerically that if the tunneling amplitude or
interaction strength is modulated, the system has a wide
resonance; that is, the tunneling period is greatly reduced
in a wide range of modulation frequencies. This resonance
is present also in the case of modulated tilt, but it is much
narrower. Furthermore, the behavior of the tunneling period
as a function of the modulation frequency is not smooth
in this case; see Fig. 2. These differences can be explained
using Floquet theory. The presence of resonances is related
to avoided crossings of the phases of the Floquet eigenvalues.
In the case of a modulated tunneling matrix element or inter-
action strength, the avoided crossings correspond to Floquet
eigenstates with the same parity. In the case of modulated
tilt, these avoided crossings correspond to eigenstates with
opposite parity. In Sec. IV C, it is shown that due to this
difference, a wide smooth resonance cannot be obtained in
the case of modulated tilt.

We have also analyzed cases where the interaction energy is
weak in comparison with the tunneling energy, U0N/J0 � 1,
and the modulation amplitude of either the interaction strength
or the tilt is large. Under these conditions, tunneling can
be suppressed at some specific modulation frequencies. This
phenomenon, the coherent destruction of tunneling, has been
extensively studied in the literature. We concentrated on
a property of CDT that has received less attention in the
previous studies, namely, the Floquet spectrum of a system
where the tilt is modulated. As expected, we found that the
suppression of tunneling takes place when the phases of the
Floquet eigenvalues become degenerate. For an even number
of particles the suppression is more complete than that for an
odd number of particles.

Finally, we have proposed two ways to create a NOON state.
One is based on coherent oscillation resulting from a detuning
from a partial CDT caused by modulated interaction strength.
An advantage of this method is that the tunneling period does
not increase exponentially with the total number of particles
N . The other method is based on sweeping the modulation
frequency of the tunneling term adiabatically. This scheme
requires neither precise knowledge of the number of particles
nor fine-tuning of the modulation frequency. We have shown
that by using the latter method and the parameters of a recent
experiment [56], it is possible to obtain NOON states of N � 7
particles.

It is known that the mean-field theory of the time-
periodically modulated two-mode Bose-Hubbard model
shows chaotic dynamics (e.g., Refs. [10,11,13,14,18,21,22,
57]). In the future, it would be interesting to study the connec-
tion between the Floquet spectrum of the original quantum sys-
tem and the chaotic mean-field dynamics. Another interesting
problem to study would be the quantum dynamics determined
by a time-periodically modulated Hamiltonian in the presence

of dissipation. In particular, the engineered dissipation leading
to squeezed states proposed in Ref. [58] is of interest.
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APPENDIX A: EFFECTIVE HOPPING PARAMETER FOR
MODULATED J

Here we derive the effective tunneling amplitude in the
limit of large-amplitude tilt modulation. The system follows
the Schrödinger equation

iψ̇(t) = Ĥ (t)ψ(t), (A1)

with

Ĥ (t) = −2J0Ŝx + U0Ŝ
2
z + V (t)Ŝz (A2)

and V (t) given by Eq. (8). We go to a rotating system by
defining

ψ̃(t) = eiα(t)Ŝzψ(t), (A3)

where

α(t) =
∫ t

0
dτ [V0 + V1 sin(ωτ + φV )] (A4)

= V0t + V1

ω
[cos φV − cos(ωt + φV )]. (A5)

Using this, the Schrödinger equation becomes

i ˙̃ψ(t) = H̃ (t)ψ̃(t), (A6)

where

H̃ (t) = −2J0{cos[α(t)] Ŝx − sin[α(t)] Ŝy} + U0Ŝ
2
z . (A7)

Assuming that the modulation period Tω = 2π/ω is the
shortest time scale in the system, it is possible to obtain an
effective Hamiltonian by averaging over Tω as

H̃AVE(t) = 1

Tω

∫ t+Tω

t

H̃ (τ ) dτ (A8)

= −2J eff
x (t)Ŝx − 2J eff

y (t) Ŝy + U0Ŝ
2
z . (A9)

The effective tunneling amplitudes are defined as

J eff
x (t) = J0

Tω

∫ t+Tω

t

cos[α(τ )] dτ (A10)

J eff
y (t) = − J0

Tω

∫ t+Tω

t

sin[α(τ )] dτ. (A11)

Instead of calculating J eff
x (t) and J eff

y (t) separately, we write

J eff
x (t) − iJ eff

y (t)

= J0 ei
V1
ω

cos φV

Tω

∫ t+Tω

t

dτ ei[V0τ− V1
ω

cos(ωτ+φV )]. (A12)
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This integral can be calculated easily using the equation

eiz cos γ =
∞∑

n=−∞
Jn(z)ein(γ+ π

2 ), (A13)

where Jn(z) are Bessel functions of the first kind. We thus
obtain

J eff
x (t) − iJ eff

y (t)

=

⎧⎪⎪⎨
⎪⎪⎩

2J0
Tω

sin
(

πV0
ω

)
ei[V0(t+ π

ω
)+ V1

ω
cos φV ]

×∑∞
n=−∞ Jn

(
V1
ω

)
e
in(ωt+φV − π

2 )

V0+nω
, V0

ω
�∈ Z,

J0J k

(
V1
ω

)
ei

V1
ω

cos φV e−ik(φV + π
2 ), V0

ω
= k ∈ Z.

(A14)

In the special case V0/ω = k ∈ Z, the original tunneling
amplitudes Jx = J0 and Jy = 0 are replaced by effective ones,

J eff
x (t) = J0Jk

(
V1

ω

)
cos

[
k

(
φV + π

2

)
− V1

ω
cos φV

]
,

(A15)

J eff
y (t) = J0Jk

(
V1

ω

)
sin

[
k

(
φV + π

2

)
− V1

ω
cos φV

]
,

(A16)

where V1 is nonzero.

APPENDIX B: EFFECTIVE HOPPING TERM FOR
MODULATED U

In the case of large-amplitude modulation of the interaction
strength, the coherent destruction of tunneling is state depen-
dent [26]. Here, we derive the effective Hamiltonian for this
case.

We start from the time-dependent Schrödinger equa-
tion (A1) with the Hamiltonian

Ĥ (t) = −2J0Ŝx + U (t)Ŝ2
z , (B1)

where U (t) is given by Eq. (7). For simplicity, we set V = 0.
As in Appendix A, we go to the rotating frame by defining

ψ̃(t) = eiα(t)Ŝ2
z ψ(t), (B2)

where

α(t) =
∫ t

0
dτ [U0 + U1 sin (ωτ + φU )]

= U0t + U1

ω
[cos φU − cos (ωt + φU )] . (B3)

Thus the Schrödinger equation becomes i ˙̃ψ(t) = H̃ (t)ψ̃(t),
with

H̃ (t) = −J0[Ŝ+eiα(t)(2Ŝz+1) + e−iα(t)(2Ŝz+1)Ŝ−], (B4)

where Ŝ± ≡ Ŝx ± iŜy . We have used the equations [Ŝ2
z ,Ŝ+] =

Ŝ+(2Ŝz + 1), [Ŝ2
z ,Ŝ−] = −(2Ŝz + 1)Ŝ−, and Ŝx = (Ŝ+ +

Ŝ−)/2 to obtain

eiα(t)Ŝ2
z Ŝxe

−iα(t)Ŝ2
z = 1

2 [Ŝ+eiα(t)(2Ŝz+1) + e−iα(t)(2Ŝz+1)Ŝ−].

(B5)

By time averaging over one modulation period Tω, the effective
Hamiltonian reads

H̃AVE(t) = 1

Tω

∫ t+Tω

t

H̃ (τ )dτ

= −J0[Ŝ+Â + Â†Ŝ−]. (B6)

Here Â is defined as

Â|�N〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
Tω

sin
[

πU0
ω

(�N + 1)
]
ei[U0(t+ π

ω
)+ U1

ω
cos φU ](�N+1)

×∑∞
n=−∞ Jn

[
U1
ω

(�N + 1)
]

e
−in(ωt+φU + π

2 )

U0(�N+1)−nω
|�N〉, U0

ω
(�N + 1) �∈ Z,

Jk

[
U1
ω

(�N + 1)
]
ei

U1
ω

(�N+1) cos φU e−ik(φU + π
2 )|�N〉, U0

ω
(�N + 1) = k ∈ Z,

(B7)

where we have used the equation Ŝz|�N〉 = (�N/2)|�N〉 and
{|�N〉; �N = −N, − N + 2, − N + 4, . . . ,N} is the basis
of the system. In this basis H̃AVE is a tridiagonal matrix.
Note that Â, unlike Eq. (A14), depends on �N . If 〈m −
2|H̃AVE|m〉 = 0 (here we assume m > 0 without loss of gen-
erality), we get 〈m|H̃AVE|m − 2〉 = 〈−m + 2|H̃AVE| − m〉 =
〈−m|H̃AVE| − m + 2〉 = 0. In the special case (U0/ω)[(m −
2) + 1] = k ∈ Z, the condition for partial CDT between states

|m〉 and |m − 2〉, 〈m − 2|H̃AVE|m〉 = 0, can be written as

Jk

[
U1

ω
(m − 1)

]
= 0. (B8)

If this equation holds, the Hilbert space can be written
as a direct sum of three uncoupled subspaces, spanned by
{|N〉,|N − 2〉, . . . ,|m〉}, {|m − 2〉,|m〉, . . . ,| − m + 2〉}, and
{| − m〉,| − m − 2〉, . . . ,| − N〉}.
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