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Collective modes of a spin-orbit-coupled Bose-Einstein condensate: A hydrodynamic approach
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We studied the collective modes of a Bose-Einstein condensate (BEC) with spin-orbit coupling. We developed
the hydrodynamic equations for spin-orbit coupled BECs and used them to study collective modes in the
plane-wave phase and large Rabi coupling regime for both a uniform BEC and a BEC in a harmonic trap. In
the homogeneous situation, we obtained energy spectra of elementary excitations and found that the spin-orbit
coupling can increase the effective mass of the atoms, which will suppress the sound velocity. The spin-orbit
coupling can also change the spin mixing, which will modify the interaction energy, and may lead to an
enhancement of sound velocity. The competition between these two effects gives the behavior of sound velocity.
In a harmonic trap, we found that the dipole mode and the breathing mode are coupled together in the plane-wave
phase, and these two modes have a π/2 phase difference, because the spin-orbit coupling and the interaction are
not invariant under spin rotation. However, in the large Rabi coupling regime, the dipole mode and the breathing
mode are decoupled due to the symmetry restriction.
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I. INTRODUCTION

Spin-orbit (SO) coupling is an interaction between a
quantum particle’s spin and its momentum. SO coupling plays
an important role in condensed-matter physics. In electronic
systems, it leads to some novel concepts, such as the quantum
spin Hall effect and topological insulators [1], which have
potential applications in spintronics and topological quantum
computations. On the other hand, in cold-atom systems, a main
subject is to simulate condensed-matter physics with dilute
neutral atoms. Since atoms are neutral, they cannot interact
with external electromagnetic fields. However, a synthetic
gauge field, both Abelian or non-Abelian, can be coupled
to neutral atoms by engineering the interactions between
atoms and laser fields (for a review, see [2]). SO coupling
is the simplest non-Abelian gauge potential, which is spatially
independent. During 2009 to 2011, the NIST Group has
successively realized uniform vector potentials [3], synthetic
magnetic fields [4], electric fields [5], and SO coupling
in a 87Rb Bose-Einstein condensate (BEC) [6], which is
a combination of equal Rashba and Dresselhaus strengths.
The SO-coupled BECs began to attract attention over last
few years. Their ground-state properties [7–9], fluctuations
above the ground state [10,11], and SO-coupled BECs with
other cold-atom techniques, such as dipole-dipole interactions,
optical lattice and rotating trap [12], have been studied.
Recently, SO-coupled degenerate Fermi gases have also been
realized with 40K atoms [13].

In cold-atom systems, collective modes, which are the
low-energy excitations of a quantum gas, can be measured
precisely [14,15]. Measuring the collective modes can help us
to understand the physics of a quantum many-body system
[16]. By measuring the splitting between two quadrupole
modes, one can probe the angular momentum of a rotating
BEC [17]. Studying scissors modes can give us direct evidence
for superfluidity of a trapped BEC [18]. Observation of
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a damped dipole mode of a one-dimensional BEC in a
combined harmonic trap and optical lattice demonstrates
the important role of quantum fluctuations in an optical
lattice [19]. Measurement of breathing modes allows us to
test the Lee-Huang-Yang correction beyond the mean-field
theory of a strongly interacting quantum gas [20]. Recently,
the center-of-mass motion of BECs under artifical gauge
potential has be studied by numerical computation [21] and
by experiment [22,23].

There are various methods of studying the collective modes,
such as the sum rule method, the hydrodynamic approach, and
the variational method. The hydrodynamic approach describes
a quantum liquid or gas using few variables, such as densities
and velocities. For a BEC in a trap, hydrodynamic equations
are valid in the Thomas-Fermi (TF) regime, Nas/aho � 1,
where the interaction energy dominates the dynamics of the
condensate [16]. (Here N is the number of atoms, as is the
s-wave scattering length, and aho is the length of the harmonic
trap.)

In this paper, we studied the collective modes of a BEC with
SO coupling realized in the NIST experiments. We developed
the hydrodynamic equations for SO-coupled BECs, and used
them to study the low-energy excitations in the plane-wave
phase and large Rabi coupling regime both for a uniform BEC
and a BEC in a trap. In the homogeneous situation, we obtained
an energy spectrum of elementary excitations. In the long-
wavelength limit, the elementary excitation is the sound wave
in the condensate. We found that SO coupling can increase the
single-particle effective mass of the atoms, which will suppress
the sound velocity. However, SO coupling can also change the
spin mixing, which will modify the interaction energy, and may
lead to an enhancement of sound velocity. The competition
between these two effects gives the behavior of sound velocity
both in the plane-wave phase and in the large Rabi coupling
regime. Then we studied the collective modes of a SO-coupled
BEC in a harmonic trap. We found that in the plane-wave
phase, the dipole mode and the breathing mode are coupled
together, and they have a π/2 phase shift. However, in the
large Rabi coupling regime, the dipole mode and the breathing
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mode are decoupled. We did not investigate the collective
modes in the stripe phase because we cannot find an analytic
or perturbation ground-state condensate wave function for the
stripe phase which satisfies the Gross-Pitaevskii equations of
a SO-coupled BEC.

II. THE MODEL AND HYDRODYNAMIC EQUATIONS

The effective Hamiltonian of SO-coupled Bosons in the
NIST experiments is given by [6,8]:

H =
∫

d3r

(
�̂†Hs�̂ + 1

2
g11n̂

2
1 + 1

2
g22n̂

2
1 + g12n̂1n̂2

)
,

(1)
where �̂† = (ψ̂†

1 ,ψ̂
†
2) and n̂j (r) = ψ̂

†
j (r)ψ̂j (r), j = 1,2.

ψ̂1,2(r) are the field operators of two-component bosons (spin-
up and spin-down). gij is the interaction strength between the
atoms. Hs is the single-particle Hamiltonian, which is given
by

Hs = 1

2m
(−i∂x − k0σz)

2 − 1

2m
∂2
y − 1

2m
∂2
z

+�σx + hσz + V (r). (2)

Here m is the mass of the atoms; � is the Rabi coupling
between spin up and spin down. k0σz is the vector potential;
h is the Zeeman splitting between spin up and spin down; and
V (r) is the trapping potential. Here we set h̄ = 1.

Consider a simple case with h = 0, V (r) = 0, g11 = g22 =
g, and g12 = ηg. One can see in this situation that the
Hamiltonian is invariant under space inversion. When η = 1,
the interactions between atoms are SU(2) invariant under spin
rotation. However, in general, η �= 1, and the SU(2) symmetry
is broken. Since the SO coupling here is only in the x direction,
we can treat the system as a one-dimensional system. The
single-particle Hamiltonian is reduced into

Hs = 1

2m
(−i∂x − k0σz)

2 + �σx . (3)

The single-particle spectrum can be obtained by diagonalizing
(3):

ε±(k) = 1

2m

(
k2 + k2

0

) ±
√

(k0k/m)2 + �2. (4)

There are two branches of a single-particle spectrum. When
� < k2

0/m, the lower branch has a double-well structure, with
two degenerate single-particle ground states at k = ±km =
±k0

√
1 − ( �

k2
0/m

)2 [see Fig. 2(a)]. When � > k2
0/m, the lower

branch has only one minimum at k = 0 [see Fig. 6(a)]. The
single-particle wave functions in the upper and lower branch
are given by

φ
up
k (x) = 1√

L
exp(ikx)

(
cos (γk/2)

sin(γk/2)

)
, (5)

φlow
k (x) = 1√

L
exp(ikx)

(− sin (γk/2)

cos (γk/2)

)
, (6)

where L is the length of the system, and sin γk =
�/

√
(k0k/m)2 + �2. The single-particle wave function re-

veals that the direction of the spin is coupled to the momentum
of the atom. When the momentum of an atom changes, the

direction of its spin will rotate, and 〈σz〉 will also be changed.
This is the essence of SO coupling.

In the � < k2
0/m regime, assume that all atoms condense

on a superposition state of the two degenerate single-particle
states in the lower branch. The condensate wave function can
be written as

ψ(x) =
√

N
[
cos

χ

2
φlow

km
(x) + sin

χ

2
φlow

−km
(x)

]
, (7)

where cos (χ/2) and sin (χ/2) are the superposition coef-
ficients. Substituting Eq. (7) into the Hamiltonian (1), one
obtains the mean-field energy up to a constant, which is a
function of χ ,

E = 1
4Ngρ

{
[2 + (η − 1) sin2 γkm

] + 1
2 sin2 χ (2 cos2 γkm

+ sin2 γkm
)(η − ηc)}, (8)

where ρ = N/L is the average density of the condensate, and
ηc is given by

ηc = 2 − tan2 γkm

2 + tan2 γkm

. (9)

Minimizing the mean-field energy with respect to χ , we find
two distinct phases. For η < ηc, we have sin2 χ = 1. This
is the so-called stripe phase, in which atoms condense on
a superposition state of k = km and k = −km. For η > ηc,
we have sin2 χ = 0. This is the plane-wave phase, in which
atoms condense on a single plane-wave state k = km or k =
−km. When increasing η across ηc, there will be a quantum
phase transition from the stripe phase to the plane-wave phase
[8]. The total density of this system can be obtained from a
condensate wave function (7),

ρ(x) = N

L
(1 + sin χ sin γkm

cos 2kmx). (10)

One can see that in the stripe phase, the total density is
modulated by a wave vector 2km, while in the plane-wave
phase, the density is uniform. The stripe phase breaks the
translational symmetry, while the plane wave breaks the
time-reversal symmetry and parity symmetry. They both break
the U(1) gauge symmetry of total phase.

In the � > k2
0/m regime, most atoms condense at the k = 0

state. Therefore, the condensate wave function can be written
as

ψ(x) =
√

N

L

(−1/
√

2
1/

√
2

)
, (11)

and the mean-field energy is

E = 1
4Ngρ(1 + η). (12)

In the � > k2
0/m regime, the condensate also breaks the U(1)

gauge symmetry of the total phase. The phase diagram of this
SO-coupled BEC is shown in Fig. 1. In this paper, we consider
only the collective modes in the plane-wave phase and in the
� > k2

0/m regime.
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FIG. 1. (Color online) Phase diagram of a SO-coupled BEC.
When � < k2

0/m, the lower branch of the single-particle spectrum has
a double-well structure. When � > k2

0/m, the lower branch has only
one minimum. The phase boundary of the stripe phase is determined
by Eq. (9).

From Hamiltonian (1), the time-dependent Gross-Pitaevskii
(GP) equations of SO-coupled BECs are given by

i∂tψ1 =
[

1

2m
(−i∂x − k0)2 + V (x) + g|ψ1|2

+ ηg|ψ2|2 − μ

]
ψ1 + �ψ2, (13)

i∂tψ2 =
[

1

2m
(−i∂x + k0)2 + V (x) + g|ψ2|2

+ ηg|ψ1|2 − μ

]
ψ2 + �ψ1, (14)

where μ is the chemical potential and ψj are the condensate
wave functions of two components. Let ψj = √

ρj exp(iθj );
the real parts of Eqs. (13) and (14) give

−∂θ1

∂t
= − 1

2m

∂2
x

√
ρ1√

ρ1
+ 1

2m
(∂xθ1 − k0)2 + V (x) + gρ1

+ηgρ2 − μ + �

√
ρ2

ρ1
cos(θ1 − θ2), (15)

−∂θ2

∂t
= − 1

2m

∂2
x

√
ρ2√

ρ2
+ 1

2m
(∂xθ2 + k0)2 + V (x) + gρ2

+ ηgρ1 − μ + �

√
ρ1

ρ2
cos(θ1 − θ2), (16)

respectively, and the imaginary parts give

∂ρ1

∂t
= − 1

m
∂x [ρ1(∂xθ1 − k0)] − 2�

√
ρ1ρ2 sin(θ1 − θ2),

(17)
∂ρ2

∂t
= − 1

m
∂x [ρ2(∂xθ2 + k0)] + 2�

√
ρ1ρ2 sin(θ1 − θ2).

(18)

Those equations about ρj and θj are so-called hydrodynamic
equations for SO-coupled BECs. The low-energy excitations
can be obtained by considering small deviations from the
ground state.

III. THE EXCITATIONS OF A HOMOGENEOUS BEC IN
THE PLANE-WAVE PHASE

First let us consider the low-energy excitations for a homo-
geneous SO-coupled BEC in the plane-wave phase, where the
external potential V (r) is a constant. The first step is to find
out the ground-state condensate wave function satisfying the
GP equations. Since it is difficult to find an analytic ground-
state wave function, we employed a perturbation treatment.
Considering � � k2

0/m, the term �σx can be treated as a
perturbation. One obtains the ground-state condensate wave
function in the plane-wave phase up to second order of � as

� = √
ρ exp (ik0x)

(
1 − �2/2f 2

−�/f

)
, (19)

where f = 2k2
0/m + (η − 1)gρ and the corresponding chem-

ical potential is μ = gρ − 2k2
0/m

f 2 �2. It is easy to verify that the
condensate wave function (19) satisfies the GP equations (13)
and (14) up to �2. This condensate wave function gives the
densities and phases of spin-up and spin-down components
in ground state as ρ

g
1 = ρ(1 − �2/f 2), ρ

g
2 = ρ�2/f 2 and

θ
g
1 = k0x, θ

g
2 = k0x + π . We note that the phase difference

between spin-up and spin-down components is locked to π by
Rabi coupling � in the ground state. We substitute ρ

g
1,2 and θ

g
1,2

into the hydrodynamic equations (15)–(18), and find that they
satisfy the hydrodynamic equations up to �2. That implies
ρ

g
1,2 and θ

g
1,2 are the equilibrium solutions of the SO-coupled

hydrodynamic equations.
Considering small fluctuations of densities and phases

above the ground state ρj = ρ
g
j + δρj , θj = θ

g
j + δθj , substi-

tuting the fluctuations into the hydrodynamic equations, and
keeping to linear terms, we obtain

∂δρ1

∂t
= −ρ

g
1

m
∂2
x δθ1 + 2�

√
ρ

g
1ρ

g
2 (δθ1 − δθ2) , (20)

∂δρ2

∂t
= −ρ

g
2

m
∂2
x δθ2 − 2�

√
ρ

g
1ρ

g
2 (δθ1 − δθ2) − 2k0

m
∂xδρ2,

(21)

−∂δθ1

∂t
= − 1

4mρ
g
1

∂2
x δρ1 + gδρ1 + ηgδρ2

−�

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

δρ2 −
√

ρ
g
2

ρ
g3
1

δρ1

⎞
⎠ , (22)

−∂δθ2

∂t
= − 1

4mρ
g
2

∂2
x δρ2 + gδρ2 + ηgδρ1

−�

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

δρ1 −
√

ρ
g
1

ρ
g3
2

δρ2

⎞
⎠ + 2k0

m
∂xδθ2.

(23)

These equations describe the fluctuations of a homogeneous
SO-coupled BEC in the plane-wave phase. To find out
traveling-wave solutions, we assume

δρj (x,t) = δρj cos(kx − ωt), (24)

δθj (x,t) = δθj sin(kx − ωt). (25)

Substituting these ansatzes into Eqs. (20)–(23), one obtains an
eigenequation as
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ρ
g
1 k2

m
+ 2�

√
ρ

g
1ρ

g
2 −2�

√
ρ

g
1ρ

g
2

0 2k0k

m
−2�

√
ρ

g
1ρ

g
2

ρ
g
2 k2

m
+ 2�

√
ρ

g
1ρ

g
2

k2

4mρ
g
1

+ g + �
2

√
ρ

g
2

ρ
g3
1

ηg − �
2

/√
ρ

g
1ρ

g
2 0 0

ηg − �
2

/√
ρ

g
1ρ

g
2

k2

4mρ
g
2

+ g + �
2

√
ρ

g
1

ρ
g3
2

0 2k0k

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

δρ1

δρ2

δθ1

δθ2

⎞
⎟⎟⎟⎠ = ω

⎛
⎜⎜⎜⎝

δρ1

δρ2

δθ1

δθ2

⎞
⎟⎟⎟⎠ .

Numerically solving this eigenequation, one obtains the
excitation spectrum of a SO-coupled BEC in the plane-wave
phase, which is displayed in Fig. 2(b). The excitation spectrum
has two branches, consisting of the single-particle spectrum.
The lower branch is gapless, which is a Goldstone mode,
corresponding to the spontaneous breaking of U(1) gauge
symmetry of the total phase. The upper branch is gapped,
since the Rabi coupling �σx locks the relative phase between
spin-up and spin-down components, so the fluctuations of
relative phase will cost finite energy.

We note that the spectrum of elementary excitation is
unsymmetrical under k → −k. In the plane-wave phase, most
atoms condense in the k = km or k = −km state, so the
parity symmetry is spontaneously broken. However, at long
wavelength, k → 0, the excitation spectrum is symmetric and
linear, ω(k) = c |k|, corresponding to the sound wave in the
condensate, and c is just the sound velocity. By tuning the
coupling � and interaction parameter η, one can change
the sound velocity. The dependence of sound velocity c on
� and η is displayed in Fig. 3, where �c = c − c0 and c0 =√

gρ/m is the sound velocity in a BEC without SO coupling.
From Fig. 3(a), one can read that �c is proportional to �2.
The proportionality coefficient is negative when η < 3 and
positive when η > 3. At η0 = 3, �c = 0 and does not change
with �.

One can employ a phenomenological analysis to explain
this behavior. The sound velocity of a gas is defined as

c =
√

K

ρm∗
S

, (26)

where K = ρ2∂μ/∂ρ is the compressibility, and m∗
S is the

effective mass of particles. In the plane-wave phase, most
atoms condense at state k = km, so the chemical potential can
be obtained up to �2 from Eq. (8),

μ = − k2
0

2m

(
�

k2
0/m

)2

+ ρg

[
1 +

(
�

k2
0/m

)2 (η − 1)

2

]
. (27)

This formula is consistent with μ = gρ − 2k2
0/m

f 2 �2, obtained
by solving SO-coupled GP equations, in the weakly interacting
region, gρ � 2k2

0/m. The first term of Eq. (27) comes from
lowering the zero energy point of a single-particle spectrum. It
does not affect the excitation properties of condensates and
can be removed. The second term reveals how � affects
the interaction energy. In general, η �= 1, which means the
interactions between the spin-up and spin-down components
are different with the one between the same spin components.
So from Eq. (6), when one increases �, spin mixing will
be increased, and that will change the interaction energy of
condensates. From another aspect, atoms condense at k = km

in the plane-wave phase, so the effective mass m∗
S at km can be

calculated from the single-particle spectrum:

1

m∗
S(km)

= ∂2ε−(k)

∂k2

∣∣∣∣
km

= 1

m

[
1 −

(
�

k2
0/m

)2
]

. (28)

Substituting effective mass (28) and chemical potential (27)
into (26), one obtains the sound velocity up to second order of
� as

�c

c0
≈ 1

4

(
�

k2
0/m

)2

(η − 3) . (29)

3 2 1 0 1 2 3
1

0
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k k0

Ω
k 02
m

a

4 3 2 1 0 1 2
1
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k k0

Ω
k 02
m

b

FIG. 2. (Color online) (a) Single-particle spectrum of an atom with NIST-stype SO coupling at regime � < k2
0/m. (b) Elementary excitation

spectrum of a SO-coupled BEC in the plane-wave phase. Here �/(k2
0/m) = 0.1, gρ/(k2

0/m) = 0.5, and η = 2.
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FIG. 3. (Color online) (a) Sound velocity of a SO-coupled BEC depending on �/(k2
0/m) in the plane-wave phase. Here �c = c − c0,

gρ/(k2
0/m) = 0.5, and η = 2, 2.5, 3, 3.5, 4 for circular, square, diamond, triangular, and inverted triangle points, respectively. (b) Sound velocity

of a SO-coupled BEC depending on η in the plane-wave phase. Here �/(k2
0/m) = 0.05 and gρ/(k2

0/m) = 1/8, 1/4, 1/2 for circular, square,
and diamond points, respectively. The dashed line represents the results from Eq. (29).

We note that at η0 = 3, c = c0, which is consistent with the
results from solving hydrodynamic equations. The changes
of sound velocity by tuning � come from two effects. One
is the change of single-particle spectrum, which modifies
the effective mass. The other is the change of interaction
energy, which leads to the changing of chemical potential. The
behavior of sound velocity is due to the competition between
these two effects.

IV. COLLECTIVE MODES OF THE PLANE-WAVE PHASE
IN A HARMONIC TRAP

Since most experiments of cold atoms are carried out in
a harmonic trap, it is natural to investigate the collective
modes of a SO-coupled BEC in a trap. To study the collective
modes in a harmonic trap, we first employ the local density
approximation (LDA), assuming the trapping potentials are
weak compared to the interaction energy of a BEC. One obtains
the TF ground-state condensate wave function in the trap up
to second-order perturbation as

� =
√

ρ(x) exp (ik0x)

(
1 − �2/2f 2(x)

−�/f (x)

)
, (30)

where the local total density ρg(x) = μ−V (x)
g

, and f (x) =
2k2

0/m + (η − 1)gρ(x). Based on this ground state, the equa-
tions of fluctuations in the trap become

∂δρ1

∂t
= −ρ

g
1

m
∂2
x δθ1 − ∂xρ

g
1∂xδθ1 + 2�

√
ρ

g
1ρ

g
2 (δθ1 − δθ2) ,

(31)

∂δρ2

∂t
= −ρ

g
2

m
∂2
x δθ2 − ∂xρ

g
2∂xδθ2 − 2�

√
ρ

g
1ρ

g
2 (δθ1 − δθ2)

−2k0

m
∂xδρ2, (32)

−∂δθ1

∂t
= gδρ1 + ηgδρ2 − �

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

δρ2 −
√

ρ
g
2

ρ
g3
1

δρ1

⎞
⎠ ,

(33)

−∂δθ2

∂t
= gδρ2 + ηgδρ1 − �

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

δρ1 −
√

ρ
g
1

ρ
g3
2

δρ2

⎞
⎠

+2k0

m
∂xδθ2, (34)

where we have ignored the so-called “quantum pressure terms”
[24]. To solve those equations and obtain the collective modes,
we assume that the fluctuations are as follows:

δρ1 = X1(x) cos ωt + Y1(x) sin ωt , (35)

δρ2 = X1(x) cos ωt + Y1(x) sin ωt , (36)

δθ1 = α1(x) cos ωt + β1(x) sin ωt , (37)

δθ2 = α1(x) cos ωt + β1(x) sin ωt . (38)

Substituting Eqs. (35)–(38) into Eqs. (31)–(34), one obtains

ωX1 = −ρ
g
1

m
∂2
xβ1 − 1

m
∂xρ

g
1∂xβ1 + 2�

√
ρ

g
1ρ

g
2 (β1 − β2) ,

(39)

ωY1 = ρ
g
1

m
∂2
x δα1 + 1

m
∂xρ

g
1∂xα1 − 2�

√
ρ

g
1ρ

g
2 (α1 − α2) ,

(40)

ωX2 = −ρ
g
2

m
∂2
xβ2 − 1

m
∂xρ

g
2∂β2 − 2�

√
ρ

g
1ρ

g
2 (β1 − β2)

−2k0

m
∂xY2, (41)

ωY2 = ρ
g
2

m
∂2
xα2 + 1

m
∂xρ

g
2∂xα2 + 2�

√
ρ

g
1ρ

g
2 (α1 − α2)

+2k0

m
∂xX2, (42)

ωα1 = −gY1 − ηgY2 + �

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

Y2 −
√

ρ
g
2

ρ
g3
1

Y1

⎞
⎠ , (43)

ωβ1 = gX1 + ηgX2 − �

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

X2 −
√

ρ
g
2

ρ
g3
1

X1

⎞
⎠ , (44)
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FIG. 4. (Color online) Profiles of collective modes of a SO-coupled BEC in a harmonic trap in the plane-wave phase. (a) The profile of
total density. The solid line is Xρ(x), which is a dipole mode; the dashed line is Yρ(x), which is a breathing mode. (b) The profile of spin
polarization. The solid line is XM (x) and the dashed line is YM (x). Here �/(k2

0/m) = 0.25, μ/ω0 = 45, η = 1.2, and (k2
0/m)/ω0 = 4.

ωα2 = −gY2 − ηgY1 + �

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

Y1 −
√

ρ
g
1

ρ
g3
2

Y2

⎞
⎠

−2k0

m
∂xβ2, (45)

ωβ2 = gX2 + ηgX1 − �

2

⎛
⎝ 1√

ρ
g
1ρ

g
2

X1 −
√

ρ
g
1

ρ
g3
2

X2

⎞
⎠

+2k0

m
∂xα2. (46)

Numerically solving those equations, we obtain the frequen-
cies of collective modes. Denoting total density fluctuation
as δρ(x,t) = δρ1(x,t) + δρ2(x,t) and spin polarization fluctu-
ation as δM(x,t) = δρ1(x,t) − δρ2(x,t), we have

δρ(x,t) = Xρ(x) cos (ωt) + Yρ(x) sin (ωt) , (47)

δM(x,t) = XM (x) cos (ωt) + YM (x) sin (ωt) , (48)

where Xρ(x) = X1(x) + X2(x), XM (x) = X1(x) − X2(x),
Yρ(x) = Y1(x) + Y2(x), and YM (x) = Y1(x) − Y2(x). Here we
focus on the lowest collective mode. Th profiles of the lowest
collective mode are plotted in Fig. 4. It shows that Xρ(x) is
a dipole mode, which is a center-of-mass oscillation of the
condensate. (It is not an exact dipole mode as Xρ(x) ∼ x. It
is a combination of dipole mode and other modes with odd
parity, but the dipole mode gives the primary contributions.)
Yρ(x) is a breathing mode, which describes the oscillation
of the size of the condensate. [It is not an exact breathing
mode, Yρ(x) ∼ P2(x), but a combination of other modes
with even parity, but the breathing mode gives the primary
contributions. Here Pn(x) is the Legendre polynomial.] For
a single-component BEC without SO coupling, the dipole
mode and the breathing mode are decoupled and have different
oscillation frequencies. However, in a SO-coupled BEC the
dipole mode and the breathing mode are coupled together.
In addition, from Eqs. (35)–(38), one can see that there is a
π/2 phase difference between these two modes. When the
center-of-mass of a SO-coupled BEC oscillates in the trap,
the size of the BEC will also oscillate. XM (x) and YM (x) show
spatial distribution of spin polarization fluctuations, which can
also be regarded as a Rabi oscillation.

When a particle oscillates in real space, due to the SO
coupling, its spin will also oscillate. Since the interactions

between the atoms are not invariant under SU(2) spin rota-
tion in general, η �= 1, oscillation of spin polarization in a
condensate will induce an oscillation of interaction energy.
As we know, in the harmonic trap the TF radius R of the
condensate is determined by the balance of interaction energy
and trapping potential. When the interaction energy changes,
the size of the condensate will also change. Hence, the dipole
oscillation in this system will induce the size oscillation of
the condensate, which is just the breathing mode. From the
discussion above, we note that the breathing mode has the same
phase with the spin oscillations, whose phase is consistent with
the oscillations of momentum. In addition, in the harmonic
trap, the phase difference between momentum oscillation and
center-of-mass oscillation, that is, the dipole mode, is just
π/2. That explains why the dipole mode and the breathing
mode have the π/2 phase difference. The coupling of the
dipole mode and the breathing mode is a joint effect of SO
coupling and SU(2) symmetry breaking of the spin invariance
of interactions.

The oscillation frequencies, �ω = ω − ω0, depending on
� and η, are displayed in Fig. 5, where ω0 is the trapping
frequency. One can see that such a dependence is very similar
to the one of sound velocities in a homogeneous SO-coupled
BEC. That is because the dipole mode and the breathing mode
of a trapped BEC can be regarded as the phonon modes with
wave length 2R and R, respectively. However the transition
point η0, at which �ω = 0, is not a constant, but decreases
with chemical potential [see Fig. 5(b)]. One can employ
a semiclassical analysis to understand this phenomenon.
Assume all the atoms condense in the single-particle state
k in the lower branch during the dipole oscillation. Therefore,
the kinetic energy and the interacting energy are the functions
of k

EK(k) = N

[
1

2m

(
k2 + k2

0

) −
√

(k0k/m)2 + �2

]
, (49)

EI(k) = 1

2
Ngρ

[
1 + 1

2
(η − 1)

�2

(k0k/m)2 + �2

]
. (50)

We can expand them around equilibrium state k = km to
second order:

EK(k)/N ≈ 1

2m∗
S(km)

(k − km)2, (51)
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FIG. 5. (Color online) (a) Collective mode frequencies of a SO-coupled BEC in a harmonic trap versus �/(k2
0/m) in the plane-wave

phase. Here �ω = ω − ω0 with ω0 the trapping frequency. The circles, squares, diamonds, and triangles are for η = 1.2, 1.26, 1.3, and 1.32,
respectively. We have used μ/ω0 = 50 and (k2

0/m)/ω0 = 4. (b) Frequencies depending on η in the plane-wave phase. Here �/(k2
0/m) = 0.0125

and (k2
0/m)/ω0 = 16. The circles, squares, and diamonds are for μ/ω0 = 18, 19, and 20, respectively.

EI(k)/N ≈ 1

2m∗
I (km)

(k − km)2. (52)

Here m∗
S is the effective mass coming from single particle

spectrum (28), and m∗
I is the effective mass origin from the

interaction between the particles:

1

m∗
I (km)

= ∂EI(k)/N

∂k

∣∣∣∣
km

= 1

m

[
3

2

(
�

k2
0/m

)2
gρ (η − 1)

k2
0/m

]
.

(53)

Therefore, the total energy is

E/N = 1

2m∗ (k − km)2 + 1

2
mω2

0x
2, (54)

where 1/m∗ = 1/m∗
S(km) + 1/m∗

I (km) is the total effective
mass. From Eqs. (54) and (27), one can find the frequency
shift of the dipole mode as

�ω

ω0
≈ 1

2

(
�

k2
0/m

)2 [
3

2

μ (η − 1)

k2
0/m

− 1

]
(55)

and obtains η0 ≈ 1 + 2
3

k2
0/m

μ
. That explains the phenomenon

that the η0 decreases with the chemical potential shown in
Fig. 5 qualitatively. When � increases, m∗

S increases, while m∗
I

decreases. Similar to the behavior of the sound velocity in a
homogeneous situation, the behavior of dipole mode frequency
in harmonic trap is also the result of competition between the
changes of a single-particle spectrum and interaction energy
with �. However, the frequency shift given by Eq. (55) is
not quantitatively consistent with the one obtained by the
hydrodynamic approach because the assumption that all atoms
are in the same single-particle state during the oscillation is
not accurate.

V. LARGE RABI COUPLING REGIME

In the � > k2
0/m regime, the lower branch of the single-

particle spectrum becomes a single-well structure, and most
atoms condense in the k = 0 state. One can find the ground-
state condensate wave function as

ψ =
√

ρ

2

(−1
1

)
, (56)

which satisfies the GP equations of a SO-coupled BEC (13) and
(14). The corresponding chemical potential is μ = k2

0/2m −
� + gρ(η + 1)/2. Considering the small fluctuations above
the ground state, one find the equations of fluctuations in a
uniform potential as

∂δρ1

∂t
= − ρ

2m
∂2
x δθ1 + �ρ (δθ1 − δθ2) + k0

m
∂xδρ1, (57)

∂δρ2

∂t
= − ρ

2m
∂2
x δθ2 − �ρ (δθ1 − δθ2) − k0

m
∂xδρ2, (58)

−∂δθ1

∂t
= − 1

2mρ
∂2
x δρ1 + gδρ1 + ηgδρ2 − �

ρ
(δρ2 − δρ1)

−k0

m
∂xδθ2, (59)

−∂δθ2

∂t
= − 1

2mρ
∂2
x δρ2 + gδρ2 + ηgδρ1 − �

ρ
(δρ1 − δρ2)

+k0

m
∂xδθ2. (60)

Solving those equations, one obtains the dispersion relation
for the � > k2

0/m case, which is plotted in Fig. 6(b).
One can see the dispersion relation has also two branches.
The dispersion relation is symmetric under k → −k, because
the ground state in � > k2

0/m regime is invariant under space
inversion. Just as the previous analysis, the effective mass

m∗
S at k = 0 is m∗−1

S (0) = m−1(1 − k2
0/m

�
) and compressibility

K = 1
2gρ(1 + η). One can find out the sound velocity as

c

c0
=

√
1 + η

2

(
1 − k2

0/m

�

)
. (61)

This formula fits well with the results calculated from
hydrodynamic equations, shown in Fig. 7(a). Unlike the
plane-wave phase, � only changes the effective mass m∗−1

S (0),
but does not change the compressibility. Because from
Eq. (6), we know that at the k = 0 state, spin-up and spin-down
components have equal populations, and spin polarization will
not change with �. In the limit � � k2

0/m, m∗
S(0) ≈ m, the

sound velocity is only dependent on η.
In a harmonic trap, employing LDA, one obtains the

condensate wave function as

ψ =
√

ρg(x)

2

(−1
1

)
, (62)
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FIG. 6. (Color online) (a) Single-particle spectrum of an atom with NIST-type SO coupling in the � > k2
0/m regime. (b) Elementary

excitation spectrum of a SO-coupled BEC in the � > k2
0/m regime. Here �/(k2

0/m) = 3, gρ/(k2
0/m) = 1, and η = 2.

where ρg(x) = μ−V (x)
g(1+η)/2 . So the fluctuation equations in the trap

can be written as

∂δρ1

∂t
= − ρg

2m
∂2
x δθ1 − 1

2m
∂xρ

g∂xδθ1 + �ρg (δθ1 − δθ2)

+k0

m
∂xδρ1, (63)

∂δρ2

∂t
= − ρg

2m
∂2
x δθ2 − 1

2m
∂xρ

g∂xδθ2 − �ρg (δθ1 − δθ2)

−k0

m
∂xδρ2, (64)

−∂δθ1

∂t
= gδρ1 + ηgδρ2 − �

ρg
(δρ2 − δρ1) − k0

m
∂xδθ2, (65)

−∂δθ2

∂t
= gδρ2 + ηgδρ1 − �

ρg
(δρ1 − δρ2) + k0

m
∂xδθ2. (66)

Just as in the plane-wave phase, we assume the fluctuations
of densities and phases have the forms as (35)–(38). One
obtains

ωX1 = −
(

− ρg

2m
∂2
x − 1

2m
∂xρ

g∂x + �ρg

)
β1 + �ρgβ2

−k0

m
∂xY1, (67)

ωY1 =
(

− ρg

2m
∂2
x − 1

2m
∂xρ

g∂x + �ρg

)
α1 − �ρgα2

+k0

m
∂xX1, (68)

ωX2 = −
(

− ρg

2m
∂2
x − 1

2m
∂xρ

g∂x + �ρg

)
β2 + �ρgβ1

+k0

m
∂xY2, (69)

ωY1 =
(

− ρg

2m
∂2
x − 1

2m
∂xρ

g∂x + �ρg

)
α2 − �ρgα1

−k0

m
∂xX2, (70)

ωα1 =
(

g + �

ρg

)
Y1 +

(
ηg − �

ρg

)
Y2 − k0

m
∂xβ1, (71)

ωβ1 = −
(

g + �

ρg

)
X1 −

(
ηg − �

ρg

)
X2 + k0

m
∂xα1, (72)

ωα2 =
(

g + �

ρg

)
Y2 +

(
ηg − �

ρg

)
Y1 + k0

m
∂xβ2, (73)

ωβ2 = −
(

g + �

ρg

)
X2 −

(
ηg − �

ρg

)
X1 − k0

m
∂xα2.

(74)
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FIG. 7. (Color online) (a) Sound velocity of a SO-coupled BEC depending on �/(k2
0/m) at regime � > k2

0/m. Here �c = c − c0,
gρ/(k2

0/m) = 0.1, and η = 0.5, 1.5, 2.5, for circular, square, and diamond points, respectively. The solid, dashed, and dotted lines are
corresponding results from Eq. (61). (b) Frequencies of the lowest mode (dipole mode) of a SO-coupled BEC in a harmonic trap versus
�/(k2

0/m) at regime � > k2
0/m. Here �ω = ω − ω0 with ω0 the trapping frequency. The circles, squares, and diamonds are for η = 1.5, 2,

2.5, respectively. We have used μ/ω0 = 10 and (k2
0/m)/ω0 = 4.
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FIG. 8. (Color online) Profiles of collective modes of a SO-coupled BEC in a harmonic trap at � > k2
0/m regime. (a) The profile of

the lowest collective mode. The solid line is Xρ(x), which is a dipole mode; the dashed line is Yρ(x). (b) The profile of the second-lowest
collective mode. The solid line is Xρ(x) and the dashed line is Yρ(x), which is a breathing mode. Here �/(k2

0/m) = 2.5, μ/ω0 = 10, η = 2,
and k2

0/ω0 = 4.

Numerically solving these equations, one obtains the lowest
collective mode and the second-lowest mode in a harmonic
trap, which is plotted in Figs. 8(a) and 8(b), respectively. In the
lowest mode, there is only dipole mode, Xρ ∼ x, Yρ = 0. In the
second-lowest mode, there is only breathing mode, Xρ = 0,
Yρ ∼ P2(x). That implies the dipole mode and the breathing
mode are decoupled. From Eqs. (67)–(74), one can obtain

ωXρ = −
(

− ρg

2m
∂2
x − 1

2m
∂xρ

g∂x + �ρ

)
βρ + �ρgβρ

−k0

m
∂xYM , (75)

ωYM =
(

− ρg

2m
∂2
x − 1

2m
∂xρ

g∂x + �ρ

)
αM + �ρgαM

+k0

m
∂xXρ , (76)

ωαM =
(

g − ηg + 2�

ρg

)
YM − k0

m
∂xβρ , (77)

ωβρ = − (g + ηg) Xρ + k0

m
∂xαM , (78)

where βρ = β1 + β2, αM = α1 − α2. One can see these
equations are closed. Xρ is decoupled with Yρ and coupled
only with YM . One can understand this phenomenon by
considering the interaction energy during the oscillation, EI(k)
[see Eq. (50)]. In the plane-wave phase, we find EI(k) is
unsymmetric about the equilibrium state k = km. Assume that
during the dipole oscillation, the amplitude of the momentum
oscillation is �k. At km − �k, the interaction energy of the
condensate reaches it largest value, and so does the condensate
size. At km + �k the interaction energy and the size of the
condensate are smallest during the oscillation. So the period
of the breathing mode matches with the dipole mode, and
they can be coupled together. However, at regime � > k2

0/2m,
EI(k) is symmetric about the equilibrium state at k = 0; the
size of the condensate reaches its maximum at k = 0 and
reaches its minimum at �k and −�k during oscillation. If
the breathing mode is coupled with dipole oscillation, the
period of the center-of-mass oscillation will be twice that of
size oscillation. They cannot be matched. So the mode which
is dipole mode coupled with breathing mode cannot be an
eigenmode of the condensate. The frequency shift of the dipole

mode is plotted in Fig. 7(b). The dipole mode is not coupled
with the breathing mode, so we cannot use the effective
mass m∗

I from interaction energy to estimate the frequency
shift. However, the dipole mode is coupled with other modes
with odd parity. So the frequency shift is also dependent
on η. From another point of view, the ground state at the
� > k2

0/2m regime is invariant under space inversion, so the
collective modes above this ground state have certain parities.
Coupling between the dipole mode and the breathing mode is
forbidden.

VI. SUMMARY

We investigated the collective modes of a SO-coupled BEC
in the plane-wave phase and in the large Rabi coupling regime,
both for a homogeneous situation and in a harmonic trap,
by solving the hydrodynamic equations. We developed the
hydrodynamic equations for a SO-coupled BEC, which has
been realized in the NIST experiments. Then we considered
the small fluctuations above the ground state and found the
equations for the fluctuations. By solving these equations,
we obtained the low-energy excitations. In the homogeneous
situation, the energy spectrum of elementary excitations
was obtained. There are two branches in the elementary
excitation spectrum: one has a gap, and other is gapless. The
latter is the Goldstone mode. In the plane-wave phase the
excitation spectrums is not symmetric under k → −k, because
the space-inversion symmetry is spontaneously breaking in
the ground state. At long wavelength, the gapless mode is the
sound wave in the condensate and has the linear dispersion
ω(k) = c |k|. We found that the sound velocity, c, can be
tuned by changing the strength of the Rabi coupling �.
When η < 3, increasing � will decrease the sound velocity;
while η > 3, increasing � will lead to the increase of sound
velocity. The SO coupling has two effects here. First, it changes
the single-particle spectrum of atoms, so that increasing �

will increase the effective mass m∗
S of the atoms. That will

suppress the sound velocity. Second, SO coupling mixes
spin-up and spin-down components, leading to the change of
interaction energy. When η > 1, increasing � will enlarge
the interaction energy and increase the compressibility of
the condensate, leading to an increasing of sound velocity.
These two effects have opposite influences on sound velocity
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when η > 1. In the regime η < 3, the effective mass effect
dominates the behavior of sound velocity, while in the regime
of η > 3, the interaction energy effect plays the primary role.
In the NIST experiment which used the hyperfine levels of
87Rb, such large η is difficult to achieve. However, some
proposals of artificial gauge potentials [2], involving the
excited states of alkaline-earth-metal atoms, may provide
large-enough η. On other hand, in the NIST experiment a
magnetic field was applied to split the hyperfine states so that
the Feshbach resonance is limited. For the proposals using
the dark states without magnetic field [25,26], which may be
achieved in further experiments, one can use the Feshbach
resonance to tune the spin-dependent scattering length to
achieve large η. In the � > k2

0/m regime, the excitation
spectrum is symmetric under k → −k, because the ground
state is invariant under space inversion. The changing of � will
only change the effective mass, and not affect the interaction
energy in � > k2

0/m regime. In a trapped BEC, the sound
can propagate when the phonon wave length is much smaller
than the size of the system but larger than the healing length.
The sound velocities can be measured [27]. The excitation
spectrum can be also measured by Bragg scattering [28]. We
expect an experiment to measure the sound velocities of the
SO-coupled BEC.

In the harmonic trap, we find the dipole mode and the
breathing mode are coupled together in the plane-wave phase.
There is a π/2 phase difference between these two modes.
Such coupling is the joint effect of SO coupling and broken
invariance of SU(2) spin rotation. A small shift of the trap
will excite both the center-of-mass motion and the oscillation
of the condensate size. We emphasize that in the middle �

regime, � � k2
0/m, the barrier between the double wells in the

single-particle spectrum becomes very low, and the condensate
will have a chance to tunnel into another well in momentum
space during the dipole oscillation. Recently this tunneling
phenomenon in momentum space has been observed in ex-
periments [22]. Our hydrodynamic equations cannot describe
this phenomenon. So we only consider the situation with
small � and small oscillation amplitude so that the tunneling
probability can be neglected. Because the dipole mode and the
breathing mode can be regarded as sound waves in the trap
with wavelengths 2R and R, the behavior of the oscillation
frequency is similar to the one of sound velocity in the uniform
condensate. When η < η0, the effective mass m∗

S from the

single-particle spectrum dominates, so oscillation frequency
decreases with �. When η > η0, the effective mass m∗

I from
interaction dominates, so oscillation frequency increases with
�. Unlike the uniform case, η0 is not a constant in the trap, but
decreases with the chemical potential. The lowest collective
mode is a combination of dipole mode and breathing mode.
The other collective modes that we have not studied in this
paper should be also combinations of modes with odd and
even parity to satisfy Eqs. (31)–(34). The collective modes of
a SO-coupled BEC in the plane-wave phase have no certain
parity. Because the plane-wave phase spontaneously breaks
the space-inversion symmetry. In the regime � > k2

0/m, there
are SO coupling and broken invariance of SU(2) spin rotation,
and the dipole mode and breathing mode are decoupled. This
is the restriction of symmetry since in the � > k2

0/m regime
the ground state maintains the space-inversion symmetry and
the coupling between the dipole mode and breathing mode is
forbidden. Therefore, the SO coupling and broken invariance
of SU(2) spin rotation are not the sufficient conditions for
coupling of dipole mode and breathing mode. One needs to
consider the symmetry restriction.

For the general situation with h �= 0 and g11 �= g22,
the Hamiltonian is not invariant under space inversion, so
there is not symmetry restriction. The physical properties of
the collective modes in the plane-wave phase will not change
qualitatively. If h �= 0, the single-particle spectrum still has
the double-well structure in the small � regime. However,
the depths of the two wells are not symmetric. The SU(2)
spin rotation symmetry is also broken for g11 �= g22. So the
competition between the effective mass and the interaction
energy still plays an important role in the collective modes.
The only difference is that the effective mass m∗

S is determined
by both � and h, and another parameter is needed to describe
the asymmetry of the spin-dependent interaction. In the large
Rabi coupling regime, since the Hamiltonian breaks the
space-inversion symmetry, the dipole mode and the breathing
mode could be coupled together just like the plane-wave phase.
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[6] Y.-J. Lin, K. Jiménez-Garcı́a, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[7] T. D. Stanescu, B. Anderson, and V. Galitski, Phys. Rev. A 78,
023616 (2008); C. Wu and I. Mondragon-Shem, Chin. Phys.
Lett. 28, 097102 (2011); M. Merkl, A. Jacob, F. E. Zimmer,
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