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Wave-function-renormalization effects in resonantly enhanced tunneling
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We study the time evolution of ultracold atoms in an accelerated optical lattice. For a Bose-Einstein condensate
with a narrow quasimomentum distribution in a shallow optical lattice the decay of the survival probability in
the ground band has a steplike structure. In this regime we establish a connection between the wave-function-
renormalization parameter Z introduced by P. Facchi, H. Nakazato, and S. Pascazio [Phys. Rev. Lett. 86, 2699
(2001)] to characterize nonexponential decay and the phenomenon of resonantly enhanced tunneling, where the

decay rate is peaked for particular values of the lattice depth and the accelerating force.
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I. INTRODUCTION

Resonantly enhanced tunneling (RET) is a quantum effect
in which the probability for the tunneling of a particle between
two potential wells is increased when the quantized energies
of the initial and final states of the process coincide. In spite
of the fundamental nature of this effect [1] and its practical
interest [2], it has been difficult to observe it experimentally in
solid-state structures. Since the 1970s, much progress has been
made in constructing solid-state systems such as superlattices
[3-5] and quantum wells [6], which enable the controlled
observation of RET [7].

In recent years, ultracold atoms in optical lattices [8,9],
arising from the interference pattern of two or more inter-
secting laser beams, have been increasingly used to simulate
solid-state systems [9—11]. Optical lattices are easy to realize in
the laboratory, and the parameters of the resulting one-, two-,
or three-dimensional periodic potentials (the lattice spacing
and the potential depth) can be perfectly controlled both
statically and dynamically. In Refs. [12,13], a Bose-Einstein
condensate (BEC) in accelerated optical lattice potentials was
used to study the phenomenon of RET. In a tilted periodic
potential, atoms can escape by tunneling to the continuum via
higher-lying levels. Within the RET process the tunneling of
atoms out of a tilted lattice is resonantly enhanced when the
energy difference between lattice wells matches the distance
between the energy levels in the wells.

The atomic temporal evolution is described by the sur-
vival probability, starting from an initial state prepared in
the ground band of the lattice. At long interaction times,
after several tunneling processes, the survival probability is
characterized by an exponential decay rate with a constant
tunneling probability for each Bloch period [14]. Such a decay
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was examined in different theoretical analyses [5,6,14] and
measured in experimental investigations with ultracold atoms
[12,13,15,16]. In this study we scrutinize the time behavior
of the tunneling probability and use its remarkable features at
short and intermediate times in order to extract information
about wave-function-renormalization effects.

The key quantity in this context is the probability that the
system investigated “survives” in a given state (or a set of
states, such as a band of a lattice). In this article we shall
deal with survival probabilities whose behavior is complex
and difficult to analyze. See, for example, the experimental
results of Ref. [15] and Figs. 2 and 5 below, which display the
survival probability of a cloud of ultracold atoms in the ground
band of an accelerated optical lattice. Clearly, one can properly
speak of the “decay” associated with an unstable system (the
atoms tend to leak out of the accelerated lattice), but the time
evolution can display oscillations or even plateaus. (As we
shall see, the latter are easily understood in terms of the initial
atomic state.)

General theoretical considerations show that the (adiabatic)
survival probability of an unstable system can often be written
as

P(t) = Z exp (—yt) + additional contributions, (1)

where y is the decay rate, which can be computed by the Fermi
golden rule. The parameter Z, representing the extrapolation
of the asymptotic decay law back to r = 0, is related to wave-
function renormalization, and the additional contribution is
due to the background integral in the energy plane. Law (1)
is valid both in quantum mechanics [17,18] and quantum field
theory [19,20], and Z can be smaller or larger than unity [21].

Typically, the additional contributions in Eq. (1) dominate
both at short and long times, where the exponential decay law
is superseded by a quadratic [22-24] and a power law [25],
respectively. They are therefore crucial in order to cancel the
exponential in these time domains. However, they can play a
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key role in a much more general context, such as the RET
phenomenon to be investigated in this article.

The pioneering experiments performed in Texas, with
Landau-Zener transitions in cold atoms, checked the existence
of the short-time quadratic behavior [26] and the transition
[27] from the quantum Zeno effect [23] to the anti- or
inverse-Zeno effect [28-30], through a sequence of properly
tailored quantum measurements.

With the arrival of Bose-Einstein condensates the experi-
mental resolution has advanced even further compared to cold
atoms. While cold atoms can have a momentum distribution on
the order of a Brillouin zone or more, a very narrow distribution
(much smaller than a Brillouin zone) is achievable with BECs.
Even the steplike structure of the survival probability occurring
for shallow lattice depth can be resolved with great precision
[15,16]. It is in this regime of shallow lattices and short jump
times [31] where the yet unobserved link of RET and the initial
deviation from exponential decay is most striking. This work is
devoted to the study of these effects. The choice of a different
initial atomic state, with a well-defined momentum, will enable
us to observe a more complicated temporal structure. We shall
therefore scrutinize the time evolution in order to unveil an
exponential regime and introduce the Z parameter in our RET
framework.

This paper is organized as follows. We briefly sum up
previous results on RET in Sec. II. We then analyze the
dynamics in the tilted lattice in Sec. III, and we show in Sec. IV,
the main part of this article, how the two phenomena arise as
interference effects. Section V reports experimental results for
the wave-function-renormalization parameter Z in the case of
a Bose-Einstein condensate in an accelerated optical lattice
and also a comparison with the experimental configuration by
Wilkinson et al. [26]. Section VI concludes our work.

II. LANDAU-ZENER AND RESONANTLY
ENHANCED TUNNELING

A Landau-Zener (LZ) transition takes place in a system
with a time-dependent Hamiltonian, in which the spectrum, as
a function of a control parameter (here time ¢), is characterized
by the presence of an avoided crossing [32-36]. A LZ transition
is described by the following two-level Hamiltonian:

at 8E/2)

SE/2 —at @

Hyz(1) = (
written in a suitable basis, known as the diabatic basis. The
energy separation of the diabatic states varies linearly with
time, i.e., as 2at from Eq. (2). The coupling § E /2 between the
states is constant and induces an avoided level crossing. The
diagonalization of Eq. (2) yields the instantaneous eigenvalues,

SE\?
Ey =+ (P + (7> . 3)

The eigenbasis of Hjy(t) is called the adiabatic basis. At
t — —oo the adiabatic energy levels of Eq. (3) are infinitely
separated, and no transition between them occurs. The distance
between the levels decreases toward the avoided crossing at
t = 0 and then increases again until, at t — 00, the separation
becomes again infinite. If the system is prepared at# — —ooin
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FIG. 1. (Color online) Energy diagram for a particle in a periodic
potential vs either the time, in units of Bloch time 7y defined in
Eq. (14), or the atomic momentum, py /2 prec, Where p. = hw/dy
units. Under the application of an external force, the quasimomentum
increases with time, and at the avoided crossing between two bands,
at the edge of the Brillouin zone, where py = pr., the condensate
tunnels with a probability amplitude p;; and survives with an
amplitude s;;, defined in Eq. (22). Between two avoided crossings
of the lowest two bands a relative phase ¢, defined in Eq. (17), is
acquired, which is graphically displayed as a shaded area. The final
survival probability at a given time is the sum over all possible routes,
just like a path integral in momentum space.

one of the adiabatic eigenstates, the probability that the system
undergoes a transition at t — oo toward the other adiabatic
eigenstate reads [33]

2
T(8E) ) @

Pz = exp ( 4hal

A particle in a shallow periodic potential, subjected to an
external force, is an example of a physical system in which a
LZ process can be observed. In this case, the diabatic basis is
represented by the momentum eigenstates. As schematized in
Fig. 1, if the system is initially prepared in the lowest band,
with a very peaked momentum distribution around p = 0, it
will evolve toward the edge of the first Brillouin zone, where
the distance between the first and the second bands is minimal
and transitions are more likely to occur, and then it evolves
back to the bottom of the first band. The transition probability
toward the second band in this process can be approximated
by Pz, but discrepancies can arise due to the differences
between the idealized case, leading to the LZ formula (4),
and the real physical situation. Indeed, the periodicity of the
lattice implies that the aforementioned process occurs in a
finite time and that in the initial and final states the adiabatic
levels are not infinitely separated. The corrections to the LZ
transition probability due to the finite duration of the process
are discussed in Refs. [16,37].

Other corrections to Eq. (4) should be considered if the
lattice is not shallow. In this case, couplings to higher-
momentum states play an important role, and a two-level
description is no longer a good approximation.
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Moreover, there is another kind of deviation from LZ,
which will be the main object of our analysis. Since Eq. (4)
is obtained under the hypothesis that only one of the two
adiabatic eigenstates is initially populated, it is no longer valid
if both states are populated. These deviations can be relevant
even if one of the initial populations is very close to zero since
their order is the square root of the smaller population, as will
be discussed in the following. In a periodic potential, tilted
by an external force F, the probability that a wave packet
initially prepared in the first band jumps to the second band
corresponds to the LZ prediction (4) only if the second band
is empty. A small population in the second band gives rise to
oscillations around P 7.

Finally, the transition probability is enhanced by a large
factor with respect to the LZ prediction if the energy difference
Fdp Ai between two potential wells (d;, being the lattice
spacing and dy Ai being the distance between the wells)
matches the average band gap of the nontilted system (RET).
One expects that in a RET process, from the first band to
the second band, the asymptotic regime will only be reached
after a transient period. Indeed, while the first transition
occurs when the second band is strictly empty (and thus the
tunneling event closely follows the LZ prediction), further
RET transitions will occur periodically in time and, starting
from the second tunneling process, interference effects due to
the finite population amplitude in the second band will start
to play an important role, modifying the time evolution in an
important way.

The analysis of the following two sections will endeavor
to take all these effects into account. We shall build up an
effective model whose validity will be tested for rather diverse
ranges of the parameters and compared to experimental results
finally in Sec. V.

III. DYNAMICS OF INTERBAND TUNNELING

In our analysis we are interested in describing the RET
process from the first band to the second band of a Bose-
Einstein condensate loaded into an optical lattice. It will be
assumed that almost all the particles of the system are in
the condensate, so that the system is described by a single-
particle wave function ¥ (x,7) [38]. Moreover, we will consider
the condensate dilute enough so that the interaction between
particles can be neglected. This implies that the wave function
of the system obeys a linear Schrodinger equation. In order to
operate away from the interaction-dominated regime explored,
e.g., in Ref. [39], in the present experiment the condensate
expands [15,16] and its density is reduced before the optical
lattice is applied. Nonlinear effects, on the other hand, have
been studied in the RET regime in other works [12,13,40-45].

The experimental condition is that of an accelerating one-
dimensional optical lattice, with constant acceleration a. In
the rest frame of the lattice, a particle of mass m sitting in the
lattice is subjected to an external force F' = ma, and thus the
time-independent Hamiltonian of the system in this frame of
reference reads

i K2 92 N 1% 2mx Fee H P )
=———+ —cos| — | — Fx= Hy— Fx,
2mox2 ' 2 d; 0
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where V is the lattice depth and the lattice period d; is half the
wavelength of the counterpropagating lasers. Hy represents the
“unperturbed” Hamiltonian, whose eigenstates are the Bloch
functions

G i (X) = ™ xq 1 (X), (6)
X k(X +dr) = Xax(X), (7
Hogo 1 (x) = € (k) i (x), (8)

with o = 1,2,3,... being the band index and k being
the quasimomentum, ranging in the first Brillouin zone
B ={k| —m/d, <k <m/d.}. The dynamics of the system
depends on two dimensionless parameters [16] related to
lattice depth and external force:

1% Fd, n o \?
Vo= , Fy= R ith Eee=—1{—] , 9
0 Er 0 Ere w1 rec m ( dL) ©)]

where m is the mass of the atoms. Applying the unitary
transformation

V(x,t) = exp(—i Fxt /)Y (x,t) (10)

restores the (discrete) translational invariance of the Hamilto-
nian at the expense of an explicit time dependence:

A = — (—in 4 Fe oY (2 (1)
= —(—-inh— — cos .
2m 0x 2 d;

Rewriting this Hamiltonian in the momentum basis as
in Ref. [16] establishes the relation to the Landau-Zener
Hamiltonian introduced in Eq. (2): To calculate the time
evolution of any momentum eigenstate, we only need the
Hamiltonian Hj, acting on the subspace with a given quasi-
momentum kg, as there is no transition between states with
different ko:

0
2 27\ 2
Hy, = om mV/2 (hk)? mV/2 ,
m
mV/2 B3k +2)°
0
(12)

where k = k(t) = ko + F't/h. This Hamiltonian (12) leads to a
very accurate numerical solution of the Schrodinger equation.
For small V on the scale of E, its dynamics is well described
by successive Landau-Zener transitions, occurring whenever
two diagonal terms in Hj, become degenerate. We will use
this approximation to obtain analytical results. In Fig. 1 the
relevant transitions are depicted graphically.

We first examine an adiabatic approximation of the
dynamics generated by the Hamiltonian (5), yielding no
transition between bands (single-band approximation), which
will highlight the time periodicity of the system and the
phase differences between bands. We shall then introduce an
effective coupling between the low-lying bands that enables
one to obtain transition rates. The adiabatic approximation is
consistent if Fd; < V, namely, if Fy < Vp in Eq. (9).
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The initial state will be assumed to be highly peaked around
a single quasimomentum value ky; that is, the width of the
initial quasimomentum distribution will be taken to be much
smaller than the width 27 /d; of the first Brillouin zone B.
In this situation, it can be proved [36,37] that in the adia-
batic single-band approximation the average quasimomentum
evolves semiclassically, so that at time ¢,

k(1) = ko + % (13)

with negligible spread in the quasimomentum distribution
occurring during the evolution. This yields Bloch oscillations
in a tilted lattice with a Bloch period

2mth _ h 2w

Tp=—"r=—".
FdL Erec FO

(14)

The initial state analyzed here has a well-defined initial
momentum (in ) but can be distributed among different
bands. At the end of each Bloch period, the amplitude in band
o acquires the following phase with respect to the amplitude
in band B:

1 2
Pup = —g(Ea(k) —eg(k)) Iy = _F<Ea(k) — Eg(k)),
0

5)

where (...) denotes the average over B, E, (k) is the energy
of the state with quasimomentum k in band y in units E,
and € is the energy without this normalization. We will
use the shorthand notation (AE,g) = (Eq(k) — Eg(k)) in the
following.

We now analyze interband transitions through an effective
model. We focus on the experimental parameters of the Pisa
setup [15,16] and model transitions from the first band to
the second band. In the parameter regime of shallow lattices
there is numerical and experimental evidence of a steplike
structure of the adiabatic survival probability P(¢) [15] in
the first band. If the initial state is peaked around k = 0 and
lies in the first band, the survival probability is characterized
by steep drops around times ¢ = Tg(n + 1/2), with n being
an integer, and flat plateaus between these times [41]. This
view is corroborated by numerical simulations [Fig. 2(a)] and
experimental observations [15]. This time evolution is due to
the fact that the coupling between the first and the second
bands is maximal at the edge of the first Brillouin zone,
for k = £m/d;, and thus significant transitions occur there,
with periodicity Tg. Figure 2 shows that plateaus are clearly
present for Vy = 1.5 [shallow lattice, Fig. 2(a)], but start to
wash out for Vy = 4.5 [Fig. 2(b)]. The range of validity of
the plateau picture is further discussed in the Appendix and
is approximately valid for V; < 4.5. In the following analysis
we shall focus on this regime.

The approximated dynamics takes into account experimen-
tal and numerical evidence and is valid for small values of V,
and Fj, when the transition times can be considered much
smaller than 7. We assume that the evolution inside the
first band is adiabatic for all k, except for k >~ 7 /d;, when
a transition toward the state with the same quasimomentum
in the second band becomes possible. This transition will be
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FIG. 2. (Color online) Adiabatic survival probability in the lowest
band P(t) vs time, obtained by numerically solving the Schrodinger
equation for the atomic evolution under the Hamiltonian of Eq. (11).
The initial state has initial quasimomentum 0.2 p,.. in the Brillouin
zone and a negligible quasimomentum width. (a) Potential depth
Vo = 1.5 and phase ¢ >~ 47 from Eq. (15); (b) Vo =4.5,¢ ~27.
The solid blue line represents the unperturbed time evolution, and the
dashed green line represents the time evolution with the phase change
discussed in Sec. V B after each Bloch period. The red crosses are an
extrapolation of the first time step to the following periods. Plateaus
manifest for Vy, = 1.5 (a). The validity of this picture is discussed in
the text and in the Appendix.

effectively described by the evolution operator of the form

0 — <512 —P12> ’ (16)
P12 Si2
with pp=+1-— s122. The operator U acts on the two-
dimensional space spanned by {|1) , |2)}, where |1) represents
the state with k = w/d, in the first band and |2) represents the
state with same quasimomentum in the second band.

The transition from the second band to the third band can be
schematized as the loss of a fraction 1 — s, in the population of
the second band toward a continuum, occurring at the crossing
around k = 0. This assumption is justified for small values
of Vj (see discussion above), such that a particle in the third
(or higher) band can be considered free.

During each Bloch cycle separating two successive transi-
tions, the relative phase between the second and the first band
amplitudes increases by ¢,; from (15), which reads

2
—O<AE(V0)), (17)

¢(Vo, Fo) = ¢21(Vo, Fo) = — -

where (AE) = (E,(k) — E(k)) is the energy difference (in
units of E...) between the second and the first bands, averaged
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FIG. 3. (Color online) Average band gap (AE) vs V, (both in
units of E..). Comparison between numerical results, analytical
results from Eq. (19), and the harmonic oscillator approximation (20).
In the small-V regime the band integration yields a good approxima-
tion, while for larger V, where the coupling becomes continuous, the
harmonic oscillator approximation is more effective.

over B. This energy difference can be exactly computed using
Mathieu characteristics a(k,q), which are the eigenvalues of
the Mathieu equation [46]

Ly

dx?
corresponding to the Floquet solutions y(x) = exp(ixx)u(x).
For small Vj, a good estimate is given by

1 Vi .8
(AE) ~ 1 64+ Vi + 3—;arcsmh70, (19)

which is obtained by integrating the two-level approximation
of Eq. (3) for the energy difference of the lowest two bands of
Hamiltonian (12) over the Brillouin zone B. For larger Vj, a
tight-binding, or harmonic oscillator, approximation yields

(AE) ~ \J4Vy — 1. (20)

The exact result and the two aforementioned approximations
are compared in Fig. 3.

The effects of the dynamics in a time 7 from one transition
to the next one can thus be modeled in the basis {|1), |2)} by
an effective nonunitary operator,

w ! 0) (1)
n 0 S23€i¢ ’

By making use of this simplified model, we describe the time
evolution in the following way. At ¢ = 0O the condensate is
in the first band, with quasimomentum close to k = 0. As
the lattice is accelerated, the quasimomentum increases until
it reaches 7 /d; at t = Tg/2, where the operator U comes
into play and transfers part of the population to the second
band. The evolution from 75/2 to 37 /2 is summarized by
the application of W. Then, the second transition occurs, and
part of the population in the second band (decreased by losses
toward the third band) can tunnel back to the first band due to
the action of U and gives rise to interference effects. The same
steps occur in the subsequent transitions.

+ [a — 2q cos(2x)]y =0, (18)
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On a time span T, the dynamics of the system is therefore
determined by the successive action of the nonunitary operator,

- — i
U=0UW = (SIZ [7125'23[6((JJ >’ (22)
P12 §12823€

in the basis {|1) , |2)}. The order of the two operations is not
relevant since W acts trivially on the “initial state” |1) before
the first transition.

Besides the phase ¢, the operator U depends on two other
independent parameters, namely, the survival amplitudes s,
and sy3. 51 represent the survival amplitude in the first band
after the first transition, which is, in fact, comparable to a LZ
process since the second band is initially empty. The survival
probability sp3 is related to a LZ tunneling from the second
band to the third band if we assume the third band to be empty
before each transition process. A graphical representation of
the parameters appearing in Eq. (22) is given in Fig. 1.

Using the LZ critical acceleration for the first and second
band gaps [32,33,47,48], analytical expressions for s;, and s»3
as functions of the microscopic parameters can be obtained.
At lowest order in Vj, the survival amplitudes read

s12(Vo, Fo) = y/ 1 — P2 (Vo, Fo)

1 Vg (23)
= — €X —

P\ 3R )
523(Vo, Fo) = /1 — PL(22’3)(V0,F0)

— [1—exp —LV‘?, (24)
32 x 162(2F)

where P]E’Z’j ) is the Landau-Zener transition probability (4) from
band i to band j. The evolution on a time scale 7y, determined
by a sequence of U operations, will be analyzed in detail in
the following section.

IV. TRANSIENT AND ASYMPTOTIC BEHAVIOR

We now specialize the model outlined in Sec. III to the Pisa
experimental setup [15,16]. The state of the system before
the first transition is |1). Immediately after the nth transition,
occurring at time ¢ = Tg(n + 1/2), the state of the system is

|®,) =U"1). (25)

The matrix U in Eq. (22) can be diagonalized, yielding
eigenvalues (ej,e;). By expanding the initial state as

1) = cilvn) + 2 lvn), (26)

where |y ») are the normalized nonorthogonal eigenvectors
of U, the state of the system at time Tg(n + 1/2) is

|Py) = cref Y1) + c2¢ [¥2). 27)

Due to the dissipative term in W, the two eigenvalues are
smaller than unity, and one of them, say ey, is larger in modulus
than the other one. Thus, for n sufficiently large, the evolution
reaches an asymptotic regime in which the state after the nth
transition is determined only by the state after the previous
one, with a transition rate depending on the largest eigenvalue.
Since the survival probability in the first band can be defined
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as P, = |(1|®,)|?, in the asymptotic regime one gets

Pus1 2 le1]* P. (28)
By defining an asymptotic transition rate

y = —In(er*), (29)

it is possible to introduce a function Pz(t) that coincides with
the value of the survival probability at the center of the plateaus
attimes t = nTg:

Py(t) = Zexp(—y1). (30)

Observe that Egs. (28)—(30) are valid in the asymptotic
regime. Before reaching it, the ratio between P, and P,_; in
Eq. (28) depends on n through a “time-dependent decay rate”
Vu, @8 in

Pn+1 :e_y"Pny (31)

whose asymptotic value is y = lim,_, o V. See the following
discussion and, in particular, Egs. (36)—(40).

s K(s12,503,4) 12 . 2—52, (14523 cos @) s1r 12
[%2(1 — 523C08P) + 4/ —(mgm ¢)] + 53, sin’ qb[—%ﬁc(sl;;w) + %2]
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The parameter Z in Eq. (30) is, in general, different from
unity, due to the transient regime at the beginning of the
evolution. It represents the extrapolation of the asymptotic
exponential probability back at ¢+ = 0.

We now derive an analytical expression for Z. In the
asymptotic regime, the system evolution described by Eq. (27)
corresponds to an evolution operator applied to an initial
unnormalized vector |Wy) = ¢ |¥1):

|®,) >~ cre] [Y) = U"(cr [¥) = U" [Wy). (32)

The Z parameter, representing the extrapolation of the asymp-
totic behavior back to ¢ = 0, can be defined as the square
modulus of the projection of the fictitious initial vector |Wy)
onto the actual initial state |1):

Z = [ {11 Wo)|> = |er [P (1] yr) 1, (33)

which corresponds to an extrapolated “survival probability” in
the subspace spanned by |1), evaluated at the initial time. Z
can be analytically computed as a function of the independent
parameters of the model by explicitly diagonalizing U. One
obtains

Z(s12,523,P) = o , (34)
K(s12,523, 253, sin? ¢ 2
( 12223 D) + IC(A?V2|>2?~Y23,¢) [2 - S122(] 4+ 573 COS ¢)]
with
K(s12,523,¢) = s122[1 + 2523 cos ¢ + s§3 cos(2¢)] — 4sy3c0S ¢
+ /5% (1 + 2523 cos @ + 53;) — 852353, (COS @ + 2523 + 535 cos @) + 16535 (35)

Observe that the above two equations do not depend on the
sign of ¢. In order to gain a qualitative understanding of the
dependence of Z (and y) on the phase difference ¢ acquired
during a Bloch cycle, let us compare the first and second
transitions. Let Py = 1 be the initial value of the survival
probability in the first band. After the first transition, the
survival probability becomes

P =sLPy=e P, (36)

At the second transition, the discrepancy with the LZ pre-
diction becomes manifest. Since, in the parameter regime of
small Vj we are considering, the ratio 5,3 /s, is very small [see
Egs. (23) and (24)], we can apply a first-order approximation,
yielding

Py = (s}, — 2503pi, cos §) Py = e ' ). 37)

Thus, if the phase ¢, introduced in Eq. (17), is ¢ = 27j, with
J € Z, the second transition is enhanced with respect to the
first one. In this case, a local maximum in the transition rate as a
function of Fj is expected. On the contrary, if p = (2 + )7,
the second transition is less pronounced than the first one.

A backward extrapolation of the second step gives a rough
estimate of the Z parameter, which we call Z;:

2
Z=Z ="M ]+ 25y <Q> cosg. (38
S12
Even if Eq. (38) represents a rather crude approximation, it
brings to light the correspondence between resonances in the
asymptotic transition rates and resonances in the Z parameter.
Quantities like (38) are very useful in an experimental context,
where only the first few steps in the Bloch cycles are accessible.
If the survival amplitude can be measured up to the Nth
transition, the Z parameter can be approximated by

Z o~ Zy =N i (39)
At the same time,
Y =N (40)

The convergence to the real value of Z is typically very fast,
and the first few cycles are already sufficient to obtain an
excellent approximation.

The estimates of Egs. (17)—(23), together with Eq. (34), en-
able one to obtain an analytical expression Z(Vp, Fp), yielding
the value of Z as a function of the microscopic parameters.
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FIG. 4. (Color online) Decay rate y and wave-function renor-
malization Z vs (AE)/Fy, = ¢/2x. Comparison among analytical
results, obtained by exact diagonalization of the reduced evolution
operator U in Eq. (22) (red dashed lines), numerical simulations
based on Eq. (11) (solid lines), and Landau-Zener prediction (dotted
lines for y). Vi = 2 in the first two panels, and V) = 4 in the bottom
two panels.

Figure 4 shows a comparison of the numerical calculation and
the estimates for y and Z with our analytical model. It is
clear that the model yields a better approximation for smaller
Vo. For Vi 2 4.5 the peaks of Z are overestimated, and the
picture of successive tunneling events with an intermediate
phase accumulation becomes less valid. In the regime of small
Vo, the analytical model is very efficient, as long as Fj is not
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too large and the LZ tunneling rates do not have to be adjusted
due to the finite initial time of the evolution [37].

V. EXPERIMENTAL CONFIGURATIONS

This section contains a discussion of the experiments
performed up to now and suggestions for future measurements
aimed at controlling the decay by a manipulation of the phase
of the temporally evolved atomic wave packet. The relations
of Sec. IV can be tested experimentally as follows.

A. Measurement of P(t)

An experimental check of the theory at the basis of the
wave-function renormalization Z is obtained by measuring the
survival probability P(z) for a time up to five Bloch periods for
different parameter values, as in Fig. 2, and then introducing
a fit with the exponential law of Eq. (30) for the survival
probability at times ¢t = nTg. The Z and y parameters are
determined by such a fit. The results of this approach are
discussed in the following for the case of a narrow atomic
momentum distribution, as in the RET experiments at Pisa
with a Bose-Einstein condensate [12,13,15,16], and for the
case of a broad atomic momentum distribution, as for the
experiment performed at Austin [26,27].

1. Pisa RET experiment

The time dependence of the adiabatic survival probability
was measured by freezing the tunneling process through
projective quantum measurements on the states of the adiabatic
Hamiltonian [15]. Experimental results of P(¢) for different
values of the lattice depth and the applied force are shown in
Fig. 5. The solid and dashed lines are a numerical simulation
of our experimental protocol and an exponential decay fit for
our system’s parameters, respectively. The vertical intercept
of the exponential decay at ¢+ = 0 gives the value of Z, and the
exponential decay rate gives the value of y.

The resonant tunneling appears as a strong variation for the
exponential decay rate of y as a function of ¢, as measured in
the experiments [12,13]. This variation matches the numerical
predictions of Fig. 4.

Measured values of the Z parameter vs the ¢ parameter
are plotted in Fig. 6(a). The error bars on the Z values are
determined by the exponential fits, as in Fig. 5. Notice that Z
values both larger and smaller than 1 are measured. The error
of the phase ¢ is linked to the experimental accuracy of the Vj
and F, parameters (V; carries an error of around 10%). The
experimental results are compared to theoretical predictions
for the numerical solutions of the time-dependent adiabatic
survival probability. The peaks in the plot are determined
by RET resonances. The simulation of Fig. 4 evidences that
the dependence of Z on ¢ matches the dependence of y.
The position of the largest peak corresponds to the main
resonance [12,13] Ai = 1, and the positions of the smaller
peaks are in agreement with those of higher-order resonances.
The agreement between the theoretical and experimental
determinations of Z is very good, taking into account the
difficulties of a precise determination of the lattice depth V.
It should be noticed a posteriori that the experimental results
are more easily produced in the case Z < 1.
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FIG. 5. (Color online) P(¢): experimental results (squares) and
numerical solution of the Schrodinger equation describing the atomic
cloud within the accelerated optical lattice (blue dashed line). The
red solid lines are exponential fits to the experimental data based on
P;(t) from Eq. (30), whose crossing with the y axis yields the value
of Z.In (a) V) = 5.8Eec, Fo = 5,and in (b) Vy = 1E,.., Fy = 0.383.
Both cases yield Z < 1. The slope of the exponential decay gives the
decay rate y.

2. Austin experiment on nonexponential decay

The very broad atomic distribution of the experiment
performed by Raizen’s group in Texas [26,27], occupying
several Brillouin zones, leads to a different temporal evolution
of the survival probability. In particular, the deeper lattice
potentials used in these works imply a different behavior of the
Z function. The survival probability was numerically evaluated
on the basis of the theoretical treatment reported in Niu and
Raizen [49] and Wilkinson et al. [26]. For the case of Rb atoms
and parameters very close to those experimentally investigated
in Pisa, Fig. 6(b) reports the Z function versus the parameter
¢ at a fixed value of the lattice depth. It may be noticed that
the values of |Z — 1| are smaller than those measured in the
case of a narrow atomic quasimomentum distribution. The Z
dependence on Fj is very smooth, without the oscillations of
Fig. 6(a). The Niu-Raizen theory [26,49] includes only the two
lowest-energy bands and does not take into account tunneling
phenomena such as RET or higher-excited-energy bands. The
Niu-Raizen model is thus essentially a two-state model for
Landau-Zener coupling, neglecting resonant tunneling effects,
and averaged over all quasimomenta in the entire Brillouin
zone. Such a model is better suited for large values of Vj,
when the energy bands become flat.
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FIG. 6. (Color online) (a) Scaling plot of Z — 1 vs ¢ of Eq. (17),
derived from RET experimental results (squares) using a narrow
atomic quasimomentum distribution. The experimental point at
¢ = 4.8 is obtained from the data of Fig. 5(a), and the point at
¢ = 341is obtained from the data of Fig. 5(b). Lines are the theoretical
predictions for Vy = 1,2,3,4 (dotted, dashed, dot-dashed, and solid
lines, respectively). The RET coupling yields the oscillating behavior
of Z vs ¢, with the oscillation amplitudes increasing at lower Vj
for a fixed ¢. (b) Theoretical prediction for Z — 1 in an Austin-type
experiment, with a broad atomic quasimomentum distribution, at
Vo = 3,3.5, and 4 (solid, dashed, and dotted lines, respectively).

B. Phase control

To further verify that the phase ¢ is, indeed, the important
quantity determining the temporal evolution of the atomic
wave function, it could be interesting to perform a LZ
experiment for which the atomic acceleration is stopped after
each Bloch period for a time t, = 7 /AE, with AE being
the energy difference between the two bands, in order to
reverse the phase of the wave function’s evolution. Differences
in the predicted time dependence of P(¢) with and without this
phase reversal are reported in Fig. 2. Even if the experimental
error introduced by the phase imprinting could be too large to
derive Z precisely in this regime, the observation of a modified
decay rate in the presence of a phase reversal would represent
a direct proof that ¢ is responsible for the resonances in the
decay rate.

The survival probability obtained in an experiment where
after each period one halts or does not halt with equal
probability represents another tool for modifying and testing
the interference in successive Landau-Zener processes. The
change of the decay rate by this randomization is equivalent
to the change that would be obtained via bona fide quantum
measurements, as in the standard formulation of the Zeno
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effect, which was experimentally observed in Ref. [27]. It can
be demonstrated that the same atomic evolution is obtained by
performing nondestructive survival probability measurements
after each Bloch period, with the quantum Zeno effect being
achieved in the limit of very frequent measurements carried
out within a Bloch period.

C. Emptying the second band

A similar interesting experimental configuration is realized
by totally eliminating the second band’s occupation after each
Bloch period. This could be produced as in the measurement
protocol used in Ref. [15] by decreasing the acceleration after
each tunneling event from the ground band down to a small
value such that the population in the second band tunnels to
the continuum and is no longer confined by the optical lattice.
At the same time the population in the lower band does not
tunnel to the second one and is ready to be accelerated once
again with the original large value. In this kind of setup all
Landau-Zener steps in the survival probability as a function
of time would have the same height on a logarithmic scale,
determined by sj, only. The phase ¢ would then be totally
irrelevant to the atomic evolution.

D. Links with quantum field theory

Finally, from a theoretical perspective, it would be of
great interest to explore the links with wave-function-
renormalization effects in quantum field theory. In that context,
the quantity Z arises from an analysis of the propagator
(enforcing probability conservation in the Kallén-Lehmann
representation [50,51]) and differs from unity at second order
in the coupling constant. Z is smaller than unity for stable
states but is unconstrained and can become >1 for an unstable
state. There have been a few attempts [52-58] to analyze the
quantum Zeno effect in the decay of elementary particles,
but no experiment has been performed so far. It would be
interesting to try and mimic these effects by making use of
RET in BECs. This would take us into the realm of quantum
simulations.

VI. CONCLUSION AND OUTLOOK

In the pioneering work by Raizen et al. [26,27] the focus
was on the deviations from exponential decay and the occur-
rence of the quantum Zeno effect and its inverse [29,30] due to
repeated measurements. In the present article we endeavored to
go further and studied Landau-Zener transitions [32,33] under
very different physical conditions, both in terms of initial state
and parameters. This enabled us to use these effects as a bench
test for the study of wave-function-renormalization effects
in quantum mechanics. We have seen that by scrutinizing
the features of the survival probability of the wave function
that collectively describes an ultracold atomic cloud, one can
consistently define Z and extract crucial information on its
behavior. It is remarkable that Z can be directly measured
and that its deviation from unity yields directly measurable
consequences on the experimental observables. In addition, as
the experimental parameters are varied, Z takes values that
can be smaller or larger than unity. If Z < 1, the decay can
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be slowed down (quantum Zeno effect) or enhanced (anti- or
inverse-Zeno effect), but if Z > 1, only the quantum Zeno
effect is possible [21].

Our analysis of the atomic evolution in terms of successive
free evolutions and tunneling processes, with interference
in the population occupations, points out that Landau-Zener
transitions and Stiickelberg oscillations [34] are two facets
(one could say particular cases) of the very complex problem
of the atomic evolution within the periodic potential produced
by the optical lattice, in analogy to a previous analysis by Kling
et al. [59].

For the shallow lattice regime, we have established a
relationship between y, Z,and ¢ = 27 (AE(Vy))/ Fo. We have
demonstrated that the Zeno regime and resonantly enhanced
tunneling are both controlled by the same parameter ¢ in an
ultracold atomic cloud. The resonances in Z can be explained
by a decay following the Landau-Zener probability in the first
Bloch period and resonantly enhanced decay in the following
periods. In contrast, the Niu-Raizen description [49] applied to
describe the nonexponential decay of cold atoms in an optical
lattice approximates the tunneling rate from the second band to
the third band by one complete decay. In the large V; parameter
regime the RET resonances are not important and do not affect
the quantum Zeno effect.

A future experiment could involve a BEC atomic cloud
in the presence of atomic interactions [12,13,39-45,60].

(a) o
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t/Ts
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FIG. 7. (Color online) Adiabatic coupling strength c¢(¢), defined
in Eq. (A4) and normalized to maximal coupling, plotted vs time and
optical lattice depth. Comparison between (a) the Lorentzian ansatz
and (b) numerical results based on Eq. (11). The assumption of short
tunneling events at the avoided crossings is valid for Vy < 4.5 in units
of E.. (shallow lattice).
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As verified experimentally [39], in this case the tunneling
probabilities are not symmetric (s;; # s;;), and the effect of
the RET resonances could be enhanced or suppressed with
attractive or repulsive interactions.
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APPENDIX: CHECK ON THE INTERRUPTED
ATOMIC EVOLUTION

The dynamics of interband tunneling is discussed in Sec. I1I
and hinges on the assumption of a free phase evolution over
the Brillouin zone, interrupted by a very short tunneling event
at the avoided crossing, at well-defined times ¢t = Tg(n + 1/2)
with n € N, as in Figs. 2(a) and 5(b). To check the validity of
this assumption we use the Hamiltonian H,, which describes
the time evolution in the adiabatic (energy) basis. H, can be
obtained by expanding the state |{(¢)) of the system in the
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time-dependent energy basis,

(1) = Zan(t) In(1)), (AL)

and applying the Schrodinger equation i9; |Y) = H |¢) with
the Hamiltonian of Eq. (12) to obtain

i) (@ ln) +and In) =Y anEyln).  (A2)

Taking the inner product with (m| and using (m|n) = §,,,, we
get

an = =i Enty — ) (m| 3 n) a,

n

(A3)

and we see that the off-diagonal term coupling the lowest two
energy states is given by

c(r) = (1] 9, [2). (A4)

In the ideal Landau-Zener model of Eq. (2) and Ref. [31]
this yields for c(¢) a Lorentzian function of time in a narrow
time interval centered around the Ty /2 transition time. The
Lorentzian is displayed in Fig. 7(a) for different values of the
potential depth V;. Figure 7(b) shows the numerical result for
c(t) in our system. The model discussed in Sec. III ceases
to be valid when c is large, at the border of the Brillouin
zone. A comparison of the two plots in Fig. 7 clarifies that the
approximations used in our analysis break down for V > 4.5.
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