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Frustration and time-reversal symmetry breaking for Fermi and Bose-Fermi systems
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The modulation of an optical lattice potential that breaks time-reversal symmetry enables the realization
of complex tunneling amplitudes in the corresponding tight-binding model. For a superfluid Fermi gas in a
triangular lattice potential with complex tunnelings, the pairing function acquires a complex phase, so the
frustrated magnetism of fermions can be realized. Bose-Fermi mixtures of bosonic molecules and unbound
fermions in the lattice also show interesting behavior. Due to boson-fermion coupling, the fermions become
enslaved by the bosons and the corresponding pairing function takes the complex phase determined by the
bosons. In the presence of bosons the Fermi system can reveal both gapped and gapless superfluidity.
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I. INTRODUCTION

Cold atoms in optical lattices provide a unique medium for
mimicking effects known from other areas of physics. This
is primarily due to the great flexibility and the possibility of
precise manipulation of cold atomic systems [1–3]. Atoms of
a fermionic or bosonic character may be placed in an optical
lattice potential whose geometry may be easily controlled
by changing the directions and/or polarizations of laser
beams. Interactions between atoms may be controlled via
magnetic, optical, or microwave Feshbach resonances [4,5].
The change in the depth of the optical lattice modifies
primarily the tunneling between lattice sites (having also an
effect on the effective interaction strength), enabling, e.g.,
the superfluid–Mott-insulator quantum phase transition in the
optical realization of the Bose-Hubbard model as proposed by
Jaksch et al. [6] and subsequently demonstrated in Ref. [7].

Another spectacular way of controlling the tunneling has
been proposed by Eckardt, Weiss, and Holthaus [8]. Fast
periodic modulations of the optical lattice allow for an
effective, time-averaged tunneling to be totally suppressed,
keeping the depth of the lattice potential unchanged. By
varying the strength of the modulation one can induce the
superfluid–Mott-insulator quantum phase transition [8] as was
verified experimentally a few years later [9,10]. Importantly,
not only the magnitude, but also the sign of the tunneling
amplitudes can be altered using this approach. This concept
has been utilized in a recent proposition to create frustrated
magnetism with cold bosons in a triangular lattice [11],
later implemented in fascinating experiments of Struck and
co-workers [12].

The effective tunneling caused by periodic lattice modula-
tions is adequately explained in the framework of the Floquet
theory [8] for periodically time-dependent Hamiltonians. The
properties of the corresponding quasienergy spectra are known
to depend on the global symmetries of the Hamiltonian
[13–15]. Employing a similar idea, we demonstrate that
periodic perturbations that break time-reversal invariance
(TRI) not only can change the sign of the tunneling amplitudes,
but may also induce them to have complex values.

In the following, we concentrate on superfluid fermions
in the Bardeen-Cooper-Schrieffer (BCS) regime with broken

TRI. We show that typically a pairing function for s-wave
interactions acquires a complex phase which may be controlled
by the TRI-breaking mechanism considered in the present
paper (for a discussion of p-wave orbitals see [16]). We also
point out that in a Bose-Fermi mixture with broken TRI the
complex ground state of bosons affects the Fermi pairing
function. The effect is reminiscent of the disorder-induced
phase control in such mixtures discussed by one of us recently
[17]. In our case the phase control is not due to disorder but to
control over the tunneling mechanism and the TRI breaking.

II. BREAKING TIME-REVERSAL SYMMETRY

A. One-dimensional optical lattice

Let us begin, for simplicity, with a single particle in a one-
dimensional (1D) optical lattice potential driven by a double
harmonic perturbation. The Hamiltonian of the system reads

H0 = p2

2m
+ V (x) + K1x cos(ωt) +K2x cos(2ωt + ϕ), (1)

where V (x) = V (x + a) is an optical lattice potential with the
lattice constant a, and K1,2 stand for strengths of the driving at
the basic frequency ω and its second harmonic, respectively.
The Hamiltonian is time periodic, i.e., H0(t + 2π/ω) = H0(t),
and the Floquet theorem [18–20] guarantees that the so-called
Floquet Hamiltonian

H = H0 − ih̄∂t (2)

is diagonalized by periodic functions. Eigenvalues of H are
referred to as quasienergies of the system, analogous to
quasimomenta in solid state physics. They are defined modulo
h̄ω, and it is sufficient to consider a single Floquet zone (an
analog of the Brillouin zone). Periodic eigenfunctions of the
Floquet Hamiltonian can be expanded in a Fourier series, i.e.,
in a basis where time t can be considered as an additional
degree of freedom. Let us define the basis vectors

φj,m(x,t) = exp

{
−ix

[
K1

ω
sin(ωt) + K2

2ω
sin(2ωt + ϕ)

]}
× exp(imωt)Wj (x), (3)
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which fulfill

〈〈φj ′,m′ |φj,m〉〉 = ω

2π

∫ 2π/ω

0
dt

∫
dx φ∗

j ′,m′φj,m

= δj ′,j δm′,m, (4)

where m denotes a Fourier component and Wj (x) = W (x −
xj ) is a Wannier function of the lowest energy band localized
on the j th lattice site. The first phase factor on the right-hand
side (RHS) of Eq. (3) corresponds to a unitary transformation
which allows us to switch from the length gauge to the
velocity gauge using quantum optics language. The matrix
of the Floquet Hamiltonian consists of diagonal m-blocks in
the basis (3). The blocks are very weakly coupled among
themselves provided the driving frequency ω is very high.
Using the tight-binding approximation and taking into an
account nearest-neighbor tunneling only, the diagonal blocks
become

〈〈φj ′,m|H|φj,m〉〉 = −Jeffδj ′,j+1 − J ∗
effδj ′,j−1

+ (mω + E0)δj ′,j , (5)

where E0 = 〈Wj |(p2/2m + V )|Wj 〉 and the effective tunnel-
ing amplitude

Jeff = J

∞∑
k=−∞

J2k(s1)Jk(s2)eikϕ, (6)

where

si = aKi

ω
(7)

are the dimensionless strengths of the first (i = 1) and the
second (i = 2) harmonic, the bare tunneling amplitude is J =
−〈Wj+1|(p2/2m + V )|Wj 〉, and Jn is the ordinary Bessel
function. If h̄ω � J the description of a single-particle system
may be restricted to a single diagonal block

Heff = 〈〈φj ′,0|H|φj,0〉〉 = −Jeffδj ′,j+1 − J ∗
effδj ′,j−1, (8)

where the constant term E0 has been omitted.
If there is only one harmonic present in Eq. (1) or the phase

ϕ = 0, the Floquet Hamiltonian is time-reversal invariant and
H is represented by a real symmetric matrix in a generic basis
[21]. Then the effective tunneling amplitude (6) is real. Single-
harmonic driving has been used to change the interaction from
ferromagnetic (positive Jeff) to antiferromagnetic (negative
Jeff) and to realize frustrated magnetic phases [11,12]. By
breaking TRI we are able to realize nearly arbitrary complex
values of the tunneling amplitude Jeff = |Jeff|eiϕJ . In Fig. 1 we
present the absolute value |Jeff| and the phase ϕJ as functions
of the parameter s1.

The eigenstates of the Hamiltonian (8) are the Bloch waves
ψj = eikxj /

√
Ns , where Ns is the number of lattice sites, with

the dispersion relation E(k) = −2|Jeff| cos(ka − ϕJ ). Single-
harmonic driving allows for ϕJ = 0 or π and thus for the
ground state with k = 0 or with k at the edge of the first
Brillouin zone. The ground state of the system with broken
TRI may correspond to any value of k.

We have concentrated on a 1D problem. However, a
similar control of phases of the tunneling amplitudes can
also be realized in higher dimensions. Indeed, modulations
applied to the lattice along orthogonal axes enable us to
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FIG. 1. (Color online) The absolute value A (top) and the complex
phase ϕJ (bottom) of the effective tunneling amplitudeJeff/J =
A exp(iϕJ ), Eq. (6), for a double-harmonic modulation of the optical
lattice potential as a function of the dimensionless strength s1 of the
ω component for s2 = 1 [see Eq. (7)], ϕ = 0.2 (black solid lines) and
s2 = 3, ϕ = 0.5 (red dashed lines).

produce arbitrary tunnelings along the corresponding direc-
tions [11]. In the following we will focus on a 2D triangular
lattice.

B. Two-dimensional triangular optical lattice

The triangular optical lattice can be realized experimentally
by means of three laser beams. Single-harmonic modulations
of the lattice along the two orthogonal directions allow one
to control the sign of the tunneling amplitudes of particles
loaded in the lattice. This setup was used in the experiments
that demonstrated frustrated classical magnetism [12]. With
the help of double-harmonic modulations we are able to realize
any phase of the tunneling amplitudes

Jα = |Jα|eiϕα , Jβ = |Jβ |eiϕβ ; (9)

x

y

JαJα
*

Jβ
* Jβ

*

Jβ Jβ

FIG. 2. (Color online) Triangular Bravais lattice points (black
circles) and amplitudes Jα,β corresponding to tunneling from a lattice
point to its nearest neighbors.
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see Fig. 2. Eigenstates of a single particle in such a lattice are
Bloch waves with the dispersion relation

E(k) = −2|Jα| cos(kxa − ϕα)

− 2|Jβ |
{

cos

[
(
√

3ky + kx)
a

2
− ϕβ

]

+ cos

[
(
√

3ky − kx)
a

2
− ϕβ

]}
. (10)

We induce a shift of the dispersion relation along the ky

direction in reciprocal space by changing the value of ϕβ (with
the other parameters fixed). The modification of ϕα alters the
structure of the dispersion relation. It can reveal a doubly
degenerate ground state for ϕα = π . The presence of such
a degeneracy has been observed experimentally in a Bose
system [12]. For example, for Jα = Jβ = −|Jβ | the system
in most experimental realizations chooses spontaneously one
of two ground states. With the double-harmonic modulation
breaking TRI, the two degenerate minima for ϕα = π can be
moved arbitrarily along the ky direction with a change of ϕβ ;
see Fig. 3.

In the experiment [12] a Bose-Einstein condensate (BEC)
was prepared in a triangular lattice. Although in that case
particle interactions are present, the ground state is still
determined by the single-particle dispersion relation (10).
Indeed, assuming a homogeneous system (which is a good
approximation of the experimental situation), the solution of
the Gross-Pitaevskii equation has the chemical potential given
by μB = E(k) + nBUB , where UB characterizes the on-site
particle interactions and nB is the average number of bosons
per a lattice site. We would like to stress that in the presence
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FIG. 3. (Color online) Contour plots of the dispersion relation
Eq. (10) for |Jα| = |Jβ | and ϕα = ϕβ = π/2 (a) and ϕα = π and
ϕβ = π/4 (c); cool colors indicate regions around energy minima.
In the right panels the directions of the arrows indicate the phases
eik·ri , where k corresponds to a minimum of the dispersion relation.
Specifically ka = (π/3,π/

√
3) for the minimum in (a) and ka =

(+2π/3,π/2
√

3) for one of the two degenerate, nonequivalent
minima in (c). The arrows in (b) and (d) relate to (a) and (c),
respectively.

of interactions, the restriction to a single block of the Floquet
Hamiltonian as in Eq. (8) is valid provided h̄ω � UB [8]. On
the other hand, h̄ω must be much smaller than the energy
separation between bands of the periodic lattice problem for
the description limited to the lowest band to be valid.

III. FERMIONS IN A TRIANGULAR LATTICE

Frustrated classical magnetism in a triangular optical lattice
has been demonstrated experimentally in a Bose system
[12]. Within the mean-field approximation the Bose-Einstein-
condensate wave function is a Bloch wave with wave vector
corresponding to the minimum of the dispersion relation (10).
For antiferromagnetic interactions the system experiences
frustration, because the tendency of the wave function to
change phase by π , when we jump between neighboring sites,
cannot be reconciled with the triangular lattice geometry.

Consider now a mixture of fermions in different internal
states (say spin-up ↑ and -down ↓ states) with attractive contact
interactions in a 2D triangular optical lattice. We assume that
the double-harmonic modulation of the lattice allows us to
adjust any phase of the complex tunneling amplitudes (9). In
the tight-binding approximation the Hamiltonian of the Fermi
system reads

ĤF = −
∑
〈ij〉

Jij (â†
i↑âj↑ + â

†
i↓âj↓) − μ

∑
i

(n̂i↑ + n̂i↓)

−U
∑

i

â
†
i↓â

†
i↑âi↑âi↓, (11)

where the operator âi↑ annihilates a spin-up fermion at
site i, n̂i,↑ = â

†
i↑âi↑, and similarly for spin-down fermions.

The tunneling amplitude Jij = J ∗
ji and it is equal to Jα or

Jβ , Eqs. (9), depending on the direction of the tunneling
in the triangular lattice; see Fig. 2. The parameter U > 0
characterizes the interspecies, on-site, attractive interactions
and μ stands for the chemical potential of the Fermi system.

The standard BCS approach [22] leads to the effective
Hamiltonian

HF,eff = −
∑
〈ij〉

Jij (â†
i↑âj↑ + â

†
i↓âj↓) − μ

∑
i

(n̂i↑ + n̂i↓)

+
∑

i

(�i â
†
i↑â

†
i↓ + �∗

i âi↓âi↑), (12)

where the pairing function

�i = U 〈âi,↑âi,↓〉. (13)

If the phases of the tunneling amplitudes (9) are zero
the ground state of the system corresponds to a constant
pairing function �i = const. However, the pairing function
can acquire a nontrivial phase when the tunneling amplitudes
become complex. In order to find the ground state of the system
let us look for the solutions of the Bogoliubov–de Gennes
equations in the form[

uk(ri)
vk(ri)

]
= eik·ri

√
Ns

[
Uk eik0·ri

Vk e−ik0·ri

]
, (14)

where Uk and Vk satisfy[
E(k + k0) − μ �̄

�̄∗ − Ẽ(k − k0) + μ

][
Uk
Vk

]
= εk

[
Uk
Vk

]
, (15)
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and |Uk|2 + |Vk|2 = 1. In Eqs. (15), E(k) is the dispersion rela-
tion (10) while Ẽ(k) = E(k; ϕα → −ϕα,ϕβ → −ϕβ). Solving
(15), we obtain the eigenvalues

εk,± = E(k + k0) − Ẽ(k − k0)

2
± δεk, (16)

where

δεk =
√

[E(k + k0) + Ẽ(k − k0) − 2μ]2

4
+ |�̄|2. (17)

The excitation spectrum of the system, i.e., the upper branch
εk,+, may become negative for some k. In such a case,
the corresponding quasiparticles are present even at zero
temperature. Therefore, at T = 0, the proper equation for �̄

reads

�̄ = U

Ns

∑
k

�̄

2 δεk
[1 − 2θ (−εk,+)], (18)

where the Heaviside function θ (−εk,+) ensures that quasipar-
ticles corresponding to the negative-energy spectrum are also
included [22]. Finally the desired pairing function becomes

�i = U
∑

k

uk,+(ri)v
∗
k,+(ri)[1 − 2θ (−εk,+)]

= ei2k0·ri �̄. (19)

When we switch from ϕα = ϕβ = 0 to ϕα = 0 and ϕβ �=
0, the minimum of the dispersion relation (10) is shifted
from k = 0 to k = k0 = (0,

2ϕβ

a
√

3
). In the ground state of the

system fermions occupy energy levels starting from the new
minimum up to the Fermi level. Thus, all fermions acquire
quasimomentum k0 and consequently the pairing function gets
the quasimomentum 2k0; see (19).

For |Jα| = |Jβ | and ϕα = π , there are two nonequivalent,
degenerate minima of E(k). For example, for ϕβ = π/4 they
are located at k = (± 2π

3a
, π

2a
√

3
); see Fig. 3(c). In the ground

state, fermions occupy energy levels with quasimomenta
around both of the minima. A nonzero pairing function exists
for different values of k0. However, for k0 = (0, π

2a
√

3
) we

obtain the lowest energy of the Hamiltonian (12). A slight
change of k0 causes a rapid decrease of the energy gap in
the excitation spectrum (16). In Fig. 4(a) we present the
Fourier transform |�k|2 of the pairing function, where �k =∑

i �ie
−ik·ri /

√
Ns , obtained numerically for a finite system.

For the chemical potential μ = 0, which corresponds to the
half-filling regime for noninteracting particles, |Jβ |/|Jα| = 1,
U/|Jα| = 2, we obtain |�i |/|Jα| = 0.111 at the center of the
lattice, which agrees with the analytical solution �̄/|Jα| =
0.109 for an infinite lattice. In Fig. 4(a) we see that even for
the lattice of 60 × 60 sites there exists a clearly resolved peak
at k ≈ 2k0 = (0, π

a
√

3
).

As was discussed in Ref. [12], Bose systems can simulate
frustrated classical magnetism. We show that a similar phe-
nomenon can be simulated in the Fermi system. Indeed, in a
triangular lattice with complex tunnelings, the phase of the
complex pairing function is the one that is mapped onto the
orientation of the classical spins.

FIG. 4. (Color online) Modulus squared of the Fourier transform
of the BCS pairing function |�k|2, where �k = ∑

i �ie
−ik·ri /

√
Ns ,

obtained numerically for a finite system of 60 × 60 lattice sites for
|Jα| = |Jβ |, ϕα = π , ϕβ = π/4, U/|Jα| = 2, and μ = 0. (a) shows
|�k|2 corresponding to the ground state of the isolated Fermi system.
(b) presents similar results but for the Fermi system coupled to
a Bose-Einstein condensate, with wave function ψi = √

nBeiq0·ri ,
where γ

√
nB/|Jα| = 2.3. Note that the peak in (a) is located at ka =

(0.00,1.78) ≈ (0,π/
√

3) while in (b) it is at ka = (2.09,0.89) ≈
q0a = (+2π/3,π/2

√
3).

IV. BOSE-FERMI MIXTURE IN A TRIANGULAR LATTICE

In this section we consider a situation when fermions
coexist with molecular dimers—pairs of spin-up and spin-
down fermions. The dimers form a Bose-Einstein condensate.
Such a mixture can be prepared by sweeping the system over a
Feshbach resonance that creates a molecular BEC and leaves
some fraction of unbound, repulsively interacting fermions.
Then by crossing a second Feshbach resonance one is
able to change the interactions between fermions from re-
pulsive to attractive, turning unbound fermions into BCS
pairs [17]. The process does not affect molecular BEC at the
same time. For this purpose the Feshbach resonances at 202
and 224 G for 40K atoms [23] seem to be quite suitable. We also
assume the presence of a weak coupling that transforms dimers
into unbound fermions and vice versa. It can be realized via
photodissociation and photoassociation. For a large molecular
BEC the weak coupling does not significantly influence
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the condensate wave function and therefore we neglect the
dynamics of the BEC. The system under our consideration
can be reduced to the following Hamiltonian:

Ĥ = ĤF + ĤBF , (20)

with

ĤBF = γ
∑

i

(ψ∗
i âi↓âi↑ + ψi â

†
i↑â

†
i↓), (21)

where the BEC wave function ψi = √
nBeiq0·ri is the ground-

state solution for bosons in a triangular lattice, i.e., q0

corresponds to the minimum of the dispersion relation (10).
For reasons of simplicity but without loss of generality we
choose the same dispersion relation for molecules and for
fermions. In the system under consideration, the tunneling
amplitudes for molecules in a shaken optical lattice depend on
a molecular state populated in the photoassociation process.
The details of this process are not considered in the present
paper. The coupling constant γ characterizes transfer of dimers
into unbound fermions and vice versa. We consider real γ � 0.

In the presence of the condensate of dimers the BCS
effective Hamiltonian (12) has to be supplemented with (21),
that is,

Ĥeff = ĤF,eff + ĤBF . (22)

In the presence of bosons, if k0 = q0/2, a simple analytical
solution (14) of the corresponding Bogoliubov–de Gennes
equations exists. This solution need not correspond to the
ground state of the system. However, we will see that for
sufficiently strong coupling between bosons and fermions
this becomes the ground-state solution. Employing (14) with
k0 = q0/2, we obtain the following equation for �̄:

�̄ = U

Ns

∑
k

�̄ + γ
√

nB

2δεk
[1 − 2θ (−εk,+)], (23)

where, in the present case, the excitation spectrum is

εk,+ = E(k + q0/2) − Ẽ(k − q0/2)

2
+ δεk, (24)

with

δεk =
[

[E(k + q0/2) + Ẽ(k − q0/2) − 2μ]2

4

+ |�̄ + γ
√

nB |2
]1/2

, (25)

and the resulting pairing function

�i = eiq0·ri �̄. (26)

Let us concentrate on the triangular lattice with |Jβ |/|Jα| = 1,
ϕα = π , and ϕβ = π/4 that corresponds to the dispersion
relation plotted in Fig. 3(c). The dispersion relation reveals
two nonequivalent minima, but the solution of the Gross-
Pitaevskii equation for bosons chooses the Bloch wave with
the quasimomentum corresponding to one of the minima. The
signatures of such a spontaneous symmetry breaking have
been observed experimentally [12]. We assume that the Bose
system chooses q0 = (+ 2π

3a
, π

2a
√

3
) and analyze its influence on

the Fermi system.

We consider the system with μ = 0. If γ = 0 Cooper pairs
with the quasimomentum q0 do not exist, i.e., �̄ = 0 is the only
solution of (23). If coupling between bosons and fermions is
present, but γ

√
nB/|Jα| < 2.112, the system reveals gapless

superfluidity [22]. Cooper pairs with the quasimomentum q0

appear (�̄ �= 0), but there is no energy gap in the excitation
spectrum. The system possesses quasimomenta k for which
the excitation energies εk,+ < 0 and consequently the corre-
sponding quasiparticles are present even at T = 0. Concerning
the ground state of the system, numerical solutions of the
Bogoliubov–de Gennes equations are analyzed. It is found that
an increase in the parameter γ causes a gradual enlargement
of the peak at k = q0 in the Fourier transform of the pairing
function, together with a reduction of the peak at k = (0, π

a
√

3
)

(the solution in the absence of bosons considered in the pre-
vious section). For γ

√
nB/|Jα| ≈ 0.3 we observe a crossover:

the peak at k = (0, π

a
√

3
) becomes hardly visible and the ground

state starts to be well reproduced by the pairing function (26).
For γ

√
nB/|Jα| � 2.112 an energy gap shows up, εk,+ > 0.

There is no quasiparticle at zero temperature and the pairing
function (26) is related to the ground state of the system. In
Fig. 4(b) we show the Fourier transform of the pairing function
obtained numerically for a triangular lattice of 60 × 60 sites
where the strong peak at k ≈ q0 is clearly visible. The pairing
function at the center of the lattice is |�i |/|Jα| = 0.891 and
the energy gap in the excitation spectrum is 0.187|Jα|. Those
numbers agree with the solutions for an infinite system, i.e.,
�̄/|Jα| = 0.891 and min(εk,+) = 0.194|Jα|.

Thus, we can describe the behavior of the system in the
following way. In a triangular optical lattice with complex
tunnelings, we are able to realize a BEC in the ground state
with wave vector located at an arbitrary position in reciprocal
space. If superfluid fermions are also present in the lattice
and there is sufficiently strong coupling between fermions and
bosons, the phase of the BCS pairing function reflects the
phase of the BEC wave function.

V. CONCLUSIONS

In summary, we have shown that time-reversal symmetry
breaking in an optical lattice potential allows us to realize
complex tunneling amplitudes in the corresponding tight-
binding model. We have considered a simple scheme of
symmetry breaking by means of two harmonic modulations
of the lattice, but the generalization to more complicated
modulations is straightforward.

We have studied a fermionic system as well as a Bose-
Fermi mixture in a triangular lattice potential with complex
tunnelings. In such a lattice the Bose system can simulate
frustrated classical magnetism [12]. We have shown that this
behavior is similar for fermions where the pairing function
acquires a complex phase. Assuming the presence of a
coupling mechanism—an exchange of unbound fermions and
bosonic molecules—we have shown that the complex phase of
the Bose wave function is mapped to the fermions as reflected
in the Fermi pairing function.

We became aware very recently of Ref. [24], where the
authors consider a similar idea for realization of complex
tunneling amplitudes in Bose systems both theoretically and
experimentally.
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