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Mean-field dynamics of strongly interacting bosons described by hard-core bosons with nearest-neighbor
attraction has been shown to support two species of solitons: one of Gross-Pitaevskii type (GP type) where the
condensate fraction remains dark, and a non-Gross-Pitaevskii type (non-GP type) characterized by brightening
of the condensate fraction. Here we study the effects of quantum fluctuations on these solitons using the adaptive
time-dependent density matrix renormalization group method, which takes into account the effect of strong
correlations. We use local observables as the density, condensate density, and correlation functions as well as
the entanglement entropy to characterize the stability of the initial states. We find both species of solitons to
be stable under quantum evolution for a finite duration, their tolerance to quantum fluctuations being enhanced
as the width of the soliton increases. We describe possible experimental realizations in atomic Bose-Einstein
condensates, polarized degenerate Fermi gases, and in systems of polar molecules on optical lattices.
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I. INTRODUCTION

Solitary waves and solitons (i.e., solitary waves whose
shape and speed remain unchanged even after collisions) are
encountered in systems as diverse as classical water waves
[1], magnetic materials [1–17], fiber-optic communication
[1,18,19], and Bose-Einstein condensates (BECs) [1,20–22].
Rooted in the nonlinearity of the system which balances
dispersive effects, solitons are fascinating nonlinear waves that
encode collective behavior in the system. Intrinsically nonlin-
ear in nature due to interparticle interactions and due to the high
degree of control in the experiments, BEC systems are a natural
fertile ground for exploring solitons. In dilute atomic gaseous
BECs, which are simply described in terms of the properties
of the nonlinear Schrödinger equation or the Gross-Pitaevskii
equation [21] (GPE), bright (density elevation) solitons exist
for attractive interparticle interactions and dark (density notch)
solitons in the repulsive case. These solutions are characterized
not only by persistent density profiles, but also by characteristic
modulations of the quantum phase across their profiles, which
differs for the bright (attractive condensate) [23] and the
dark (repulsive condensate) cases [24–26]. However, we want
to emphasize that, on general grounds, other systems with
intrinsic nonlinearities should be able to realize solitons if the
conditions are chosen appropriately.

In this paper, we follow two goals: First, we want to
describe the realization of solitons in lattice systems since
interaction effects there play a more pronounced role than in
the aforementioned systems of dilute atomic gases. In this
way, we can systematically study the effect of interactions
on the soliton dynamics in the broader framework of possible
experimental observations in BEC, quantum degenerate Fermi
gases, hard-core bosons, and polar molecules on optical
lattices, as well as in certain condensed matter systems. The
common aspect of these various systems is that the soliton
dynamics can be described in terms of a simple S = 1/2 spin

chain which, in turn, can be the effective model for a variety of
situations, such as the ones mentioned above. This description
is footed on an extension of the standard GPE treatment of
solitons and leads us to the second scope of our paper which is
to describe new effects which go beyond mean-field dynamics.

Investigations of effects beyond GPE dynamics have been
a subject of various studies in the past decade. For short-range
repulsive systems, the cubic nonlinearity of the GPE was
replaced by a quintic repulsive nonlinearity and the resulting
modified GPE was shown to support dark solitary waves of
GP type [27]. This one-dimensional (1D) system was further
investigated in the presence of dipolar interactions [28] and
was shown to support bright solitons whose stability and
mobility depended on the dipolar interaction strength. In
two-dimensional (2D) systems, bright solitons were found
to be stable given a sufficient dipole-dipole strength [29].
Further studies of the stability and dynamics of solitons have
been extended to two-component BECs [30] and multilayered
BECs [31]. Existence of dark and bright solitary waves was
also shown numerically in systems describing multicomponent
BECs [32]. In addition to the continuum systems, solitary
waves have been extensively studied in systems described
by a discrete nonlinear Schrödinger equation [33,34], BECs
in deep optical lattices, and also in optical beams in
waveguides.

In recent studies [35,36], solitary waves in a system of hard-
core bosons (HCBs) described in terms of hard-core onsite
repulsion and attractive nearest neighbor interaction, have been
studied using mean-field equations obtained from mapping
the HCB system to an anisotropic S = 1/2 Heisenberg spin
system. The continuum limit of the lattice populated with HCB
is described by a generalized GPE, which we will refer to
as “HGPE” [see Eq. (6)] as it describes hard-core bosons in
mean-field treatment.

In contrast to the GPE, HGPE contains both the normal and
condensate density. This system describing strongly repulsive
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BEC was shown to support both dark and bright solitary
waves, the existence of both species being rooted in the
particle-hole symmetry in HCB systems. Unlike other studies,
HGPE solitary waves are obtained as an analytic solution
which was shown to provide an almost exact solution of the
equations of motion [35]. These two species of solitons can be
referred to as the GP type and the non-GP type as the former
corresponds to a dark condensate fraction that dies at the sound
velocity while the latter is associated with brightening of the
condensate and persists all the way up to sound velocity and
transforms into a soliton train for supersonic velocities. Recent
numerical studies investigating collision properties of these
nonlinear modes suggest that these solitary waves are in fact
solitons [37].

An important question that we investigate here is whether
these mean-field solitons survive quantum fluctuations. In
previous work, the quantum dynamics of GP dark solitons
in the superfluid regime of the Bose-Hubbard Hamiltonian
has been studied numerically by Mishmash et al. [38,39]. The
main findings are that, for weak interactions, the dark soliton
is stable on a time-scale of the order of ∼20 to 40 units of the
hopping and afterward decays due to two-particle scattering
processes. The larger the onsite interaction, the stronger the
scattering and the faster the decay of the solitons. In addition,
these studies treated collisions between the solitary waves
which confirm the soliton nature of the states on the time scales
treated. These studies focus on the limit of small interactions.
Here, we treat the strong-coupling case and study the fate of
the soliton solutions obtained in the HGPE framework. We do
this by generalizing the Bose-Hubbard model of Refs. [38,39]
to include onsite and nearest-neighbor density-density inter-
actions. As discussed in Ref. [35], in the continuum limit
this gives rise to the two distinct types of solitons mentioned
above, which, as we shall see, are found to be stable in both
the mean-field approximation to the lattice dynamics of the
system, as well as in the full quantum dynamics on the lattice.

More specifically, we describe the exact quantum evolution
of an initial mean-field soliton solution on 1D lattice systems.
The soliton and the Hamiltonian driving the dynamics are
thereby formulated in terms of a S = 1/2 spin language. It
is thus possible to envisage a realization of the described
soliton solutions in both experiments with ultracold bosonic
and spin-polarized fermionic atoms as well as in experiments
with polar molecules [40–43] on optical lattices, which can
be used to emulate spin-1/2 systems [44,45]. We combine an
analytic solution of the HGPE which provides a continuum
approximation to the lattice problem, a numerical treatment
of the mean-field equations on the lattice, and a full quantum
treatment of the dynamics by applying the time-dependent
density matrix renormalization group (DMRG) [46–50]. Both
mean-field and numerical results indicate that, for a certain
range of parameters, the solutions found are indeed stable
solitons on the time scale treated. The non-GP-type soliton
is found to be somewhat less tolerant of quantum effects
compared to the GP type. We characterize the stability of the
solitons by considering the entanglement in the system: since
in our setup the initial soliton solutions are product states on
the lattice, the entanglement entropy [51] should remain zero
for a stable soliton solution and hence is a measure for the
stability of the soliton in the course of the time evolution. In

addition, we consider correlation functions which, on similar
grounds, can be used to characterize its stability.

The paper is organized as follows: In Sec. II, we introduce
the effective spin model and its derivation from HCB and
spinless fermions on a lattice, the dynamical equation (HGPE)
that describes the continuum approximation to the mean-field
equations of the lattice system, and we summarize the analytic
solution of the HGPE. In Sec. III we describe the mean-field
ansatz and some details of the DMRG approach to the
dynamics. In Sec. IV, we analyze the stability of the soliton
solutions by comparing the mean-field results on a lattice
to the DMRG results. As a measure for the quality of the
soliton solution, we use in Sec. IV B the von Neumann or
entanglement entropy as well as correlation functions which
also should remain zero in the course of the time evolution if
the mean-field state were to survive quantum fluctuations. In
Sec. V we propose possible experimental realizations of the
HGPE solitons. In Sec. VI, we summarize.

II. HAMILTONIAN AND EQUATIONS OF MOTION

In this paper, we treat the dynamics of initial soliton states
driven by the spin Hamiltonian

HS = −
∑

j

[
J Ŝj · Ŝj+1 − gŜz

j Ŝ
z
j+1

] − g
∑

j

Ŝz
j , (1)

on a one-dimensional lattice; that is, we are treating the
dynamics of a XXZ-chain with a global external magnetic
field of magnitude g. One way to obtain this effective
Hamiltonian is as the limiting case of the extended Bose
Hubbard model,

H = −
∑

j

[J

2
[b†j bj+1 + H.c.] + V njnj+1

]

+
∑

j

[U

2
nj (nj − 1) − (μ − J )nj

]
. (2)

Here, b
(†)
j are the annihilation (creation) operators for a boson

at the lattice site j , nj is the number operator, J/2 is the
nearest-neighbor tunneling strength, and μ is the chemical
potential. An attractive nearest-neighbor interaction V < 0 is
introduced to soften the effect of a strong onsite interaction
|U | � 0. The HCB limit (|U | → ∞) corresponds to the
constraint that two bosons cannot occupy the same site. This
HCB system can then be mapped to the model Eq. (1) [52],
where the two spin states correspond to two allowed boson
number states |0〉 and |1〉, and setting g = J − V . Note that this
is in contrast to the study of Refs. [38,39] in which the quantum
dynamics was investigated in the original Bose-Hubbard
system and not for the effective model Eq. (1). This is
interesting since the existence of the proposed soliton solutions
for this spin model has implications for further systems than the
ultracold bosonic atoms usually considered when describing
soliton phenomena in cold gases. In particular, it should be
noted that the XXZ model in 1D can be obtained using the
Jordan-Wigner transform from a system of spinless fermions:

HSF = −J

2

∑
j

[c†j+1cj + H.c.] + V
∑

j

njnj+1 + μ̃
∑

j

nj ,

(3)

053617-2



QUANTUM DYNAMICS OF SOLITONS IN STRONGLY . . . PHYSICAL REVIEW A 85, 053617 (2012)

with cj (c†j ) being the fermionic annihilation (creation)

operators on site j , and nj = c
†
j cj being the density on

site j . Therefore, it should be possible to investigate the
soliton dynamics in experiments with bosonic atoms, in spin
systems, and in fermionic systems. In Sec. V we discuss
possible implementations in experiments with cold gases.
Note that both models, Eqs. (1) and (3) are fundamental
models for describing condensed matter systems such as
quantum magnets and systems of itinerant electrons. It is
therefore conceivable that, in principle, the proposed soliton
solutions can be realized in such systems as well.

For simplicity, we set up our discussion in the framework of
bosonic systems, without losing generality. Then, the spin-flip
operators Ŝ± = Ŝx ± iŜy correspond to the annihilation and
creation operators of the corresponding bosonic Hamiltonian,
bj → Ŝ+

j . Thus, the order parameter that describes a BEC
wave function is ψs

j = 〈S+
j 〉, where the expectation value is

obtained using spin coherent states [53]. In this mean-field
description, the evolution equation for the order parameter
is obtained by taking the spin-coherent state average of the
Heisenberg equation of motion. The spin coherent state |τj 〉 at
each site j can be parametrized as

|τj 〉 = eiφj /2

[
e−iφj /2 cos

θj

2
| ↑〉 + eiφj /2 sin

θj

2
| ↓〉

]
. (4)

With this choice, the HCB system is mapped to a sys-
tem of classical spins [35,53] via S = ( 1

2 sin(θ ) cos(φ),
1
2 sin(θ ) sin(φ), 1

2 cos(θ )). Note that the particle density ρj and
the condensate density ρs

j satisfy the relation ρs
j = ρjρ

h
j , with

ρh
j = 1 − ρj being the hole density. In this representation,

ψs
j =

√
ρs

j e
iφ . This mean-field treatment is contrasted to

the standard GPE derived from the Bose-Hubbard model
by taking the expectation value of the Heisenberg equation
of motion with Glauber coherent states [54]. We cast the
equations of motion in terms of the canonical variables φj

and δj ≡ cos(θj ) = (1 − 2ρj ) and obtain

δ̇j = J

2

∑
i=±1

√(
1 − δ2

j

)(
1 − δ2

j+i

)
sin(φj+i − φj ),

φ̇j = J

2

δj√(
1 − δ2

j

)
∑
i=±1

√
1 − δ2

j+i cos(φj+i − φj )

−V

2

∑
i=±1

δj+i − (J − V )δ0. (5)

Solitary waves in continuum approximation

In the continuum approximation, the equations for the order
parameter are derived from a Taylor series in the lattice spacing
a [55],

ih̄ψ̇ s = − h̄2

2m
(1 − 2ρ)∇2ψs − Veψ

s∇2ρ + Ueρψs − μψs,

(6)

where Ja2 = h̄2

m
, Ue = 2(J − V ), and Ve = V a2. This

equation can be viewed as a generalized-GPE and we will
refer to it as the HGPE in view of its relation to HCBs.

The corresponding discrete Eq. (5) will be referred to as
discrete HGPE. These equations have been shown to support
solitary waves [35] riding upon a background density ρ0:
ρ(z) = ρ0 + f (z), with z = x − vt . We obtain for the soliton
solution

f (z,ρ0)± = 2γ 2ρ0ρ
h
0

±
√(

ρh
0 − ρ0

)2 + 4γ 2ρ0ρ
h
0 cosh z

	
− (

ρh
0 − ρ0

) ,

(7)

where γ = (1 − v̄2)1/2, and v̄ is the speed of the solitary
wave in units of cs = √

2ρs
0(1 − V/J ), which is the speed of

sound of the Bose gas system determined from its Bogoliubov
spectrum [53]. 	 is the width of the soliton,

	−1 = γ

√√√√ 2
(
1 − V

J

)
ρ0ρ

h
0

1
4

(
ρh

0 − ρ0
)2 + V

J
ρ0ρ

h
0

. (8)

The characteristic phase jump associated with the solitary
waves is


φ± = (√
1 − 2c2

s

)
cos−1 v̄(1 − 2ρ0)

1 − 2ρs
0 v̄

2
. (9)

This solution has some remarkable properties. One direct
consequence of the particle-hole symmetry underlying the
equations of motion is the presence of two species of solitary
waves, shown in Fig. 1. The existence of f (z,ρ0) superposed
on the background particle density ρ0 implies the existence of
a counterpart f (x,ρh

0 ) superposed upon a corresponding hole
density ρh

0 . In fact it is easy to see that f ±(z,ρ0) = ±f ∓(z,ρh
0 ).

For ρ0 < 1/2, the ± corresponds to bright and dark solitons,
respectively. The bright solitons have the unusual property
of persisting at speeds up to the speed of sound, in sharp
contrast to the dark species that resembles the dark soliton
of the GPE whose amplitude goes to zero at sound velocity.

FIG. 1. (Color online) Bright (top) and dark (bottom) soliton
solution in the continuum Eq. (7) for ρ0 = 0.25 and V/J = 0.4. Left
panels show the density, right panels show the condensate density as
a function of position and speed. Note that the condensate density
of the bright soliton shows a “brightening,” around the notch (i.e., it
grows above the background value), whereas the dark soliton does
not show this effect.
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In the special case with background density equal to 1/2,
the two species of solitons become mirror images of each
other, as f +(z,ρ0 = 1/2) = −f −(z,ρ0 = 1/2). In this case,
the condensate density in fact describes the GPE soliton
[56,57].

It should be noted that, for ρ0 > 1/2, the dark and bright
solitons switch their roles. In other words, for ρ0 < 1/2, it
is the dark soliton that behaves like a GPE soliton while
the bright soliton is the new type of soliton that persists all
the way up to the sound velocity. In contrast, for ρ0 > 1/2, the
bright soliton is of GP type while the dark one is the persistent
soliton. In view of the particle-hole duality, we will present
our results for ρ0 < 1/2 in which the bright solitons have the
persistent character noted above.

In the following sections, we will investigate the existence
and the lifetime of these solutions on lattice systems using
mean-field equations and the time-dependent DMRG. We
will complement this analysis by investigating the stability
of further initial states. In particular, we show that an initial
Gaussian density distribution for a stationary soliton shows
a similar stability if a phase jump is realized, but becomes
unstable without a phase jump. This is of importance for
experimental realizations indicating that imperfections in the
creation of the initial state may not have a strong influence on
the soliton dynamics.

III. METHODS: MEAN-FIELD ANSATZ AND DMRG

A. Mean-field treatment

In this section, we compare the mean-field treatment of the
soliton dynamics on a lattice [governed by Eqs. (5)] to the
dynamics in the continuum Eq. (6). For the soliton dynamics
on a lattice, we apply the equations of motion (5) to an initial
state given by Eqs. (7) and (9) on a finite lattice. In Fig. 2 we
show the discrete HGPE solitons for different values of V/J

at time t = 20/J . We compare the continuum solution (black
dashed line) to the solution obtained on the lattice (symbols).
As can be seen, for V/J = 0.95, the lattice approximation
and the continuum solution show excellent agreement, up to
small deviations at the boundaries. For V/J = 0.75, however,
significant deviations occur. We further analyze this behavior
in Fig. 3 where we compute the difference of the lattice solution
to the continuum solution in the local observables (density ρ

and condensate density ρs , respectively),


ρ(s) =
√∑

i

(〈
ρ

(s)
i

〉
continuum − 〈

ρ
(s)
i

〉
MF

)2

√∑
i

〈
ρ

(s)
i − ρ

(s)
0

〉2
continuum

, (10)

at t = 20/J for a system of L = 40 sites as a function of V/J .
As can be seen, the difference is significant for all values of
V/J � 0.8. Only at larger values is the difference of the order
of a few percent.

This discrepancy between the lattice and the continuum
solution is to be expected: the continuum model is an
approximation to the lattice model and its validity will break
down when the size of features (e.g., the width of the soliton) of
the analytic continuum solutions becomes comparable to the
lattice spacings. This breakdown of validity can be understood
in terms of the emission of Bogoliubov quasiparticles [58] for

10 20 30 40
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0.2

0.4

0.6

0.8

1.0
V J 0.75 c

Dark

10 20 30 40

V J 0.95 d

site

10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

ρ
ρ

V J 0.75 a

Bright

10 20 30 40

V J 0.95 b

site

FIG. 2. (Color online) Comparison of the soliton profiles for a
background density ρ0 = 0.25 at times t = 20/J obtained in the
continuum [black dashed line, Eq. (6)] and using the equations of
motion approach Eq. (5) on a lattice of L = 40 sites. The left panels
show the results for V/J = 0.75 (narrow soliton), the right panels
show the case V/J = 0.95 (broad soliton). The top panels show the
bright soliton, the bottom panels show the dark soliton solution of
Eq. (7). Both the particle density ρ (∗) and the condensate density
ρs (+) are shown.

solitons which are too narrow: analogous to the excitations in
a dilute Bose gas, the Bogoliubov dispersion spectrum [53]
shows that a narrow perturbation excites high-energy modes.
We further analyze this in Figs. 3(c) and 3(d). Quasiparticles
are emitted in the course of the time evolution, and due
to momentum conservation the soliton gets a velocity in
the opposite direction so that it starts to move away from
the original position. The narrower the soliton, the stronger
the emission of quasiparticles, and—as expected—the lattice
approximation becomes more and more unstable as the width
of the soliton decreases (i.e., with decreasing V/J ).

Note that this behavior is reminiscent of the mechanism
which leads to the “light-cone” effect in correlation functions
following a quantum quench [59–64]. In this case, the quench
creates entangled quasiparticles on each lattice site which then
move ballistically through the system and lead to a linear
signature in the time evolution of correlation functions. In
this way, the velocity of the quasiparticle excitations can be
obtained [62–64]. In a similar way, we propose that the linear
signatures in Fig. 3 can be used to further analyze the properties
of the quasiparticles. However, this lies beyond the scope of
the present paper so that we leave this issue open for future
investigations.

Due to the necessity of having a width of the soliton
larger than a few lattice spacings, we find that we need
to investigate systems with L � 30 lattice sites. Since this
cannot be achieved using exact diagonalization methods for
the Hamiltonian matrix, we choose to apply the adaptive
t-DMRG which is capable of treating sufficiently large systems
efficiently. In the following we therefore compare the lattice
mean-field solution to the full quantum dynamics obtained by
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V J = 0.65 V J = 0.45(c) (d)
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1
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4
5
6

V J

s

b

FIG. 3. (Color online) Differences resulting from Eq. (10) of (a)
the local density ρ and (b) the condensate density ρs between the
mean-field continuum evolution and the mean-field lattice evolution
on a lattice of L = 40 sites at times t = 20/J as a function of V/J .
Panels (c) and (d) show the lattice mean-field evolution of the local
density for a broad soliton (c) with V/J = 0.65 and a narrow soliton
(d) with V/J = 0.45.

the DMRG for systems with L = 40 and L = 100 lattice sites
and V/J � 0.9.

B. Details for DMRG

We apply the adaptive time-dependent extension of the
density-matrix renormalization-group method [46–48] (adap-
tive t-DMRG [49,50]) for systems with up to L = 100
lattice sites with open boundary conditions. The DMRG is
a numerical method which is capable of obtaining ground-
state properties of (quasi-)one-dimensional systems with a
very high efficiency and accuracy for lattices with up to
several thousand sites; that is, system sizes which are far
larger than the ones amenable to exact diagonalizations of
the Hamiltonian matrix. This is achieved by working in a
truncated basis of eigenstates of reduced density matrices
obtained for different bipartitions of the lattice. A measure
for the error is given by the so-called discarded weight, which
is the sum of the weights of the density-matrix eigenstates
which are neglected and which should be as small as possible
(for more details see, e.g., the review article [48]). Also, its
time-dependent extension can treat the real-time evolution of
strongly correlated quantum many-body systems substantially
larger than the ones amenable to exact diagonalization methods
and with an accuracy which can be, at short and intermediate
times, similar to the one of ground-state computations. In
this paper, we exploit this accuracy in order to provide very
high precision numerical results to which we compare the
mean-field solutions discussed in Sec. III A.

We solely use open boundary conditions since the DMRG
performs far better in this case than in the case of periodic
boundary conditions, so that we can treat larger system sizes
with up to the aforementioned L = 100 lattice sites. However,
at this point it becomes necessary to discuss the effect of the

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

ρ
ρ

tJ 0.0

100 sites

0 20 40 60 80 100

tJ 20.0

a b

site

10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
tJ 0.0

40 sites

10 20 30 40

tJ 20.0

c d

site

FIG. 4. (Color online) Local particle density ρ (blue ∗) and
condensate density ρs (red +) obtained by DMRG (symbols) and
by the mean-field ansatz (solid line) for a stationary bright soliton
(v = 0) at times t = 0 (left panels) and at times t = 20/J (right
panels). The plots show results for lattice sizes of L = 100 sites
(top) and L = 40 sites (bottom). The parameters are V/J = 0.95
and ρ0 = 0.45.

boundaries: we choose system sizes and initial widths of the
solitons so that there is a wide region between the soliton
and the boundary which can be considered to be “empty.” In
Fig. 4, we compare the initial state for a system with L = 40
and L = 100 sites. As can be seen, the effect of the boundaries
on the soliton is completely negligible. This remains so on
time scales on which perturbations either from the boundaries
reach the soliton or from the soliton reach the boundaries. At
these instants of time, we stop the evolution and consider this
to be the maximal reachable time for the given system size.
We find that, already for systems as small as L = 40 sites, the
maximal reachable time is t > 20/J , so that we conclude that
the analysis which we present in the following is not affected
by boundary effects.

We work with the S = 1/2 spin system Eq. (1) and engineer
the initial state on the lattice by imprinting a phase and
density profile by applying an external magnetic field. More
specifically, for the initial state we compute the ground state
of

H0 = −h
∑

j

�Bj · �Sj , (11)

with h being a large multiplicative factor (∼100) and

�Bj = {〈
Sx

j

〉 = √
ρj (1 − ρj ) cos φj ,〈

S
y

j

〉 = √
ρj (1 − ρj ) sin φj ,

〈
Sz

j

〉 = 0.5 − ρj

}
. (12)

For the treatment of the dynamics of the system after turning
off this magnetic field we apply a Krylov-space variant [65]
of the adaptive t-DMRG. During the evolution, we keep up to
1000 density-matrix eigenstates for systems with up to L =
100 sites. We apply a time step of 
t = 0.05, resulting in a
discarded weight of <10−9 at the end of the time evolution.
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We estimate the error bars at the end of the time evolution to
be smaller than the size of the symbols.

IV. FULL QUANTUM DYNAMICS

A. Soliton stability

The initial soliton state is prepared as discussed in Sec. III B
and is propagated with the XXZ spin-1/2 Hamiltonian Eq. (1)
using the adaptive t-DMRG. Snapshots of the resulting time
evolution for the density profile of both the bright and the
dark soliton, with speed v = 0 are shown in Fig. 5. Since our
results for moving solitons (v > 0) are similar, we restrict
ourselves in the following to the case of static solitons. While
the mean-field solution remains essentially unchanged in
time, the full quantum evolution shows some deformation of
the initial state: in the course of the evolution, the total density
profile widens as the peak decreases. The amount of change
depends on the parameters V/J and v and is different for
the bright and the dark soliton. However, as further discussed
below, for V/J close enough to unity the difference between
the quantum solution and the initial state remains below a few
percent on a time scale t ∼ 20/J , where the hopping amplitude
due to the mapping from the spin system is J/2. This has to be
compared to time scales reachable by experiments on optical
lattices. For typical lattice depths in which a tight-binding
description is valid, the tunneling rate varies from 0.1 to 1
kHz, while the typical time scale of the experiments is on the
order of 1 to 100 milliseconds. We therefore conclude that the
density profile suggests a stable soliton on the experimentally
accessible time scale in the full quantum evolution. Now
we turn to the condensate density. Here, at t = 20/J , the
deviation from the mean-field solution is larger. Nevertheless,
as shown in Fig. 5, the change remains within a few percent
for V/t = 0.95, so that we conclude that both quantities
identify a stable soliton solution on this time scale.
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FIG. 5. (Color online) Local particle density ρ (top) and con-
densate density ρs (bottom) obtained by the DMRG (symbols) and
by the mean-field (solid line) propagation of the stationary (v = 0)
bright (red +) and dark (blue ∗) solitons for times t = 0 and 20/J

for a system with L = 40 sites. The parameters are V/J = 0.95 and
ρ0 = 0.25.
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DMRG results and the lattice mean-field results for the total density
(left) and for the condensate density (right) for a stationary (top) and
for moving (bottom) bright solitons (ρ0 = 0.25) on a system with
L = 40 sites.

To obtain a better measure for the lifetime of the solitons,
we analyze in Fig. 6 for the local observables (density ρ and
condensate density ρs , respectively) the discrepancy between
the t-DMRG evolution and the mean-field solution

δρ(s) =
√∑

i

(〈
ρ

(s)
i

〉
DMRG − 〈

ρ
(s)
i

〉
MF

)2

√∑
i

〈
ρ

(s)
i

〉2
MF

, (13)

similar to our analysis in Fig. 3 which was based on Eq. (10).
As shown in Fig. 6, δρ(s) decreases significantly as V/J

approaches unity or as the speed of the soliton v (in units
of the speed of sound) increases. This is associated with a
widening of the initial density profile when increasing V/J

and a reduction of the peak amplitude for larger v, so that
we conclude from this analysis that, for a variety of initial
conditions, the GPE and discrete-HGPE solitons can survive
quantum fluctuations on the time scales treated. This is further
confirmed in the following by the behavior of the entanglement
entropy and the correlation functions.

B. Entanglement entropy and nearest-neighbor correlations

A quantity that reveals the quantum nature of a state is
the von Neumann or entanglement entropy in the system [51]
which is defined as

SvN
A = −Tr(ρA ln ρA), (14)

with ρA being the reduced density matrix of a subsystem A

obtained by tracing out the degrees of freedom of the remaining
part of the system B. From the Schmidt decomposition

|ψ〉 =
∑

i

√
λi

∣∣φi
A

〉∣∣φi
B

〉
(15)

it follows that

SvN = −
∑

i

λi ln λi, (16)
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with |φi
A〉 and |φi

B〉 being the eigenstates of the reduced-density
matrix of subsystem A or B, respectively, and λi being the
eigenvalues of the corresponding eigenstates. This quantity
gives a measure for the entanglement between two subsystems.
Since the initial states are product states on the lattice,
SvN is exactly zero at the beginning of the time evolution
since only one of the weights is finite with λi = 1 while
the others are exactly zero. If SvN (t) remains zero (or very
small) in the course of the time evolution, we conclude that
quantum fluctuations do not strongly influence the nature
of the initial product state, and so the value of SvN (t)
gives an additional measure for the stability of the soliton
solutions. Note that there are two variants of this analysis: in
Refs. [38,39], the entanglement entropy for a subsystem of
one single site is measured with respect to the remainder of
the system. However, within the DMRG framework it is easier
to consider the time evolution of the entanglement entropy for
all bipartitions of the system as it is automatically computed
in the course of the DMRG procedure. For simplicity, and
since it gives a similar measure for the stability of the soliton,
we consider here the latter. In addition, the behavior of this
quantity for ground states of finite spin chains is well known
from conformal field theory [66], and the numerical values
can be obtained easily from the DMRG. This allows us to
compare the values of the entanglement entropy during the
time evolution to the ones of the strongly correlated ground
state of the system which serves as a reference for how strongly
entangled the state has become during the time evolution. In
Fig. 7 we show typical result for the entanglement entropy
in ground states of the spin system Eq. (1) with L = 40
sites, V/J = 0.95, and S total

z corresponding to ρ0 = 0.1, 0.25,
and 0.45, respectively. As can be seen, the numerical value
in the center of the system increases with ρ0 and reaches
SvN,center ≈ 1.35 for ρ0 = 0.45.

A second estimate for the strength of the entanglement
growth is to compare to the maximal possible entanglement
entropy in a generic spin-1/2 chain with L sites. Consider
a bipartition of the chain into M and L − M spins with
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FIG. 7. (Color online) Entanglement entropy in ground states of
the spin system Eq. (1) for V/J = 0.95, L = 40 sites for values of
Sz

total corresponding to the background density ρ0 = 0.1, 0.25, and
0.45, respectively.

M � L − M . Since the dimension of the Hilbert space of a
chain of M spins is 2M , a maximally entangled state is obtained
when all λj = 1/2M . This state has hence an entropy

SvN,max = −
∑

j

λj ln λj = M ln 2.

For a system of L = 40 sites and a bipartition M = L/2 we
therefore obtain SvN,max ≈ 13.86; that is, it is a factor of ∼10
larger than the one in the ground state for the same bipartition.

We now compare these values to the ones reached in
the time evolution of the solitons. In Fig. 8 we display the
entanglement growth of both the dark and the bright soliton
at ρ0 = 0.1, 0.25, and 0.45, respectively. We obtain that the
entanglement growth is strongest at low fillings (ρ0 = 0.1),
and it is larger for the bright soliton than for the dark one.
For ρ0 = 0.45, the maximum value for the bright soliton is
SvN ≈ 0.4, and for the dark soliton SvN ≈ 0.25—both values
are significantly smaller than the one in the corresponding
ground state and are much smaller than the one of the
maximally entangled state. This shows that, on the time scale
treated, the state is significantly closer to a product state than to
a strongly correlated ground state of the same system, or than
to a maximally entangled state. Since the entanglement is not
negligible, quantum fluctuations play an important role for the
characterization of the state toward the end of the considered
time evolution, but they are not strong enough to fully destroy
the product nature of the initial state.

Note that the entanglement growth for the bright soliton
for ρ0 = 0.1 is significantly larger than for ρ0 = 0.45. This is
connected to the fact that, also for the local observables, the
corresponding initial state decays much faster. The entangle-
ment entropy can be used as a measure to compare the stability
of the initial states at ρ0 = 0.1 and ρ0 = 0.45: it appears that
the bright soliton at ρ0 = 0.1 is about half as stable as the one at
ρ0 = 0.45. This is reflected in the numerical values of δρ(s)(t)
which also show approximately a factor of two between the
two cases.

While the entanglement entropy at the center of the system
shows a peak for the bright soliton, it possesses a minimum for
the dark soliton. This can be understood by the fact that the dark
soliton has fewer particles at the center of the system and so
quantum fluctuations are less pronounced. Due to particle-hole
symmetry, the dark and bright soliton evolutions for ρ0 � 1/2
possess the same behavior.

The behavior of the entanglement entropy can be compared
to the local spin fluctuations and correlations in the system.
In the mean-field approach, at all times the coherent spin
state enforces that ρ

s(MF)
i = ρi(1 − ρi). This relation can be

expressed in terms of spin observables, leading to 〈Sx
i 〉2 +

〈Sy

i 〉2 + 〈Sz
i 〉2 = 1/4 on each site, realizing a constraint on

the local spin fluctuations. In the full quantum dynamics, this
constraint is broken, so that the initial coherent state becomes
modified, and entanglement is induced in the system [67].

The entanglement entropy is related to the long-distance
correlations and has been extensively studied in spin systems
[68–72]. It is therefore interesting to consider the growth of
correlations in our system in the course of the time evolution.
For simplicity, and since they are the most relevant ones for
experiments, we consider nearest-neighbor spin correlations
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FIG. 8. (Color online) Entanglement
entropies as a function of the subsystem
size of the stationary bright soliton (top)
and dark solitons (bottom) at different
times for V/J = 0.95.

〈Si · Si+1〉 − 〈Si〉 · 〈Si+1〉. The results shown in Fig. 9 show
similar behavior to the entropy dynamics.

C. Gaussian initial states

In this section, we test the stability of the discrete HGPE
soliton solutions to modifications of the initial state. Specifi-
cally, we compare the time evolution of these solitons to that
of a Gaussian initial state (both obtained using the adaptive
t-DMRG)

ρ(x) ∼ e
− x2

2σ2 , (17)

FIG. 9. (Color online) Top: Contour plot of the time evolution
of the nearest-neighbor spin correlations 〈Si · Si+1〉 − 〈Si〉 · 〈Si+1〉
on the whole lattice for the stationary bright soliton (left) and the
dark soliton (right) for ρ0 = 0.25 and V/J = 0.95. Bottom: Time
evolution of the entanglement entropy for the same parameters.

which might be easier to implement in experiments [24,25,73].
We analyze the dynamics for initial states with and without a
phase shift of π across the center in order to compare the
evolution of an initial state with a similar shape and phase
properties as the HGPE soliton to one which has only a similar
shape. As discussed in Sec. III B, the initial state is created via
a Gaussian external field.

The obtained results are shown in Fig. 10. As can be
seen, the Gaussian state with a phase jump remains stable
and appears to be a very good approximation to the discrete
HGPE soliton. In contrast, without the phase jump, the initial
wave packet quickly disperses. Note that, due to the lattice,
the wave packet can disperse by creating two peaks moving in
opposite directions. This is due to the deviation of the cos(k)
dispersion of the lattice from the dispersion ∼k2 of a free
particle and comes into appearance if the number of particles
is high enough.

We conclude, therefore, that once the phase jump is imple-
mented, it is not necessary in the experiments to implement
initial states which have exactly the form of the discrete HGPE
solitons.

V. EXPERIMENTAL REALIZATIONS

In this section, we discuss possible realizations of the
models introduced in Sec. II. We start with the experimental
implementation of the extended Bose Hubbard model, Eq. (2),
and its fermionic variant. The nearest-neighbor interaction
term V can be possibly generated in bosonic or spin-polarized
fermionic systems via long-range electric [74] or magnetic [75]
dipolar interactions, as discussed below, or with a short-range
interaction between atoms in higher bands of the lattice [76].
The hard-core constraint for bosons requires increasing the
interactions so that there is a large energy difference between
states with a different number of bosons per site. This can
be achieved by tuning the scattering length via a Feshbach
resonance [77]. Note that, in this type of implementation in
which the spin-1/2 degrees of freedom correspond to sites
with zero and one atom, the sign of the U and V interaction
is determined by the scattering length and thus is the same
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FIG. 10. (Color online) Comparison of the t-DMRG evolution
of a bright (top) and dark (bottom) discrete HGPE soliton (#) to the
evolution of an initial Gaussian state with (+) and without (∗) phase
imprinting for ρ0 = 0.25 and V/J = 0.95.

for both. In our proposal, we need attractive V interaction, so
also the Hubbard U will be attractive. However, note that, also
in this case, it is possible to realize the hard-core constraint:
even though the states with one or zero atom per site do not
belong to the ground-state manifold, when prepared, they are
metastable since there is no way to dump the excess energy, at
least when prepared in the lowest band [78]. This is since the
bandwidth in a lattice is finite, which is known to lead also to
repulsively bound pairs [79]. In our case, however, it prevents
double occupancies, which for |U | → ∞ corresponds to
the HCB limit. A possible way to proceed then is to prepare the
ground state in the repulsive side of the Feshbach resonance
and then quickly ramp the magnetic field to the attractive side
in which the evolution takes place. The atoms now are still
in the lowest band and need to be promoted to higher bands
using, for example, similar techniques to the ones discussed in
Ref. [80]. Note that the requirement of populating higher bands
can indeed lead to an additional relaxation. In the fermionic
system the decay to the lowest band can be blocked by filling
the lowest band. The lifetime of bosons in higher bands on

the other hand does require further investigation but at least
recent experiments in 2D [80] reveal that it can be 10 to 100
times longer than the characteristic time scale for intersite
tunneling.

In a recent proposal, it is shown that the XXZ spin model
Eq. (1) and the spinless fermion model Eq. (3) both can be
realized in systems of polar molecules on optical lattices, even
though with a long-range 1/r3 decay of the interactions rather
than nearest-neighbor interactions only. Two different paths
allow the study of the soliton dynamics in such experiments:
First, as discussed in detail in Refs. [44,45], the spin model
Eq. (1) can be directly implemented in the case of unit filling
(i.e., one molecule per site of the optical lattice) by selecting
two rotational eigenstates of the molecules which emulate
the two spin degrees of freedom of the S = 1/2 chain. The
parameters of the system can then be tuned via external dc
electrical and microwave fields. The second implementation is
by populating the lattice with molecules which are all in the
same rotational eigenstate, emulating a spin-polarized system.
Since the dipolar interaction decays quickly, we presume
that the effect of the interactions beyond nearest neighbor
on the soliton dynamics should be very small, so that both
realizations can be used to study the soliton dynamics. We
leave a detailed study of the effect of the interaction terms
beyond nearest-neighbor sites on the dynamics of the solitons
to further studies.

VI. SUMMARY

We have analyzed the stability and lifetime of HGPE
solitons on 1D lattice systems driven by an XXZ Hamiltonian
which can model the behavior of bosonic atoms, fermionic
polar molecules, spin systems, and spin-polarized itinerant
fermions on optical lattices and in condensed matter systems.
We compare the dynamics obtained in a mean-field approxima-
tion to the full quantum evolution obtained using the adaptive
t-DMRG and find that the solitons remain stable under the
full quantum evolution on time scales t ∼ 20/J , where J/2 is
the unit of the hopping. This is quantified by the entanglement
entropy which remains smaller than the one in the ground state
of the corresponding spin system and significantly smaller
then the one of a maximally entangled state on this time scale.
Similar to the findings of Refs. [38,39], for longer times the
soliton decays. However, given the time scales reachable by
ongoing experiments with optical lattices, this should suffice
to identify this effect in the laboratory. In addition, we find that
imperfections in the creation of the initial state should be of
minor importance, as long as the density profile and the phase
jump are similar to the ones of the proposed soliton solutions.
This is exemplified by a Gaussian initial state, which in the
case of a phase jump shows good agreement with the soliton
solution, while in the absence of the phase jump it becomes
completely unstable. Due to the tunability of parameters either
via Feshbach resonances for atomic systems or via electric
and microwave fields in the case of polar molecules, the pos-
sibility of realizing both, bright and dark solitons in strongly
interacting systems, adds a new paradigm to the existence of
coherent nonlinear modes in systems of ultracold quantum
gases.
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