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We present experimental measurements and theoretical calculations of photoionization time delays from
the 3s and 3p shells in Ar in the photon energy range of 32–42 eV. The experimental measurements are
performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The
theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework
of the random-phase approximation with exchange. The connection between single-photon ionization and the
two-color two-photon ionization process used in the measurement is established using the recently developed
asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare
and discuss the theoretical and experimental results, especially in the region where strong intershell correlations
in the 3s → kp channel lead to an induced “Cooper” minimum in the 3s ionization cross section.
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I. INTRODUCTION

Attosecond pulses created by harmonic generation in gases
[1,2] allow us to study fundamental light-matter interaction
processes in the time domain. When an ultrashort light pulse
impinges on an atom, a coherent ultrabroadband electron wave
packet is created. If the frequency of the pulse is high enough,
the electronic wave packet escapes by photoionization [3]. As
in ultrafast optics, the group delay of an outgoing electron
wave packet can be defined by the energy derivative of the
phase of the complex photoionization matrix element. When
photoionization can be reduced to one noninteracting angular
channel L, this phase is the same as the scattering phase ηL,
which represents the difference between a free continuum
wave and that propagating out of the effective atomic potential
for the L angular channel. In fact, the concept of time delay
was already introduced by Wigner in 1955 to describe s-wave
quantum scattering [4]. In collision physics, with both ingoing
and outgoing waves the (Wigner) time delay is twice the
derivative of the scattering phase.

In general, photoionization may involve several strongly
interacting channels. Only in some special cases can the
Wigner time delay be conveniently used to characterize delay
in photoemission. One such case might be valence-shell
photoionization of Ne in the 100-eV range [5,6]. In this
case, there is no considerable coupling between the 2s → εp

and 2p → εs or εd channels, and εd is strongly dominant
over εs, following Fano’s propensity rule [7]. The case of
valence-shell photoionization of Ar in the 40-eV range [8]
is more interesting. In this case, the 3s photoionization is
radically modified by strong intershell correlation with 3p

[9]. As a result, the 3s photoionization cross section goes
through a deep “Cooper” minimum at approximately 42-eV
photon energy [10]. Such a feature is a signature of intershell
correlation and cannot be theoretically described using any
independent electron, e.g., Hartree-Fock (HF) model.

Recent experiments [5,8] reported the first measurements of
delays between photoemission from different subshells from
rare-gas atoms, thus raising considerable interest from the
scientific community. Different methods for the measurements
of time delays were proposed, depending on whether single
attosecond pulses or attosecond pulse trains were used. The
streaking technique consists of recording electron spectra
following ionization of an atom by a single attosecond pulse
in the presence of a relatively intense infrared (IR) pulse, as a
function of the delay between the two pulses [11,12]. Temporal
information is obtained by comparing streaking traces from
different subshells in an atom [5] or from the conduction
and valence bands in a solid [13]. On the other hand,
the so-called RABBIT (reconstruction of attosecond bursts
by interference of two-photon transitions) method consists
of recording photoelectron above-threshold-ionization (ATI)
spectra following ionization of an atom by a train of attosecond
pulses and a weak IR pulse at different delays between the
two fields [14]. Temporal information on photoionization
is obtained by comparing RABBIT traces from different
subshells in an atom [8]. The name of the technique, which
we will use throughout, refers to its original use for the
measurement of the group delay of attosecond pulses in a
train [15].

Both methods involve absorption or stimulated emission of
one or several IR photons, and it is important to understand the
role of these additional transitions for a correct interpretation
of the measured photoemission delays. A temporal delay
difference of 21 as was measured for the photoionization from
the 2s and 2p shells in neon using single attosecond pulses
of 100-eV central energy [5]. Interestingly, the electron issued
from the 2p shell was found to be delayed compared to the
more bound 2s electron. Similarly, delay differences on the
order of ∼100 as were measured for the photoionization from
the 3s and 3p shells in argon using attosecond pulse trains with
central energy around 35 eV. Again, the 3p electron appears to
be delayed relative to the 3s electron, with a difference which
depends on the excitation energy [8].
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These experimental results stimulated several theoretical
investigations, ranging from advanced photoionization calcu-
lations, including correlations effects [6], to time-dependent
numerical approaches [5,16–18] to semianalytical develop-
ments aimed at understanding the effect of the IR field on
the measured time delays [19–21]. The picture which is
emerging from this productive theoretical activity is that when
the influence of the IR laser field is correctly accounted for,
such time-delay measurements may provide very interesting
information on temporal aspects of many-electron dynamics.

The present work reports theoretical and experimental
investigation of photoionization in the 3s and 3p shells in argon
in the 32–42-eV photon energy range. Besides providing a
more extensive description of the experimental and theoretical
methods in [8], we improve the results in three different ways.

(1) We performed more precise measurements using a
stabilized Mach-Zehnder interferometer [22] for the RABBIT
method. The stabilization allows us to take scans during a
longer time and thus to extract the phase more precisely. Some
differences with the previous measurements are found and
discussed.

(2) For the comparison with theory, we determined the
phases of the single-photon ionization amplitudes using the
random-phase approximation with exchange (RPAE) method,
which includes intershell correlation effects [9,23,24]. This
represents a clear improvement to the calculations presented
in [8], using Hartree-Fock data [25], especially in the region
above 40 eV, where photoionization of Ar passes through an
interference minimum, owing to 3s-3p intershell correlation
effects.

(3) Finally, we improved our calculation of the phase
of a two-photon ionization process, thus making a better
connection between the experimental measurements and the
single photoionization calculated phases [20].

This paper is organized as follows. Section II presents the
experimental setup and results. Section III describes the phase
of one- and two-photon ionization processes using perturbation
theory in an independent-electron approximation. Section IV
includes intershell correlation using the RPAE method. A
comparison between theory and experiment is presented in
Sec. V.

II. EXPERIMENTAL METHOD AND RESULTS

The experiments were performed with a titanium:sapphire
femtosecond laser system delivering pulses of 30-fs (FWHM)
duration, centered at 800 nm, with a 1-kHz repetition rate and
a pulse energy of ∼3 mJ. A beam splitter divides the laser
output into the probe and the pump arm of a Mach-Zehnder
interferometer (see Fig. 1). The energy of the probe pulses can
be adjusted by a λ/2 plate followed by an ultrathin polarizer.
The pump arm is focused by a f = 50 cm focusing mirror into
a pulsed argon-gas cell, synchronized with the laser repetition
rate, in order to generate an attosecond pulse train via high-
order harmonic generation. An aluminum filter of 200-nm
thickness blocks the fundamental radiation, and subsequently,
a chromium filter of the same thickness selects photon energies
of about 10-eV bandwidth in the range of harmonics 21 to 27.

The probe and the pump arm of the interferometer are
recombined on a curved holey mirror, transmitting the pump

FIG. 1. (Color online) Schematic illustration of our experimental
setup.

attosecond pulse train but reflecting the outer portion of the
IR probe beam. The exact position of the recombination
mirror with respect to the focal position of the pump arm
is essential in order to precisely match the wave fronts of
the probe and extreme ultraviolet (XUV) beams. A toroidal
mirror (f = 30 cm) focuses both beams into the sensitive
region of a magnetic-bottle electron spectrometer (MBES),
where a diffusive gas jet provides argon as detection gas.
The relative timing between the ultrashort IR probe pulses
and the attosecond pulse train can be reproducibly adjusted
on a subcycle time scale due to an active stabilization of the
pump-probe interferometer length [22].

Figure 2 presents an electron spectrum obtained by ionizing
Ar atoms with harmonics selected by both Al and Cr filters,
with orders ranging from 21 to 27. We can clearly identify three
ionization channels towards the 3s2p5, 3s1p6, and 3s2 3p4n�

(n� = 4p or 3d) continua [26]. The corresponding ionization
energies are 15.76, 29.2, and ∼37.2 eV. Note that the settings of
the MBES were here chosen to optimize the spectral resolution
at low energy. The large asymmetric profile obtained at high
electron energy can be reduced by optimizing the MBES
settings differently. The spectrum due to 3p ionization is
strongly affected by the behavior of the ionization cross section
in this region. The relative intensities of the 21st to the 27th
harmonics are approximately 0.2:0.7:1:1.

Figure 3 shows a typical RABBIT spectrogram, i.e.,
electron spectra as a function of delay between pump and probe

FIG. 2. Electron spectrum obtained by ionizing Ar with four
harmonics of orders 21, 23, 25, and 27. The ionization channels
are shown on the top.

053424-2



PHOTOEMISSION-TIME-DELAY MEASUREMENTS AND . . . PHYSICAL REVIEW A 85, 053424 (2012)

3s23p5                                                                                   S20  H21  S22  H23  S24  H25  S26   H27 
3s 3p6           H21  S22  H23  S24  H25  S26  H27   
3s23p4nl           H27 

1 

0.66 

0.33 

0 

3 8 15 13 20 25 
Electron energy (eV) 

De
la

y 
(fs

) 

4 

2 

0 

-2 

-4 

FIG. 3. (Color online) Electron spectrum as a function of time
delay between the attosecond pulses and the IR laser. The signal
strength is indicated by colors. The spectrum on the right (3p) follows
that on the left (3s) with a factor of 6 reduction in the color code and
a slight overlap in energy.

pulses. The electron yield is indicated as colors. Compared to
the spectra obtained with the harmonics only, Fig. 3 includes
electron peaks at sideband frequencies, including additional
absorption or emission of one IR photon (see Fig. 4). The
intensity of these sidebands oscillates with a delay at a
frequency equal to 2ω, with ω being the IR laser photon energy,
according to

S2q(τ ) = α + β cos(2ωτ − 
φ2q − 
θ2q), (1)

where α and β are constant quantities, independent of the
delay, and 2q represents the total number of IR photons
involved, i.e., an odd number to create harmonic 2q − 1
or 2q − 1 plus or minus one IR photon. 
φ2q denotes the
phase difference between two harmonics with order 2q + 1
and 2q − 1, while 
θ2q arises from the difference in phase
between the amplitudes of the two interfering quantum paths
leading to the same final state [Fig. 4(a)]. At high IR intensity,
other quantum paths involving more than one IR photon
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FIG. 4. (Color online) Energy-level scheme of the processes
discussed in the present work: (a) RABBIT principle and (b) different
channels in two-photon ionization from the 3s and 3p subshells.

TABLE I. Time-delay measurements.

Sideband
22 24 26

Photon energy (eV) 34.1 37.2 40.3
τ (2)(3s) − τ (2)(3p), this work (as) −80 −100 10
τ (2)(3s) − τ (2)(3p), Ref. [8] (as) −40 (−90) −110 −80
τcc(3s) − τcc(3p) (as) −150 −70 −40
τ (1)(3s) − τ (1)(3p) (as) 70 −30 50

become possible and may change the retrieved RABBIT
phase [27]. We kept the IR laser intensity low enough to avoid
such higher-order effects, which can be identified through
oscillations at higher frequencies. τA = 
φ2q/2ω can be
interpreted as the group delay of the attosecond pulses [15].
We define in a similar way τ (2) = 
θ2q/2ω arising from
the two-photon ionization process. Since the same harmonic
comb is used for ionization in the 3s and 3p shells, the
influence of the attosecond group delay can be subtracted,
and the delay difference τ (2)(3s) − τ (2)(3p) can be deduced.
The results of these measurements are indicated in Table I
for sidebands 22, 24, and 26. We also indicate in Table I
previous results from [8]. It is quite difficult in such an
experiment to estimate the uncertainty of our measurement.
The stability of the interferometer is measured to be ∼50 as.
The relative uncertainty in comparing the phase offsets of
different sideband oscillations is estimated to be of the same
magnitude or even slightly better.

Our measurements agree well with those of [8] for sideband
24. For sideband 22, the measurements performed in [8]
could not resolve the sideband peak from electrons ionized
by harmonic 27 towards the continuum 3s2 3p4n� (see Fig. 3).
A new analysis done by considering only the high-energy
part of the sideband peak leads to the number indicated in
parentheses in Table I, which is in good agreement with the
present measurement. There is, however, a difference for the
delay measured at sideband 26. We will comment on this
difference in Sec. V.

III. THEORY OF ONE- AND TWO-PHOTON IONIZATION

To interpret the results presented above, we relate the
one-photon ionization delays to the delays measured in
the experiment. Using lowest-order perturbation theory, the
transition matrix elements in one- and two-photon ionization
are

M (1)(�k) = −iE
〈�k|z|i〉, (2)

M (2)(�k) = −iEωE
 lim
ε→0+

∫∑
ν

〈�k|z|ν〉〈ν|z|i〉
εi + 
 − εν + iε

. (3)

Atomic units are used throughout. We choose the quantization
axis (z) to be the (common) polarization vector of the two
fields. The complex amplitudes of the laser and harmonic
fields are denoted by Eω and E
, with photon energies ω

and 
, respectively. The initial state is denoted |i〉 and the
final state |�k〉. The energies of the initial and intermediate
states are denoted εi and εν , respectively. The sum in M (2)

is performed over all possible intermediate states |ν〉 in the
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discrete and continuum spectra. The infinitesimal quantity
ε is added to ensure the correct boundary condition for the
ionization process, so that the matrix element involves an
outgoing photoelectron. The magnitude of the final momentum
is restricted by energy conservation to ε = k2/2 = 
 + εi for
one-photon absorption and ε = k2/2 = 
 + ω + εi for two-
photon absorption. The two-photon transition matrix element
involving emission of a laser photon can be written in the
same way, with ω replaced by −ω in the energy conservation
relation and Eω replaced by its conjugate.

The next step consists of separating the angular and radial
parts of the wave functions. The different angular channels
involved are indicated in Fig. 4(b). We split the radial and an-
gular dependence in the initial state as 〈r|i〉 = Ylimi

(r̂)Rnili (r)
and use the partial-wave expansion in the final state,

〈r|�k〉 = (8π )
3
2

∑
L,M

iLe−iηL(k)Y ∗
LM (k̂)YLM (r̂)RkL(r). (4)

We perform the spherical integration in Eq. (1) and obtain

M (1)(�k) ∝
∑
L=li±1
M=mi

eiηL(k)i−LYLM (k̂)

×
(

L 1 li

−M 0 mi

)
T

(1)
L (k), (5)

where the reduced dipole matrix element is defined as

T
(1)
L (k) = L̂l̂i

(
L 1 li

0 0 0

)
〈RkL|r|Rnili 〉 (6)

using 3j symbols and with the notation l̂ = √
2l + 1. The

reduced matrix element (6) is real. When the dipole transition
with the increased momentum L = li + 1 is dominant, which
is often the case [7], the phase of the complex dipole matrix
element M (1) is simply equal to

arg[M (1)(k)] = ηL(k) − Lπ/2. (7)

(There is also a contribution from the fundamental field which
we do not write here, as well as trivial phases, e.g., from
the spherical harmonic when M 
= 0 [20]). Similarly, for two-
photon ionization,

M (2)(�k) ∝
∑

L=λ±1,λ=li±1
M=μ=mi

eiηL(k)i−LYLM (k̂)

×
(

L 1 λ

−M 0 μ

) (
λ 1 li

−μ 0 mi

)
T

(2)
Lλ (k), (8)

where

T
(2)
Lλ (k) = L̂λ̂2 l̂i

(
L 1 λ

0 0 0

) (
λ 1 li

0 0 0

)
〈RkL|r|ρκλ〉. (9)

Here, we have introduced the radial component of the
perturbed wave function,

|ρκλ〉 = lim
ε→0+

∫∑
ν

|Rνλ〉〈Rνλ|r
∣∣Rnili

〉
εi + 
 − εν + iε

, (10)

where the sum is performed over the discrete and continuum
spectra. κ denotes the momentum corresponding to absorption
of one harmonic photon such that the energy denominator goes

to zero (κ2/2 = εi + 
). The summation can be decomposed
into three terms, the discrete sum over states with negative
energy, a Cauchy principal-part integral where the pole has
been removed (both these terms are real), and a resonant term
which is purely imaginary. The important conclusion is that
in contrast to the radial one-photon matrix element, the radial
two-photon matrix element is a complex quantity.

To evaluate the phase of this quantity, as explained in more
detail in [20], we approximate RkL(r) and ρκλ(r) by their
asymptotic values. We have, for example,

ρκλ(r) ≈ −
√

2

πκ
〈Rκλ|r

∣∣Rnili

〉
× 1

r
exp

{
i

[
κr + ln(2κr)

κ
+ ηλ(κ) − πλ

2

]}
. (11)

This allows us to evaluate analytically the integral 〈RkL|r|ρκλ〉
in Eq. (9). We obtain

arg
[
T

(2)
Lλ (k)

]≈ (L− λ)
π

2
+ ηλ(κ) − ηL(k) + φcc(k,κ), (12)

where φcc(k,κ) is the phase associated with a continuum-
continuum radiative transition resulting from the absorption
of IR photons in the presence of the Coulomb potential. It
is independent from the characteristics of the initial atomic
state, in particular its angular momentum. An important
consequence is that, when inserting the asymptotic form (11)
in Eq. (8), the scattering phase ηL is canceled out, so that the
total phase will not depend on the angular momentum of the
final state. In the case of a dominant intermediate channel λ,
the phase of the complex two-photon matrix element M (2)(k)
is equal to

arg[M (2)(k)] = ηλ(κ) − λπ/2 + φcc(k,κ). (13)

It is equal to the one-photon ionization phase towards the
intermediate state with momentum κ and angular momentum
λ plus the additional “continuum-continuum” phase. The
difference of phase which is measured in the experiment is
therefore given by


θ2q = ηλ(κ>) − ηλ(κ<) + φcc(k,κ>) − φcc(k,κ<), (14)

where κ> and κ< are the momenta corresponding to the highest
(lowest) continuum state in Fig. 4(a). Dividing this formula by
2ω, we have

τ (2)(k) = τ (1)(k) + τcc(k), (15)

where

τ (1)(k) = ηλ(κ>) − ηλ(κ<)

2ω
(16)

is a finite difference approximation to the Wigner time delay
dηλ/dε and thus reflects the properties of the electronic wave
packet ionized by one-photon absorption into the angular
channel λ. τ (2) also includes a contribution from the IR field
which is independent of the angular momentum,

τcc(k) = φcc(k,κ>) − φcc(k,κ<)

2ω
. (17)

We refer the reader to [20] for details about how to calculate
τcc. Figure 5 shows τcc as a function of photon energy for
the two subshells 3s and 3p and for the IR photon energy

053424-4



PHOTOEMISSION-TIME-DELAY MEASUREMENTS AND . . . PHYSICAL REVIEW A 85, 053424 (2012)

FIG. 5. (Color online) Continuum-continuum delay τcc as a
function of excitation photon energy for subshells 3s (red solid line)
and 3p (blue dashed line) for an IR photon energy of 1.55 eV (800-nm
wavelength).

ω = 1.55 eV used in the experiment. The corresponding
difference in delays for the 3s and 3p subshells is only due
to the difference in ionization in energy between the two
shells (13.5 eV). We also indicate in Table I the measurement-
induced delays for the three considered sidebands.

The processes discussed in this section can be represented
graphically by the Feynman-Goldstone diagrams displayed in
Figs. 6(a) and 6(b). The straight lines with arrows represent
electron (arrow pointing up) or hole (arrow pointing down)
states. The violet and red wavy lines represent interaction with
the XUV and IR fields. We are neglecting here two-photon
processes where the IR photon is absorbed first [20].

IV. INTERSHELL CORRELATION EFFECTS

To include intershell correlation effects, we use RPAE [9].
In this approximation, the dipole matrix element of single
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FIG. 6. (Color online) Feynman-Goldstone diagrams represent-
ing (a) one-photon and (b) two-photon ionization processes. (c)
Diagrammatic representation of the RPAE equations. The second and
third diagrams on the right-hand side refer to time forward and time
reversed, respectively. (d) Two-photon ionization including intershell
correlation effects. (e) Two-photon ionization with the XUV photon
absorbed after the IR photon.

photoionization is replaced by a “screened” matrix element
〈k|Z|i〉, which accounts for correlation effects between the 3s

and 3p subshells. These screened matrix elements, represented
graphically in Fig. 6(c), are defined by the self-consistent
equation

〈�k|Z|i〉 = 〈�k|z|i〉 + lim
ε→0+

∫∑
ν

[
〈ν|Z|j 〉〈j �k|V |νi〉

 − εν + εj + iε

− 〈j |Z|ν〉〈ν�k|V |ji〉

 + εν − εj

]
, (18)

where i and j are 3s or 3p or vice versa and V = 1/r12

is the Coulomb interaction. The sum is performed over
the discrete as well as continuum spectra. The Coulomb
interaction matrices 〈j �k|V |νi〉 and 〈ν�k|V |ji〉, represented by
dashed lines in Fig. 6(c), describe the so-called time-forward
and time-reversed correlation processes. (Note that the time
goes upward in the diagrams.) If we replace Z by z in the right
term in Eq. (18), we obtain a perturbative expansion to the first
order in the Coulomb interaction. More generally, the use of
the self-consistent screened matrix elements [Eq. (18)] implies
infinite partial sums over two important classes of so-called
“bubble” diagrams. Each bubble consists of an electron-hole
pair νj , which interacts via 1/r12 with final electron-hole pair
�ki. The energy integration in the time-forward term of Eq. (18)
(first line) contains a pole, and the screened matrix element
acquires an imaginary part and therefore an extra phase. For a
single dominant channel L, the phase of the one-photon matrix
element [see Eq.(7)] becomes

arg[M (1)(k)] = ηL(k) + δL(k) − Lπ/2, (19)

where δL(k) = δi→kL denotes the additional phase due to the
correlations accounted within the RPAE. The photoemission
time delay is then determined by the sum of two terms:

τ (1) = dηL

dε
+ dδL

dε
. (20)

The first term represents the time delay in the independent
electron approximation, equal to the derivative of the photo-
electron scattering phase in the combined field of the nucleus
and the remaining atomic electrons. The second term is the
RPAE correction due to intershell correlation effects.

We solve the system of integral equations (18) numerically
using the computer code developed by Amusia and collab-
orators [28]. The basis of occupied atomic states (holes) 3s

and 3p is defined by the self-consistent HF method [29]. The
excited electron states are calculated within the frozen-core HF
approximation [30]. We present some results for one-photon
ionization in Fig. 7. In the top panel, we show the partial
photoionization cross sections from the 3p state calculated
using the HF and RPAE approximations (see figure caption).
From this plot, we see that the 3p → kd transition is clearly
dominant at low photon energies. Intershell correlation effects
are more important for the 3p → ks than for the 3p → kd

transition. The sum of the two partial cross sections calculated
with the RPAE correction (red solid line and green line with
circles) is very close to the the experimental data (solid circles)
[31]. The middle panel presents the calculated cross section
for 3s ionization and compares it to the experimental data
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FIG. 7. (Color online) (top) The photoionization cross sections
σ3p→kd calculated in the HF (blue dotted line) and RPAE (red
solid line) approximations are compared with the σ3p→ks cross
sections (HF, green open circles; RPAE, purple dashed line). The
experimental data for the σ3p cross section are from Ref. [31].
(middle) Photoionization cross sections σ3s calculated in the HF
(blue dotted line) and RPAE (red solid line) approximations are
compared with experimental data [10]. (bottom) Correlation-induced
phase shifts for the 3s and 3p dipole matrix elements.

from [10]. The RPAE correction is here essential to reproduce
the behavior of the cross section, which, in this spectral region,
is a rapid decreasing function of photon energy.

The bottom panel shows the correlation-induced phase
shifts δ3s→kp and δ3p→kd from the same RPAE calculation. We
observe that the RPAE phase correction δ3p→kd is relatively
weak. In contrast, δ3s→kp varies significantly with energy, es-
pecially near the Cooper minimum. This qualitative difference
can be explained by a different nature of the correlations in

FIG. 8. (Color online) Ionization delay for the three angular
channels: 3p → kd (blue dotted line), 3p → ks (green dashed line),
and 3s → kp (red solid line).

the 3p and 3s shells. In the 3p case, the correlation takes
place mainly between the electrons that belong to the same
shell with not much influence of the intershell correlation with
3s. We confirmed this conclusion by performing a separate
set of RPAE calculations with only the 3p shell included.
These calculations lead to essentially the same results for
3p ionization as the complete calculations. In the case of
intrashell correlation, the time-forward process [see Fig. 6(c)]
is effectively accounted for by calculating the photoelectron
wave function in the field of a singly charged ion. It is
therefore excluded from Eq. (18) to avoid double count. The
remaining time-reversed term [second line in Eq. (18)] does
not contain any poles and therefore does not contribute to an
additional phase to the corresponding dipole matrix element.
The small phase δ3p→kd is due to intershell correlation, which
is indeed weak. In contrast, 3s ionization is strongly affected by
correlation with the 3p shell. Consequently, the RPAE phase
correction δ3s→kp, which comes from the correlation with the
3p shell in the time-forward process, is large and exhibits a
rapid variation with energy (a π phase change) in the region
where the cross section decreases significantly.

Finally, we generalize our theoretical derivation of two-
photon ionization to including the effect of intershell corre-
lation on the XUV photon absorption. As shown graphically
in the diagram in Fig. 6(d), we replace the (real) transition
matrix element corresponding to one-XUV photon absorption
by a (complex) screened matrix element, with an additional
phase term. As a consequence the phase of the two-photon
matrix element becomes

arg[M (2)(k)] = ηλ(κ) + δλ(κ) − λπ/2 + φcc(k,κ). (21)

The time delay measured in the experiment is expressed as
before as τ (2)(k) = τ (1)(k) + τcc(k), with τ (1)(k) modified by
intershell correlation:

τ (1)(k) = ηλ(κ>) − ηλ(κ<)

2ω
+ δλ(κ>) − δλ(κ<)

2ω
. (22)

Figure 8 presents calculated time delays τ (1) for the 3s → kp,
3p → ks, and 3p → kd channels. The ionization delays from
the 3p channel do not vary much with photon energy and
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FIG. 9. (Color online) Comparison between our theoretical calcu-
lations (dashed blue line, HF; red solid line, RPAE) and experiments
(circles, Ref. [8]; crosses, present work)

remain small. The 3p → ks delay is negligible, while it takes
about 70 as more time for the wave packet to escape towards
the d channel due to the angular momentum barrier. The wave
packet emitted from the 3s channel takes considerably more
time to escape, especially in the region above 40 eV, owing
to strong intershell correlation leading to screening by the 3p

electrons.

V. COMPARISON BETWEEN THEORY
AND EXPERIMENT

We present in Fig. 9 a comparison between our experimental
results (see Table I) and our calculations. The dashed blue
and solid red lines refer to the independent-electron HF
and RPAE calculations, respectively. The circles refer to the
results of [8], while the other symbols (with error bars both
in central energy and delay) are the results obtained in the
present work. Regarding the two sets of experimental results,
they agree very well, except for that obtained at the highest
energy corresponding to the sideband 26. Our interpretation
is that we may be approaching the rapidly varying feature
due to 3s-3p intershell correlation. Therefore a small change
in the photon energy between the two measurements may lead
to an important change in the delay. The experimental and
RPAE results agree well for the first sideband but less for
the two higher-energy sidebands. Surprisingly and perhaps

accidentally, the HF calculation gives there a closer agreement
with the experiment.

We now discuss possible reasons for the discrepancy.
Our calculation of the influence of the dressing by the
IR laser field is approximate. It only uses the asymptotic
form of the continuum-wave functions (both in the final
and intermediate states), thereby neglecting the effect of the
core. This approximation should be tested against theoretical
calculations, especially in a region where correlation effects
are important. We also neglect the influence of the two-photon
processes where the IR photon is absorbed (or emitted) first
[32] [see Fig. 6(e)]. The corresponding matrix elements are
usually small, except possibly close to a minimum of the cross
section, where the other process, usually dominant, is strongly
reduced. Interestingly, in such a scenario, the IR radiation
would not simply be a probe used for the measurement of the
phase of a one-photon process but would modify (control) the
dynamics of the photoemission on an attosecond time scale.
Finally, in our theoretical calculation, correlation effects are
only accounted for in the single ionization process (XUV
absorption). Additional correlation effects surrounding the
probing, e.g., after the IR photon is absorbed, might play a
role.

In conclusion, the results shown above point out the need
for explicit time-dependent calculations, which would account
for many-electron correlation and include not only one-photon
but also two-photon ionization. We also plan to repeat these
experimental measurements using attosecond pulses with a
large and tunable bandwidth. Our results demonstrate the
potential of the experimental tools using single attosecond
pulses [5] or attosecond pulse trains [8]. These tools now
enable one to measure atomic and molecular transitions, more
specifically, quantum phases and phase variation, i.e., group
delays, which could not be measured previously.

ACKNOWLEDGMENTS

We thank G. Wendin for useful comments. This research
was supported by the Marie Curie program ATTOFEL (ITN),
the European Research Council (ALMA), the Joint Research
Programme ALADIN of Laserlab-Europe II, the Swedish
Foundation for Strategic Research, the Swedish Research
Council, the Knut and Alice Wallenberg Foundation, the
French ANR-09-BLAN-0031-01 ATTO-WAVE program, and
COST Action CM0702 (CUSPFEL).

[1] P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[2] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[3] V. Schmidt, Rep. Prog. Phys. 55, 1483 (1992).
[4] E. P. Wigner, Phys. Rev. 98, 145 (1955).
[5] M. Schultze et al., Science 328, 1658 (2010).
[6] A. S. Kheifets and I. A. Ivanov, Phys. Rev. Lett. 105, 233002

(2010).
[7] U. Fano, Phys. Rev. A 32, 617 (1985).
[8] K. Klünder et al., Phys. Rev. Lett. 106, 143002 (2011).
[9] M. Y. Amusia, V. K. Ivanov, N. A. Cherepkov, and L. V.

Chernysheva, Phys. Lett. A 40, 361 (1972).
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