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Modifying H− resonance asymmetries with short light pulses

Jakob Bengtsson and Eva Lindroth
Department of Physics Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden

(Received 26 March 2012; published 11 May 2012)

We present a method based on time-dependent perturbation theory and complex rotation to treat the interaction
of a short light pulse with a correlated atomic system. The pulse is built from two short and weak pulses with
Gaussian envelopes that are centered at two different frequencies. The method is applied to the negative hydrogen
ion in the vicinity of a doubly excited resonance and it is shown that the two light pulses can be used to alter the
Fano profile of a resonance.
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I. INTRODUCTION

The ability to create light pulses with subfemtosecond
duration has opened the possibility to study electronic pro-
cesses, such as ionization and charge transfer, on the same
time scale at which the electronic wave packets evolve.
Such processes often involve the formation of metastable,
multiply excited states as crucial intermediate steps. These
metastable resonance states decay further on a time scale that
is typically comparable to the characteristic time evolution of
the electronic wave packet itself. The description of population
and decay of resonance states is decisive for the understanding
and eventually controlling electron dynamics in many-electron
systems.

Although resonances are reminiscent of stationary states,
they are not eigenstates of any Hermitian Hamiltonian.
Characterized by a large local component that delocalize
with a finite rate, resonances can be defined as solutions
to the Schrödinger equation with asymptotically outgoing
behavior [1]. One way to enforce such boundary conditions
is provided by the method of complex scaling (or complex
rotation) [2–5]. It is based on a continuation of the radial
variable into the complex plane and the resonances are found
as eigenstates, with complex eigenvalues, to the complex
rotated non-Hermitian Hamiltonian [6–17]. Identification and
characterization of a resonance, in terms of energy position
and lifetime, can now be made directly from its eigenvalue.
In previous studies [18,19] we have explored the possibility
to use uniform complex scaling also in connection with
time-dependent problems. The purpose of the present study
is to take advantage of the direct representation of the
resonant states as an integral part of the energy spectrum to
study atoms interacting with short light pulses. In particular,
we are interested in how the photoelectron spectrum in
the vicinity of a metastable state can be altered by the
pulse.

Today’s time-domain measurements of electron dynamics
typically use attosecond-long short-wavelength pulses to
initiate an event and femtosecond infrared laser fields to
probe the outcome (see, e.g., Refs. [20–22]). The modeling of
such experiments requires, due to the strength of the infrared
field, the solution of the time-dependent Schrödinger equation
(TDSE) (see, e.g., [23–27]). Direct integration of the TDSE in
the presence of a time-varying light field is a computationally
heavy undertaking for any system beyond hydrogen. Presently,
such calculations can only be performed for few-electron

systems [25,28] or for slightly more complicated systems
after a careful selection of which many-electron effects to
include [27]. The strong infrared laser field also complicates
the analysis of both experimental and theoretical investigations
and hopefully it will be possible to use less intrusive pulses
in future experiments, such that the light-matter interaction
can be treated within perturbation theory. It is this situation
which is addressed here. We consider two weak light pulses
centered at two different frequencies but overlapping in both
time and space and treat the interaction with the atomic system
to second order in the light field.

The strong localization of a resonance state implies typi-
cally large transition matrix elements from the ground state and
through, for example, photoabsorption, a substantial transfer
of population from the ground state to the excited resonance
state can thus take place. The subsequent decay of the excited
state occurs usually predominately through emission of Auger
electrons, resulting in a pronounced peak in the electron
spectrum. Since ionization in the same channel is also possible
through photoabsorption directly to the continuum from the
ground state (i.e., without passing through the resonance), the
two paths to ionization can interfere, thereby giving rise to
the typical asymmetric Fano profiles [29]. The appearance
of asymmetric line profiles is an interesting manifestation of
quantum interference, which is found for different scattering
processes and in a variety of quantum systems [30]. Since it
is destructive (or constructive) interference between the paths
that leads to the minimum (or maximum) in the probability
of the process considered, ability to control these paths
opens for a possibility to control the quantum process itself.
Combined with tunability (e.g., through external fields), Fano
resonances have indeed been discussed as a way to control,
for example, quantum transport through quantum wires [31]
or across Bose-Einstein condensates in optical lattices [32].
In photoionization, short light pulses give, in contrast to
continuous monochromatic light sources, a possibility to
influence the quantum paths and thereby the asymmetry of
the Fano profiles, and this even in the weak-field limit. The
purpose of the present study is to investigate this in more detail,
and as an interesting test system we use H−.

As is often the case for negative ions, the ground state of H−
is its only bound state. In contrast, the ion has a rich spectrum
of resonances, with a series of resonances converging to the
excited-state thresholds of the neutral system. The binding
relative to each threshold is provided by the dipole potential
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induced by the extra electron through mixing of the degenerate
excited states in the atom. H− resonances are thus strongly
affected by electron correlation. The odd parity 1P resonances,
which can be reached by one-photon absorption from the
ground state, have been subjected to careful experimental
studies (see Refs. [33,34] and references therein). Two-photon
above-threshold detachment has further been used to study
the lowest even parity 1D resonance [35,36], and calculations
of multiphoton detachment rates with monochromatic light
have been presented by several authors [37–39]. The focus
of the present study is different. We study instead the effect
of a light field localized in time, but with a broad spectral
composition.

In Sec. II we briefly review some properties of uniform
complex scaling and in Sec. III we outline the basis for time-
dependent perturbation theory concentrating on how it is to
be combined with complex rotation. The representation of the
correlated field-free states is discussed in Sec. IV, while the
results are discussed in Sec. V.

II. COMPLEX SCALING

Uniform complex scaling is based on the transformation

r → reiθ , (1)

where r is the radial variable and θ the scaling angle, 0 <

θ < π/4. The transformation yields a scaled non-Hermitian
Hamiltonian: Hθ (r) ≡ H (r exp(iθ )) with, generally, complex
eigenvalues. However, bound eigenstates retain their real
eigenenergies, and for these states the rotation can be seen just
as a variable transformation. Resonance states, which could
not have been described by a Hermitian Hamiltonian, will
now appear. Such states have complex eigenvalues that are
independent of (a sufficiently large) θ , and the imaginary parts
are connected to decay rates as � = 2|Im(E)|. The continuum
solutions, on the other hand, will have complex energies,
with an argument determined by θ , E → E exp(−i2θ ). In
the following we will assume that we have a suitable
representation of the space spanned by Hθ (r) in a finite
basis, but the discussion of this basis is postponed until
Sec. IV.

The form of the inner product is of special importance
when complex rotation is used. The left eigenvectors can then
no longer be constructed as the complex conjugate transpose
of the right eigenvectors. As has been discussed (e.g., in
Refs. [18,40]), the left eigenvectors to a Hamiltonian rotated
by θ are instead identical to the complex conjugate transpose
of the right eigenvectors to the same Hamiltonian rotated by
−θ . For the special case of a complex symmetric Hamiltonian
matrix (e.g., the one representing the time-independent atomic
Hamiltonian), this gives that the left eigenvectors are just the
transpose of the right eigenvectors. When calculating different
physical quantities with complex scaling, one generally has to
treat matrix elements 〈f |Ô|i〉 and 〈i|Ô|f 〉 separately, since
the latter is no longer the complex conjugate of the former.
Below we will first detail the expressions that are needed
in a conventional Hermitian formulation and then outline
the translation to the complex rotated case for each matrix
element.

A. Energy distribution

The object of interest here is the energy distribution,

dP (ε)

dε
≡ 〈�|�(ε)〉〈�(ε)|�〉, (2)

above the ionization threshold of the system after its exposure
to an electromagnetic pulse. In Eq. (2), �(ε) refers to the
electronic state with energy ε. Above the first- but below
the second-ionization threshold the photoelectron spectrum
is directly given by dP/dε. For the calculation of the energy
distribution we may use that

〈�|�(ε)〉〈�(ε)|�〉= 1

π
Im

(∫ 〈�|�(En)〉〈�(En)|�〉
En − ε − iγ

dEn

)
,

(3)

where γ → 0+ and the integral runs over the continuum of
nonbound energy states. The equivalence between the left-
and right-hand side of Eq. (3) follows from the definition of
the delta function as the limit

δ(En − ε) = 1

π
lim

γ→0+

γ

(En − ε)2 + γ 2
. (4)

Now, with complex scaling, the corresponding expression is
[18,41,42]

dP (ε)

dε
= 1

π
Im

(∑
n

〈
�θ

∣∣�θ
n

〉〈
�θ

n

∣∣�θ
〉

Eθ
n − ε

)
, (5)

where 〈�θ | denotes the left state vector, and |�θ
n〉 and 〈�θ

n|
are the right and left eigenvectors to a suitable Hamiltonian
Hθ (r) with eigenvalues Eθ

n . The complex energies Eθ
n allow

us to replace the integration in Eq. (3) with a coherent discrete
sum over pseudocontinuum and resonance states. Hence,
dP/dε can be retrieved without the construction of the actual
electronic state with (real) energy ε. We note here also that,
since Im(Eθ

n) < 0, the denominator in Eq. (5) has a pole in
the lower complex half plane, just as is the case for Eq. (3)
when γ → 0+. The relation in Eq. (5) is a key expression in
the present study and will be explored in more detail below.
First, however, we will focus on the procedure to find the state
vector after the laser pulse.

III. TIME-DEPENDENT PERTURBATION THEORY

For laser pulses in the weak-field regime, an excited
wave packet can be calculated using standard time-dependent
perturbation theory. The required formalism can be found in
several textbooks (see, e.g., [43]), but it will nevertheless be
briefly outlined here as a precursor for the transition to the
complex scaled case.

Starting with the time-dependent Schrödinger equation

ih̄
∂

∂t
�(r,t) = H (r,t)�(r,t), (6)

we divide the Hamiltonian into a time-independent and a time-
dependent part, H (t) = H0 + HI (t). By setting

�(r,t) = e−iH0t/h̄�̃(r,t), (7)

and inserting it into Eq. (6), we arrive at the Schrödinger
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equation in the interaction picture

ih̄
∂

∂t
�̃(r,t) = eiH0t/h̄HI (r,t)e−iH0t/h̄�̃(r,t). (8)

For a system initially prepared in the ground state, �0, the
right state vector is expanded in the series

|�̃〉 = |�0〉 +
∞∑

m=1

|�̃m〉, (9)

and similarly for the left state vector. The subscript m in
Eq. (9) denotes the order of the expansion. HI (t) describes
the interaction between the atom and the light field, which for
an N -electron system in the dipole approximation and velocity
gauge, reads

HI (t) = e

m
A(t) ·

N∑
i=1

pi = A(t) · P, (10)

where capital P is introduced to indicate the sum over the
single-particle operators pi . We have also allowed the constant
e/m to be absorbed in P. The light is further assumed to be
linearly polarized along the the z direction A(t) = A(t)ẑ. From
Eq. (8) the mth-order term �̃m is now found as the solution to

ih̄
∂

∂t
|�̃m〉 = A(t)eiH0t/h̄Pze

−iH0t/h̄|�̃m−1〉, (11)

−ih̄
∂

∂t
〈�̃m| = A(t)〈�̃m−1|eiH0t/h̄Pze

−iH0t/h̄, (12)

where �̃0 ≡ �0. Note that �̃m contributes only to population
of states coupled to the ground state by m-photon transitions.
In particular, for a system initially prepared in 1Se symmetry,
�̃1 is of 1P o symmetry whereas �̃2 contains states of both 1Se

and 1De symmetry (the superscripts “e” and “o” denote the
parity of the states).

Now, for sufficiently weak laser pulses, the series in Eq. (9)
converges rapidly. The sum over m can thus be truncated at a
rather early stage without introducing any significant errors in
|�̃〉 or 〈�̃|. We now choose m � 2 and adjust the parameters
of the perturbation (i.e., of the laser pulses), to ensure that such
a truncation is valid.

Using time-dependent perturbation theory we will now
proceed to construct the wave function �̃ and then compute the
energy distribution of the system with the help of Eq. (5). This
last step can be made with two alternative approaches, which
both have advantages and disadvantages. This issue is best
illustrated through a more detailed account of the calculation
of the first-order term in the expansion.

A. First-order term

We note first that from Eq. (7) it follows that

〈�|�(ε)〉〈�(ε)|�〉 = 〈�̃|�(ε)〉〈�(ε)|�̃〉, (13)

and thus the amplitudes needed in Eq. (2) to calculate dP/dε

can as well be expressed in terms of �̃. With m = 1 in
Eqs. (11) and (12), we write the first-order approximation
of these amplitudes as

〈�(ε)|�̃1〉 = −i2πÂ(ε − E0)〈�(ε)|Pz|�0〉 (14)

〈�̃1|�(ε)〉 = i2πÂ(−(ε − E0))〈�0|Pz|�(ε)〉, (15)

where Â(�) is the Fourier transform of the vector potential,;
namely,

A(t) = 1

h̄

∫ ∞

−∞
Â(�)e−i�t/h̄d�, (16)

and

Â(�) ≡ 1

2π

∫ ∞

−∞
A(t)ei�t/h̄dt. (17)

The time integration over the factors exp[∓i(�i ±
E0 ∓ ε)t/h̄] [cf. Eqs. (11) and (12)], gives now δ(E0 − ε + �)
and δ(ε − E0 + �) in the calculations of Eqs. (14) and (15),
respectively, and this determines the arguments of Â. With
a real argument �, then Â(−�) = Â∗(�), but here we have
chosen to keep the notation Â(−�) for the use with complex
scaling where the argument of Â is complex.

Combining Eqs. (14) and (15), we get finally the first-order
approximation of the energy distribution of the system:

dP 1 (ε)

dε
= 〈�̃1|�(ε)〉〈�(ε)|�̃1〉
= 4π2Â(−(ε − E0))Â(ε − E0)

×〈�0|Pz|�(ε)〉〈�(ε)|Pz|�0〉. (18)

Now, let us turn to how the probability distribution can
be computed with complex scaling. There are, at least, two
alternatives. The first possibility is to follow Eq. (5) directly.
|�̃θ

1 〉 and 〈�̃θ
1 | are then constructed in the basis of Hθ

0 and,
following Eq. (18), we compute the numerator in Eq. (5) as〈

�θ
1

∣∣�θ
n

〉〈
�θ

n

∣∣�θ
1

〉 = 4π2Â
( − (

Eθ
n − Eθ

0

))
Â

(
Eθ

n − Eθ
0

)
×〈

�θ
0

∣∣Pze
−iθ

∣∣�θ
n

〉〈
�θ

n

∣∣Pze
−iθ

∣∣�θ
0

〉
,

(19)

and thus the energy distribution as

dP 1(ε)

dε
= Im

(∑
n

4πÂ
(−(

Eθ
n − Eθ

0

))
Â

(
Eθ

n − Eθ
0

)

×
〈
�θ

0

∣∣Pze
−iθ

∣∣�θ
n

〉〈
�θ

n

∣∣Pze
−iθ

∣∣�θ
0

〉
Eθ

n − ε

)
, (20)

where we note that Eθ
0 = E0. The advantage with this approach

is that, once the expression in Eq. (19), which can be thought
of as the generalized population in �θ

n, is obtained for all n,
then dP 1/dε can easily be obtained for any ε. The drawback
is that Â can grow very large for complex arguments.

A second alternative is to first calculate the Fourier
transform in Eq. (18) for a real energy ε. After that one inserts
the δ function, following the steps in Eqs. (2)–(4), and finally
the transition to complex rotation is made; that is, Eq. (18) is
instead transformed to

dP 1(ε)

dε
= 4πÂ(−(ε − E0))Â(ε − E0)

×Im

(∑
n

〈
�θ

0

∣∣Pze
−iθ

∣∣�θ
n

〉〈
�θ

n

∣∣Pze
−iθ

∣∣�θ
0

〉
Eθ

n − ε

)
.

(21)
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This second version [Eq. (21)] is in fact equivalent with
approaches used earlier in the literature for absorption of
monochromatic light [41,42]. The fact that the Fourier trans-
formation of the vector potential can be calculated for real
energies only is an advantage if Â is less well behaved for
complex arguments. This is, for example, the case if A(t)
is a plane wave and thus Â(�) is a δ function. There is no
drawback with Eq. (21) in first order, but in higher orders
the same procedure, as will be discussed in Sec. III B below,
leave us with a time-consuming integration over intermediate
energies.

Before proceeding to the second-order term we note that
in both Eqs. (20) and (21) the vector potential is just a factor
before the atomic term. An A field that varies slowly over a
resonance profile will thus not be able to affect its form. The
situation is quite different when we consider the contributions
from the second-order term.

B. Second-order term

Let us now turn to how the second-order contributions to the
wave function affect dP/dε [Eq. (2)]. For this the amplitudes
〈�(ε)|�̃2〉 and 〈�̃2|�(ε)〉 are needed. �̃2 is obtained from
the m = 2 terms in Eqs. (11) and (12), which are due to two
interactions with the electromagnetic field,

�0 −→
�1

�̃1 −→
�2

�̃2. (22)

Let us first consider

〈�(ε)|�̃2〉 = −2iπ
∑∫

s

〈�(ε)|Pz|�s〉〈�s |Pz|�0〉

×
∫ ∞

−∞

Â(ε − E0 − �2)Â(�2)

E0 − Es + �2 + iε
d�2, (23)

where again it is the time integrations that single out the
energy-conserving process and ensure that ε − E0 = �1 + �2

and which further determine the arguments of Â (cf. Sec. III A).
The imaginary constant iε in the denominator moves the pole
off the real energy axis and its sign is determined from the
requirement that �m(t) → 0, t → −∞ for m > 0 (i.e., that
the system is in the ground state at t → −∞). In the integration
over �2 in Eq. (23) there are thus poles at �2 = Es − E0 − iε,
and consequently the integration path (along the real axis) is
above the poles.

Let us now consider complex rotation. The intermediate
energies are now eigenstates to a complex rotated Hamiltonian
and are in general complex with a negative imaginary part
(i.e., Es → Eθ

s ). Hereby the poles will move, but just farther
away from the real axis and the integration over �2 will
only be more stable numerically. Since this integration only
involves the Fourier transform of the analytically known vector
potential and an energy denominator, it is conveniently done,
for example, with Gaussian quadrature.

The situation for 〈�̃2|�(ε)〉 is, however, different. The
corresponding expression is

〈�̃2|�(ε)〉 = 2iπ
∑∫

s

〈�0|Pz|�s〉〈�s |Pz|�(ε)〉

×
∫ ∞

−∞

Â (−(ε − E0 − �2)) Â(−�2)

E0 − Es + �2 − iε
d�2, (24)

and here the poles are instead at �2 = Es − E0 + iε, and the
�2 integration along the real axis is below the poles. Now if
Es → Eθ

s the poles would move to the lower complex plane
and the �2 integration would give a different result. To handle
this situation we choose to replace the integration along the
real axis with a path above the poles. This can be done as long
as we take proper account of the pole contribution. We get then
an alternative representation of Eq. (24):

〈�̃2|�(ε)〉 =
∑∫

s

〈�0|Pz|�s〉〈�s |Pz|�(ε)〉

×
[

− 4π2Â(−(ε − Es))Â(−(Es − E0))

− i2π

∫ ∞

−∞

Â(−(ε − E0 − �2))Â(−�2)

E0 − Es + �2 + iε
d�2

]
.

(25)

Here we may again introduce complex scaling. In the second
term the integration path will then again be automatically on
the side of the poles indicated by +iε and we may let ε →
0+. The drawback is the necessity to compute the extra term
contributed by the pole [i.e., the first term on the right-hand
side of Eq. (25)].

Now we proceed as in Sec. III A and use Eq. (5) to replace
|�(ε)〉〈�(ε)| with a finite sum of eigenstates to the complex
rotated Hamiltonian. Again, as in Eqs. (20) and (21), there
are two possible choices. The first version [cf. Eq. (20)]
involves the calculation of Â with complex arguments, which
on the other hand can be done once and for all due to
the replacement of |�(ε)〉〈�(ε)| just mentioned. The second
version [cf. Eq. (21)], requires the integration over �2 for each
desired energy ε, but Â is here less cumbersome to handle.
In Eq. (23) the argument of Â is with this choice real and in
Eq. (25) it is only in the pole contribution (the first term) that we
encounter complex arguments of Â. The calculations presented
below are generally done with the first, faster, version, but then
a few energy points are calculated with the second version to
check that we indeed get the same results. A rather modest
complex scaling angle is sufficient to uncover the resonances
of importance for the light pulses considered, and it has been
checked for stability over the region θ = 2◦ to 5◦.

In both Eqs. (23) and (25) the vector potential is no longer
just a prefactor. Through the integration over �2 it has a direct
influence on which intermediate states �s , which are populated
and thus the probability to reach a certain final state �(ε). Here
it is thus conceivable that the actual form of the light field
should be able to influence the form of the resonance profile.

IV. REPRESENTATION OF FIELD-FREE STATES

Before turning to the results, we give a brief account of
how the field-free states are represented. The same method
has been used earlier for calculations of resonance parameters
and photodetachment cross sections [44–48].

The complex rotated field-free Hamiltonian is

H0 = h1 + h2 + e2

4πε0

1

r12
e−iθ , (26)
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with

hi = p2
i

2m
e−i2θ − e2

4πε0

Z

ri

e−iθ . (27)

The eigenstates to h are expanded in products of B splines
[49] and spherical harmonics Ym


 ; that is, the radial functions
Pn
 are written

Pn
(reiθ ) =
∑

i

ciB
k
i (r). (28)

The B splines are piecewise polynomials of order k − 1
(here k = 7) defined on a so-called knot sequence. They
form a finite basis that is complete on the space determined
by the polynomial order and the knot sequence. The cis in
Eq. (28) are obtained from a diagonalization of the one-particle
Hamiltonian matrix in the B-spline basis. The B splines are
kept real, and the rotational angle θ thus only affects the ci

coefficients. The knot sequence starts off linearly and extends
out to 200–300 a.u., and the convergence with respect to
the density of the grid and the size of the radial box is
checked. For the outer region of the knot sequence a linear
grid with larger steps, as well as an exponentially increasing
grid, has been tested and both are found to be adequate. The
two-particle Hamiltonian in Eq. (26) is finally diagonalized for
a given symmetry and parity using that coupled eigenfunction
to h1 + h2 as a basis; that is, with matrix elements〈{na
anb
b}πLS

∣∣H0

∣∣{nc
cnd
d}πLS

〉
. (29)

We build the configurations from the full basis spanned by
the chosen B splines and include 
 � 2 which is sufficient for
stable resonance profiles. This has been checked through cal-
culations with 
 � 3. The bottleneck in the present calculation
is the extended and finely meshed knot sequence needed for
the description of the energy distribution in the continuum.
Already with the modest number of included partial waves of

 � 2, the two-particle basis consists of up to ∼25 000 pairs
of one-particle functions of 1P o symmetry as well as ∼19 000
pairs of 1So symmetry. Still, even with 
 � 2, the resonance
parameters are well represented. For example, the lowest 1S

resonance (discussed below) is found at −0.148 766 a.u.,
while the highly accurate parametric coordinate calculation in
Ref. [50] places it at −0.148 776 a.u. Similarly, the halfwidth
found here is 8.693 × 10−4 a.u., while that of Ref. [50] is
8.666 × 10−4 a.u.

V. RESULTS

We consider a light pulse built from a sum of pulses with
Gaussian envelopes:

A(t) =
∑

k

Ake
−[(t−dk )/Tk ]2

sin [ωk(t − dk)] , (30)

where a nonzero dk yields possible delay of the term k. In
the following Tk will be one light cycle (i.e., Tk = 2π/ωk).
Longer pulses have been tested as well, but this did not give
any qualitatively different results. The Fourier transform of the
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∋

FIG. 1. (Color online) Overview of resonances that can be
reached with two photons from the H− ground state in the region just
below the H(n = 2) threshold. The 1Se channel is shown in blue (solid
line) and the 1De channel in red (dashed-dotted line). The vertical line
at −0.125 a.u. shows the position of the H(n = 2) threshold.

field in Eq. (30) is

Â(�) = − i

4
√

π

∑
k

AkTke
idk�/h̄

{
exp

[
−T 2

k

4
(ωk + �/h̄)2

]

− exp

[
−T 2

k

4
(ωk − �/h̄)2

]}
. (31)

The numerical results presented below have been obtained
with fields composed of 1 or 2 terms in Eqs. (30) and (31).

Figure 1 shows an overview of the resonances reachable
through two-photon absorption from the H− ground state.
The displayed region is just below the threshold for electron
detachment accompanied by excitation of the remaining
hydrogen atom into n = 2, situated at ∼11 eV above the
ground state. The spectrum is generated with the light pulse
in Eq. (30) with just one term in the sum, and with h̄ω1 =
0.19 a.u. (∼5.2 eV). The duration of the pulse is around
2 fs. Since the first detachment threshold is found already at
∼0.75 eV, absorption of one photon of this energy is more than
enough to release one electron. The energy region then reached
is also empty of resonances. The process addressed (i.e., that
of absorbing more than the necessary number of photons) is
for negative ions often called excess-photon detachment [36]
and is an analog to above threshold ionization for atoms.

As can be seen in Fig. 1, the lowest energy H− resonance
is broad, strong, and rather isolated. It will here serve as a
test example for how a resonance profile can be modified by
the pulses used to excite it. The resonance is of 1Se symmetry
and its precise position is ∼10.3068 eV above the ground
state, which means that its total energy with respect to three-
particle breakup is −0.148 776 a.u., and it has a halfwidth of
0.000 866 6 a.u. (∼24 meV) [50].

A light pulse built from two terms in Eq. (30) has now been
used to excite the lowest 1Se resonance. The carrier frequencies
are chosen such that h̄(ω1 ± ω2) equals the excitation energy
of the 1Se resonance. An example of a considered light field
is shown in Fig. 2. In this example, absorption of the central
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FIG. 2. (Color online) Example of a vector potential used in the
present calculations. The upper panel shows the two pulses as a
function of time. The lower panel shows the Fourier transform of the
A field. The pulses are chosen such that absorption and/or emission
of photons corresponding to the energy of the central frequencies
of both pulses match the excitation energy of the 1Se resonance. In
this example absorption of the central frequency of the higher-energy
pulse (blue dashed-dotted line), corresponding to ∼13 eV is sufficient
to reach the H (n = 3) threshold, at ∼12.8 eV. Through subsequent
emission of a photon with an energy corresponding to the central
frequency of the lower-energy pulse (solid red line) the 1S resonance,
at ∼10.3 eV, can be populated.

frequency of the higher-energy pulse (blue), corresponding to
∼13.1 eV will bring the system all the way to the region around
the H (n = 3) threshold (at ∼12.8 eV), and thus well above
the 1Se resonance at ∼10.3 eV. Through subsequent emission
of a photon with an energy corresponding to the central
frequency of the lower-energy pulse (red) the 1S resonance
can be populated. In contrast to the region above the first
ionization threshold, the region between the second and third
ionization threshold shows a number of resonances. The taken
path is also illustrated by the two rightmost arrows in Fig. 3.

Figure 4 shows first the energy distribution in the vicinity
of the 1Se resonance after the ion has been exposed to a
light field consisting of one pulse (or equivalently two equal
superimposed pulses) with a central frequency matching half
the needed excitation energy (0.19 a.u. ≈ 5.2 eV). The path is
illustrated by the leftmost arrows in Fig. 3. Since detachment
is only possible into the 1sε channel, the figure can be
reinterpreted as the photoelectron spectrum by just shifting
the x axis with 0.5 a.u. The amplitude of the A field is, for
simplicity, set to unity, as can be seen in the lower panel, and
dP/dε for any other amplitude is obtained by multiplication of
the curve in the upper panel in Fig. 4 with the fourth power of
the amplitude. In Fig. 5 the situation is instead one pulse with a
central frequency corresponding to 0.10 a.u. ≈ 2.7 eV and one
more energetic pulse with a central frequency corresponding
to 0.28 a.u. ≈ 7.6 eV; that is, the path illustrated by the two
middle arrows in Fig. 3. Figure 6 shows the opposite situation;
a more energetic pulse with a central frequency corresponding
to 0.48 a.u. ≈ 13.1 eV and again one pulse with a central
frequency corresponding to 0.10 a.u. ≈ 2.7 eV, this was the
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FIG. 3. (Color online) Energy-level diagram of H− showing
ground state and resonances of 1S and 1P symmetry up to the H(n = 3)
threshold. States of even 1S symmetry are shown with blue short
dashed lines and those of odd 1P symmetry with red long dashed
lines. The arrows show the central frequencies of the three different
investigated light pulses.

case discussed in connection with Fig. 2. In Figs. 5 and 6 the
amplitudes A1 and A2 [cf. Eq. (30)] are equal and half an
atomic unit each, which corresponds to the situation in Fig. 4
if we view it as the field from two equal superimposed pulses.

Comparing the profiles, as is done in Fig. 7, we see that
the peak asymmetry changes and a careful examination will
also show that there is a slight change of peak position, where
the example in Fig. 5 has its peak for a slightly lower energy
than in Fig. 4, while that in Fig. 6 is slightly higher. For easy
comparison the magnitude of the vector-potentials has been
adjusted in Fig. 7 so that the resonance peaks have the same
height in all three cases.
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FIG. 4. (Color online) Upper panel shows the energy distribution
in the vicinity of the 1Se resonance after exposure to a light field
consisting of two equal pulses, each with a central frequency matching
half the needed excitation energy (0.19 a.u. ≈ 5.2 eV). Lower panel
shows the vector potential.
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FIG. 5. (Color online) Upper panel shows the energy distribution
in the vicinity of the 1Se resonance after exposure to a light field
consisting of one pulse with a central frequency corresponding to
0.10 a.u. ≈ 2.7 eV, and one with a central frequency corresponding
to 0.28 a.u. ≈ 7.6 eV. Lower panel shows the vector potential.

The asymmetry can be altered further by letting h̄ω1 + h̄ω2

be slightly different than the energy needed to reach the
resonance. If the sum is not too much different the total
population of the resonance is still only modestly affected.
It should be possible to optimize the pulse for maximum
asymmetry with some optimal control scheme, but we have
not pursued this path here.

All the results shown are calculated with the two Gaussian
pulses superimposed in time [i.e., d1 = d2 = 0 in Eq. (30)].
The procedure works equally well with a delay between the
pulses. However, this leads to a much reduced population of
the resonance and we have not investigated this further.
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FIG. 6. (Color online) Upper panel shows the energy distribution
in the vicinity of the 1Se resonance after exposure to a light field
consisting of one pulse with a central frequency corresponding to
0.48 a.u. ≈ 13.1 eV, and one with a central frequency corresponding
to 0.10 a.u. ≈ 2.7 eV. Lower panel shows the vector potential.
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FIG. 7. (Color online) Comparison between energy distributions
in vicinity of the 1Se resonance at ∼ −0.15 a.u. for different light
pulses. The three profiles are normalized to the same maximum height
to facilitate comparison.

A. Asymmetry parameter

Resonance profiles are often characterized by the asymme-
try parameter q of the Fano profile [29]:

dP (ε)

dε
= c0 + c1

(η + q)2

1 + η2
, with η = (ε − Eres)

�/2
, (32)

where c0 and c1 are constants. Eres and � are the position
and width of the resonance, respectively, and η is thus a
dimensionless parameter normalized to the resonance width.
This form was originally derived by Fano for one-photon
absorption, but it easy to show that it follows directly from
Eq. (5). Looking at the contribution from one single resonance,
we find, after introduction of the parameter η, that it can be

q��5.3

�4 0 4
η

d
P
�d
Ε

q��3.9

�4 0 4
η

q��19

�4 0 4
η

FIG. 8. (Color online) Fano profile fits [cf. Eq. (32)] of the
resonance profile when excited with different light pulses. The
blue dots show the calculated points and the red lines are the fits.
The left panel shows the profile after excitation with one pulse
where the central frequency matches half of the excitation energy
(cf. Fig. 4). The middle panel shows the profile after excitation with
two pulses centered at different frequencies, both tuned below the
excitation energy (cf. Fig. 5), and the right panel shows the profile
when the frequency of one of the pulses is tuned above the excitation
energy (cf. Fig. 6). The dimensionless parameter η, as well as the
asymmetry parameter q, are defined in Eq. (32). The three profiles
are normalized to the same height.
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written as in Eq. (32) with

q = −χ ±
√

χ2 + 1, (33)

where χ is the ratio between the real and the imaginary part
of the generalized population of the resonance:

χ = Re
[〈
�θ

∣∣�θ
n

〉〈
�θ

n

∣∣�θ
〉]

Im
[〈
�θ

∣∣�θ
n

〉〈
�θ

n

∣∣�θ
〉] . (34)

The + and − in Eq. (33) are to be used if Im[〈�θ |�θ
n〉〈�θ

n|�θ 〉]
is greater or smaller than zero, respectively. Eq. (32) is thus
equally valid for multiphoton absorption.

The profiles calculated with the different light pulses are
fit to Eq. (32) and displayed in Fig. 8 together with the q

values calculated with Eq. (33). The q values obtained from
the fit agree to within one unit in the last digit with the
calculated ones. Asymmetry parameters close to zero imply
strong asymmetry, while a close-to-Lorentzian profile has a
large absolute q value. It is interesting to note that, for the
case where the central frequency of one pulse is tuned well
above the resonance (the right panel in Fig. 8), the profile
is close to Lorentzian with a much large magnitude of the q

value than in the other two cases. The middle panel shows, on
the other hand, a stronger asymmetry than what is obtained
with one single pulse. The maximum of a Fano profile is

found at η = 1/q (i.e., at ε = Eres + �/2q), and the negative q
values are thus consistent with lower-energy peaks for the more
asymmetric profiles. The minimum, found at η = −q (i.e., at
ε = Eres − q�/2) is perhaps more interesting. It is for the
most asymmetric case found ∼100 meV above the resonance
position, but ∼450 meV above it in the most symmetric case.

VI. CONCLUSIONS

We have combined complex rotation with time-dependent
perturbation theory and used the developed formalism to study
the interaction of a strongly correlated system with short light
pulses. Corrections up to second order in the perturbing light
field was included in the wave function.

The explicit representation of resonance states provided by
complex scaling was decisive to keep the calculation within
reach for a modest table-top computer. We showed further that,
with two light pulses, we can steer the ionization path which
is manifested in a change in the line profiles.
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