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Complete characterization of a coherent superposition of atomic states by
asymmetric attosecond photoionization
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A method for the complete characterization of a coherent superposition of atomic states, prepared by a
pump pulse, is presented. The technique is based on the measurement of two asymmetry parameters, related
to the photoionization of the generated electron wave packet by isolated attosecond pulses. By numerically
solving the fully three-dimensional time-dependent Schrödinger equation, it is demonstrated that the temporal
evolution of the population of the atomic states involved in the coherent superposition can be mapped onto the
amplitude-modulated asymmetry in the direction of the attosecond probe pulse polarization. The results of the
numerical simulations show that it is possible to achieve a unique determination of static and time-dependent
populations by measuring only a few ionization asymmetry parameters.
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I. INTRODUCTION

According to the laws of quantum mechanics the motion of
an electron in atoms and molecules corresponds to the temporal
evolution of a coherent superposition of stationary states. In
the simplest case of two states, the corresponding electron
density oscillates with a period T = 2π/�E , where �E is the
energy difference between the two states (atomic units will be
used in the work: e = h̄ = me = 1, where e and me are the
electron charge and mass, respectively). The corresponding
temporal scale ranges from microseconds, in the case of
Rydberg states, to a few attoseconds. The measurement of this
electronic motion in atoms and molecules is an important topic
in attosecond science [1,2]; various experimental techniques
have been proposed and partly implemented. The modulation
of the spectrum of attosecond pulses produced from single-
electron recollision gives an insight into the wave-packet
motion [3]. Attosecond transient absorption spectroscopy has
been successfully applied to real-time observation of valence
electron motion in krypton ions [4,5]. In this case a sub-4-fs,
near-infrared pulse generates a coherent superposition of two
spin-orbit split states of the 4p subshell of Kr+. An attosecond
probe pulse subsequently promotes the system into a common
final state. The quantum interference gives rise to a temporal
modulation of the transition probability, which allows one to
reconstruct the valence-shell wave-packet motion. A different
method is based on the measurement of the asymmetry in
the photoionization of the coherent superposition of states
by attosecond pulses as a function of the delay between
the pump pulse, which prepares the coherent superposition,
and the probe extreme ultraviolet (XUV) pulse [6–10]. The
temporal evolution of the asymmetry allows one to monitor
the electron motion in atoms and molecules. The effects of
few-cycle attosecond pulses on ionized electron momentum
and energy spectra have been analyzed by Peng et al. [11].

In order to achieve a complete characterization of the
bound-electron wave packet, corresponding to the coherent
superposition of states, it is required to measure both the
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populations of the states involved in the coherent superposition
and the time-dependent phase shift. Various mechanisms,
such as electron-electron interactions, can give rise to a loss
of coherence, which leads to a temporal evolution of the
population of the states. For this reason, a precise measurement
of the population of the states might give access to the inves-
tigation of relevant multielectron dynamics. The role of the
population of the coherently coupled states on the pho-
toionization process induced by the attosecond probe pulses
has never been discussed, to our knowledge. In this work,
we investigate the attosecond photoionization process in a
model hydrogen atom prepared in a superposition of 1s and
2p0 stationary states with several different populations. The
photoionization asymmetry parameter in the direction of the
field polarization is calculated as a function of the delay
between the pump and probe pulses by numerically solving the
fully three-dimensional time-dependent Schrödinger equation
(3D-TDSE), which allows one to retrieve crucial information
about the role of the population in the photoionization of the
bound-electron wave packet generated by the pump pulse. In
particular, the effect of the population on the amplitude of
the asymmetry curve is discussed. A method is proposed to
uniquely determine the population of a coherently coupled
state based on the measurement of a second asymmetry
parameter, which takes into account the electrons emitted in
the direction perpendicular to the probe field polarization.
By taking a simple example, we further demonstrate that
this approach can be extended to the measurement of the
time-dependent population.

II. THEORETICAL MODEL AND NUMERICAL METHODS

In order to reveal the essentials of our approach, we con-
centrate on a theoretically tractable example, i.e., a hydrogen
atom prepared by a pump pulse in a superposition of 1s and
2p0 stationary states characterized by atomic orbitals ψ1s(r)
and ψ2p0 (r). The prepared wave function can be expressed as

ψ(r,t) =
√

P1s ψ1s(r) +
√

1 − P1s eiγ (t) ψ2p0 (r), (1)

053423-11050-2947/2012/85(5)/053423(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.053423


CANDONG LIU AND MAURO NISOLI PHYSICAL REVIEW A 85, 053423 (2012)

where P1s is the population of the 1s state and γ (t) = �E t + φ

is the time-dependent phase shift corresponding to the electron
motion with a period T = 2π/�E . P1s and φ depend on the
excitation scheme. The interaction between atomic systems
and external intense laser fields is governed by the TDSE. In the
single-active-electron (SAE) approximation and the Cartesian
spherical coordinates, the fully 3D-TDSE is described as

i
∂

∂t
ψ(r,t) =

[
−1

2

1

r2

∂

∂r
r2 ∂

∂r
+ �̂2

2r2

+V (r) + VI (r,t)
]
ψ(r,t), (2)

where V (r) is an effective Coulomb potential with a spherical
symmetry, �̂2 is the square of the orbit angular momentum op-
erator, and VI (r,t) is the Hamiltonian for the atom interacting
with the applied laser field. In the case of a hydrogen atom the
atomic potential is given by V (r) = −1/r . In the length gauge
and in the dipole approximation, the interaction Hamiltonian
for the hydrogen atom ionized by an isolated attosecond pulse
with a linear polarization along the z axis can therefore be
written as VI (r,t) = −z[dAz(t)/dt]. Here the vector potential
Az(t) used to define the Gaussian attosecond pulse is given by

Az(t) = −
√

I0

ω0
e−2 ln 2(t2/τ 2

d ) sin(ω0t + ϕ0), (3)

where I0, ω0, τd , and ϕ0 are the peak intensity, the central
angular frequency, the pulse duration, and the initial carrier
envelope phase, respectively. Upon using an expansion of
ψ(r,t) in a series of partial waves indexed by angular quantum
number � and magnetic quantum number m as

ψ(r,t) =
∞∑

�=0

�∑
m=−�

1

r
ϕ�,m(r,t)Ym

� (θ,φ), (4)

Eq. (2) reduces to a set of coupled equations between the
different channels � − 1, �, and � + 1 for the radial wave
function φ�,m(r,t) [12,13]:

i
∂

∂t
ϕ0m(r,t) =

[
−1

2

∂2

∂r2
+ V (r)

]
ϕ0m(r,t)

− c1mr
dAz(t)

dt
ϕ1m(r,t) (5)

for � = 0 and, for � > 0,

i
∂

∂t
ϕ�m(r,t) =

[
− 1

2

∂2

∂r2
+ �(� + 1)

2r2
+ V (r)

]
ϕ�m(r,t)

− r
dAz(t)

dt
[c�,mϕ�−1,m(r,t)

+ c�+1,mϕ�+1,m(r,t)]. (6)

Here c�,m, which is related to the Clebsch-Gordan coefficient,
is given by

c�,m =
√

(� − m)(� + m)

(2� − 1)(2� + 1)
. (7)

It is worth mentioning that those partial waves with differ-
ent magnetic quantum numbers cannot be coupled together
because the angular momentum component along the z axis
is conserved for the use of linearly polarized attosecond

pulses. The radial wave function ϕ�m(r,t) is discretized at
the uniform grids with a spacing of δr , i.e., ri = iδr , where
i = 1,2, . . . ,N − 1. In the evolution of the time-dependent
wave function, the radial space is truncated at rmax = Nδr ,
which should be large enough to completely cover the wave
function diffusion and to avoid the reflection of the wave
function at the outer boundary. We employed the five-point
central finite-difference (FD) scheme to approximate the
second derivative ∂2/∂r2 in Eqs. (5) and Eq. (6) [14]. At
the grid points away from r1 = δr , the FD representation of
the operator ∂2/∂r2 is given by

∂2ϕ�m(r,t)

∂r2

∣∣∣∣
r=ri

= 1

12(δr)2
[−ϕ�m(ri − 2δr,t)

+ 16ϕ�m(ri − δr,t) − 30ϕ�m(ri,t)

+16ϕ�m(ri + δr,t) − ϕ�m(ri + 2δr,t)]

(1 < i < N ). (8)

At the smallest grid point r1 = δr , the FD representation of
the operator ∂2/∂r2 is slightly different and can be expressed
as

∂2ϕ�m(r,t)

∂r2

∣∣∣∣
r=δr

= 1

12(δr)2
[−30ϕ�m(δr,t) + 16ϕ�m(2δr,t)

−ϕ�m(3δr,t) − Cϕ�m(δr,t)], (9)

which refers to a correction factor C chosen to faithfully
reproduce the ground-state energy of the target atom [14].
We point out that the value of C is dependent on δr . The
temporal evolution of the wave function is carried out by a
Krylov subspace decomposition scheme based on the Arnoldi
algorithm [15,16] under the boundary conditions ϕlm(r =
0,t) = 0 and ϕlm(rmax,t) = 0.

The probability amplitude of the ionized electron with
momentum p = (p,θp,φp) is obtained by the projection of the
final wave function onto the field-free Coulomb continuum
state ψC

p (r) [17,18]:

a(p) = 〈
ψC

p (r)
∣∣ψ(r,tf )

〉
. (10)

For the hydrogenlike atom with an attractive potential V (r) =
−Z/r , the quantum scattering theory gives the expansion of
ψC

p (r) as [11]

ψC
p (r) = 1

(2π )3/2

4π

pr

∞∑
�=0

�∑
m=−�

i�eiσ�F�

(
−Z

p
,pr

)

×Ym
� (θ,φ) Ym∗

� (θp,φp), (11)

where Z is the net nuclear charge, σ� = arg�(� + 1 + i Z
p

) is
the Coulomb phase shift, and F�(η,ρ) is the Coulomb wave
function, which is given in terms of confluent hypergeometric
function by

F�(η,ρ) = 2�e−πη/2|�(� + 1 + iη)|
�(2� + 2)

× ρ�+1e−iρ
1F1(� + 1 − iη; 2� + 2; 2iρ). (12)
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We point out that F�(η,ρ) is a real function. By substituting
Eqs. (4) and (11) in Eq. (10), we have

a(p,θp,φp) =
√

2

π

∞∑
�=0

�∑
m=−�

(−i)�e−iσ�Ym
� (θp,φp)

× 1

p

∫ +∞

0
F�

(
−Z

p
,pr

)
ϕ�m(r,tf )dr, (13)

which is the main formula used to calculate the photoelectron
momentum distribution in this work. In the practical calcula-
tion the angular quantum number is truncated at �max, which
is set to assure that the contribution from those partial waves
with � > �max can be neglected. By making use of a(p,θp,φp),
the triple differential ionization probability (TDIP), which
represents the probability density of the photoelectron with
momentum p = (p,θp,φp), can be expressed as

T (E,θp,φp) = ∂3P

∂E sin θp∂θp∂φp

=
√

2E |a(
√

2E,θp,φp)|2,
(14)

where E = p2/2 is the kinetic energy of photoelectron.
Since the coupled wave function is axially symmetric with

respect to the z axis, the TDIP is independent of φp. The
integration of TDIP over energy E defines the polar-dependent
probability density:

P (θp) = 2π

∫ +∞

0
T (E,θp,0)dE . (15)

The normalized asymmetry A1 in the direction of the XUV
pulse polarization is therefore given by

A1 = P (0) − P (π )

P (0) + P (π )
. (16)

The parallel-perpendicular asymmetry A2 is defined by

A2 = P (0) + P (π ) − 2P (π/2)

P (0) + P (π ) + 2P (π/2)
, (17)

which represents the difference of the photoelectron emission
parallel and perpendicular to the direction of the XUV pulse
polarization.

The simulation parameters used in our calculation are
the following: the radial grid spacing is δr = 0.02 a.u., the
maximum radial distance is rmax = 300 a.u., the maximum
angular quantum number is lmax = 10, the time step of wave
function propagation is δt = 0.01 a.u., the Arnoldi propagation
order is M = 50, and the correction factor in Eq. (9) is
C = −1.04081, which leads to the H atom ground-state
energy E0 = −13.6057 eV. We have chosen the values of
the parameters rmax and lmax using the following criterion:
all the calculated physical quantities, such as the normalized
asymmetries, have to converge to the same value upon
variations of the two parameters with respect to the chosen
values.

III. RESULTS AND DISCUSSION

We consider a coherent superposition of the 1s and 2p0

stationary states of a hydrogen atom, produced by a pump
pulse. The generated electron wave packet depends on the

FIG. 1. (Color online) Normalized asymmetry A1 in the direction
of the probe pulse polarization as a function of the phase shift γ (t),
calculated for three different populations P1s of the 1s state: P1s = 0.1
(black squares), P1s = 0.5 (red dots), and P1s = 0.9 (blue triangles).
Probe pulse parameters used in the calculation are duration of
130 as, central photon energy of 36 eV, and peak intensity I0 = 1 ×
1012 W/cm2.

population P1s of the 1s state and on the phase shift γ (t).
Note that different γ (t) correspond to different pump-probe
temporal delays. We have first calculated the photoelectron
momentum distribution for the coupled state ionized by a
130-as pulse with a central photon energy of 36 eV and a
peak intensity I0 = 1 × 1012 W/cm2. Figure 1 shows the
normalized asymmetry parameter A1 as a function of phase
shift γ (t), calculated for three different populations P1s . In
agreement with the results reported by Yudin et al. [6], A1 turns
out to be an oscillating function of γ (t) with a period �γ =
2π . Since the bound state is projected into the continuum by the
broadband XUV pulse, the oscillation of the asymmetry curve
in fact provides a direct observation of the electron motion with

FIG. 2. (Color online) Amplitudes of the A1 (squares) and A2

(dots) asymmetry parameters as a function of the population P1s ,
calculated at γ (t) = γn = 2π (γ0 + n/2) (n = 0,1,2, . . .). The probe
pulse parameters are the same as in Fig. 1.
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a period T = 2π/�E . While the positions of the maxima and
minima of A1 are completely independent on the population,
the amplitude of the asymmetry |A1(P1s)|n exhibits a strong
population dependence; |A1(P1s)|n is the asymmetry param-
eter calculated at γ (t) = γn = 2π (γ0 + n/2), n = 0,1,2, . . . ,

corresponding to the position of the peaks and valleys of A1.
Therefore, from an experimental point of view, in order to have
a clear measurement of the electron motion, the pump pulse
parameters have to be carefully set to adjust in the proper
way the population of the states. This dependence suggests the
possibility to extract information about the population from
the measurement of the asymmetry parameter A1.

Figure 2 shows the evolution of the asymmetry amplitude
|A1(P1s)|n as a function of the population P1s . The asymmetry
amplitude shows a nonmonotonic behavior, with a maximum
at a particular population value Pc. For this reason the
measurement of A1 does not provide a unique determination
of the population of the coherently coupled states. The
same asymmetry amplitude can be obtained in the case of
two different populations P1s , one smaller than the critical

FIG. 3. (Color online) Amplitudes of the (a) A2 and (b) A1

asymmetry parameters as a function of the population P1s , evaluated
at γ (t) = γn = 2π (γ0 + n/2) (n = 0,1,2, . . .) in the case of four
durations of the XUV probe pulse: 100 as (squares), 130 as (dots),
160 as (triangles), and 190 as (stars), with a fixed peak intensity
I0 = 1 × 1012 W/cm2.

population Pc and the second larger than Pc. In order to obtain a
unique determination of the population we propose to measure
the asymmetry parameter A2, defined by Eq. (17). The red
dashed curve in Fig. 2 displays |A2(P1s)| calculated at γ = γn

[hereafter referred to as |A2(P1s)|n] as a function of P1s . The
curve is a monotonic function in the whole population range.
Due to the very small slope of the curve for P1s > Pc, it is
not possible to determine the population with the required
accuracy by measuring only A2. Both asymmetry parameters
have to be used to obtain a precise estimation of the population.
The procedure is the following: (i) the asymmetry parameter
|A2(P1s)|n is used to deduce if P1s is smaller or larger than the
critical population Pc; (ii) the asymmetry amplitude |A1(P1s)|n
is then used for the fine determination of the population.

We then investigated how the intensity and duration of the
XUV probe pulse affect the measurement of the population.
Figures 3(a) and 3(b) show |A2(P1s)|n and |A1(P1s)|n, respec-
tively, as a function of P1s , calculated in the case of four differ-
ent durations of the probe pulse, ranging from 100 to 190 as,
at a peak intensity I0 = 1 × 1012 W/cm2. While |A2(P1s)|n is
only slightly affected by the probe pulse duration, |A1(P1s)|n
increases upon decreasing the pulse duration, as expected
from the physical origin of the photoelectron asymmetry.
Indeed, as pointed out by Yudin et al. [6], the asymmetry
in photoelectron emission is due to the interference between
the spectra of the photoelectron emitted by the two states of
the coherent superposition. The interference is visible only
when the probe pulse is shorter than the oscillation period, so
that the two photoelectron spectra overlap, and the visibility
increases upon increasing the bandwidth of the probe pulse.
Therefore, depending on the value of the oscillation period,
the use of ultrashort XUV pulses is strongly required since,
as shown in Fig. 3(b), the |A1(P1s)|n curve becomes steeper
upon decreasing the probe pulse duration, thus leading to an
increase of the accuracy in the measurement of the population.
It is noteworthy that in order to estimate the population
it is also required to measure the probe pulse duration.
We have then verified that both asymmetry parameters are

FIG. 4. (Color online) Amplitudes of the A1 (squares) and A2

(dots) asymmetry parameters as a function of the population P1s ,
evaluated at γ (t) = γn = 2π (γ0 + n/2) (n = 0,1,2, . . .) in the case
of a 130-as probe pulse with peak intensity I0 = 1 × 1014 W/cm2.
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FIG. 5. (Color online) (a) Asymmetry parameters A1 (squares)
and A2 (dots) as a function of the phase shift γ (t), calculated
for the time-dependent population P1s = 1 − 0.9e−(γ /4π )2

(γ > 0).
(b) Comparison of the exact time-dependent population (dashed
line) with the corresponding reconstructions (dots). The probe pulse
parameters are the same as in Fig. 1.

almost independent from the peak intensity of the probe
pulse. Indeed, Fig. 4 shows |A1(P1s)|n and |A2(P1s)|n as a
function of P1s , calculated in the case of 130-as probe pulses
with a peak intensity I0 = 1 × 1014 W/cm2, two orders of
magnitude larger than the probe intensity assumed in the case
of Fig. 2: the results obtained in the two cases are almost
indistinguishable. This is an important advantage because
the intrinsic relationship between the population and the
asymmetry can be obtained without measuring the intensity of
the attosecond probe pulse, which is often difficult to measure
in the experiment.

The approach based on the measurement of the asymmetry
parameters A1 and A2 for the determination of the population
of coupled states can be also extended to monitor the temporal
evolution of the population. Let us assume that the population
P1s is characterized by the following temporal evolution:

P1s(γ ) = 1 − 0.9e−(γ /4π)2
, (18)

with γ > 0. Upon scanning the phase shift γ (t), i.e., the
pump-probe time delay, the attosecond photoionization is then
calculated by the exact solution of the 3D-TDSE, and the
results are shown in Fig. 5(a), which displays the asymmetry
parameters A1 and A2 as a function of γ (t). The important
feature of the A1 curve is the periodic oscillation, which is
a result of the electron motion in the coupled states, with
a time-dependent amplitude, which contains the information
about the temporal evolution of the population. To measure
the time-dependent population, we select the asymmetry
parameters at those positions where the A1 curve reaches the
peak and the valley, as denoted by the arrows in Fig. 5(a).
These selected values are compared with Fig. 2, which is
the intrinsic relationship between population and amplitude.
Consequently, we can obtain the measured population P1s as
a function of γ (t). The measured result (dots) is shown in
Fig. 5(b), together with the exact time-dependent population
(dashed line) obtained from Eq. (18). The excellent agreement
demonstrates that this approach can be successfully extended
to the measurement of a time-dependent population.

IV. CONCLUSIONS

We investigated the attosecond photoionization of a model
hydrogen atom prepared by a pump pulse in a coherently cou-
pled state, consisting of the 1s and 2p0 atomic orbitals, by nu-
merically solving the fully 3D-TDSE. In particular, we investi-
gated the role of the population of the states on the photoioniza-
tion asymmetry. It was found that the amplitude of asymmetry
in the direction of the probe polarization exhibits a strong
dependence on the population of the states. A unique determi-
nation of the population of the coupled states can be achieved
only by measuring a second asymmetry parameter, which takes
into account also the electrons emitted in a direction perpen-
dicular to the probe polarization direction. The same method
can be also applied in the case of time-dependent populations.
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