
PHYSICAL REVIEW A 85, 053412 (2012)

Response of a particle in a one-dimensional lattice to an applied force:
Dynamics of the effective mass
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We study the behavior of the expectation value of the acceleration of a particle in a one-dimensional periodic
potential when an external homogeneous force is suddenly applied. The theory is formulated in terms of modified
Bloch states that include the interband mixing induced by the force. This approach allows us to understand
the behavior of the wave packet, which responds with a mass that is initially the bare mass, and subsequently
oscillates around the value predicted by the effective mass. If Zener tunneling can be neglected, the expression
obtained for the acceleration of the particle is valid over time scales of the order of a Bloch oscillation, which are
of interest for experiments with cold atoms in optical lattices. We discuss how these oscillations can be tuned in
an optical lattice for experimental detection.
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I. INTRODUCTION

In the absence of scattering due to impurities and phonons,
the wave packet associated with a crystal electron accelerates
in response to an external force F (homogeneous in space
and constant in time) as a particle with an effective mass.
This observation is justified by the effective mass theorem [1],
which in the simple case of a one-dimensional lattice is

〈a〉 = F

m∗
n(k)

, (1)

where 〈a〉 is the expectation value of the acceleration of
the wave packet and m∗

n(k) is inversely proportional to the
curvature of the band energy,

[m∗
n(k)]−1 = 1

h̄2

d2

dk2
En(k). (2)

However, Pfirsch and Spenke [2] argued that 〈a〉 does not
satisfy (1) at all times when the force is suddenly applied;
instead, the initial response of the expectation value of the
acceleration is characterized by the bare mass of the electron.
There should be subsequent oscillations around the value
calculated from the usual effective mass (2), which have a
period inversely proportional to the energy gap. They die
off after a characteristic time that roughly decreases with
decreasing bare mass and lattice constant [2].

In typical solid-state systems, the femtosecond scale of
this characteristic time and the scattering due to impurities
and phonons make it difficult to observe these oscillations.
Atoms in optical lattices constitute a much simpler system,
where the time scale is expected to be longer and decoherence
can be minimized. In these systems a constant force can
be introduced by accelerating the lattice uniformly so that
the atoms experience an inertial force in the lattice frame.
Many experiments with ultracold atoms have been carried
out to examine interesting phenomena caused by the band
structure in one-dimensional optical lattices [3–8]. Here we
discuss the possibility of detecting the oscillatory behavior of
the expectation value of the acceleration in ultracold atoms
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in a one-dimensional optical lattice when an inertial force is
suddenly applied.

Assuming that Zener tunneling is not significant, we write
an approximate semianalytical expression for the expectation
value of the acceleration valid for times as long as one
Bloch period [see expression (48)]. Our approach is based
on constructing a wave packet from modified Bloch states that
take into account the first order interband mixing due to the
external force. These modified Bloch states are constructed
using a diagonalization scheme to decouple the bands to some
given order in the external force [9], following ideas first
introduced by Adams [10–12], Kane [13], and Wannier [14].
To first order, we write an explicit expression for the desired
expectation value of the wave packet acceleration. We find
that at early times it reduces to the result found by Iafrate
and Krieger in their study of the motion of crystal electrons
shortly after a dc field is applied [15–18]. We discuss the
validity of our perturbation approach, comparing with the
results obtained from a full numerical calculation, and confirm
that our approach is still valid for longer times. We identify
the effect of changing the different physical parameters
of the optical lattice, such as the bare mass of the atoms and
the lattice constant, and find some sets of parameters that we
believe would lead to experimentally measurable effects.

To the best of our knowledge, the type of oscillations
described here have not been measured experimentally. Al-
though the observation of this phenomenon in optical lattices
is an interesting problem on its own, we believe it can also
help to understand how such oscillations could be detected
in solid-state systems where the femtosecond time scales are
becoming more accessible through ultrafast pulses [19].

In Sec. II we summarize the strategy to calculate the
expectation value of the acceleration, in terms of modified
Bloch states, and illustrate its behavior for a one-dimensional
Mathieu potential with parameters adjusted to resemble those
of the band structure of a semiconductor. The method used
for the full numerical calculation is sketched in Sec. III. In
Sec. IV, we show an application of the formalism to cold
atoms in an optical lattice with several examples, illustrating
the relevant parameters that control the oscillations. We present
some conclusions in Sec. V.
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II. THEORETICAL FRAMEWORK

We consider a particle in an infinite one-dimensional lattice
described by a wave packet with spread in quasimomentum
smaller than the extension of the Brillouin zone. In this section
we describe the formalism employed to include the effect of
an external homogeneous force acting on the particle.

A. Hamiltonian and modified Bloch states

The Hamiltonian that describes the system is

H = Ho − F (t)x, (3)

where Ho corresponds to the unperturbed part of the Hamilto-
nian,

Ho ≡ − h̄2

2m

d2

dx2
+ V (x). (4)

The potential V (x) has period b. We will treat −F (t)x as a
perturbation, but in a particular sense that will be described
later.

If we wanted to solve this problem in the crystal momentum
representation we would expand the wave function of the
system �(x,t) as a wave packet of Bloch functions, ψn(k,x),

�(x,t) =
∑

n

∫
dk cn(k,t)ψn(k,x), (5)

where the integral is over the Brillouin zone. The Bloch
functions can be written as

ψn(k,x) = 1√
2π

un(k,x)eikx, (6)

where un(k,x) has the periodicity of the one-dimensional
lattice. The Bloch functions are eigenstates of the unperturbed
Hamiltonian Ho with energies En(k). They do not diagonalize
the full Hamiltonian when we include the force term, which
destroys the periodicity of the system and is divergent for
|x| → ∞. Therefore, some care is required to express the
position operator in the crystal momentum representation [20],∫ ∞

−∞
ψ∗

n (k,x)xψn′ (k′,x)dx

= δnn′

(
−i

∂

∂k′ δ(k − k′)
)

+ δ(k − k′)ξnn′(k), (7)

where ξnn′(k) is the Lax connection [21],

ξnn′(k) ≡
∫ b

0
u∗

n(k,x)i
∂

∂k
un′(k,x)

dx

b
. (8)

In the crystal momentum representation the Hamiltonian (3)
becomes∫ ∞

−∞
ψ∗

n (k,x)Hψn′ (k′,x)dx

= Hnn′ (k; t)δ(k − k′) − δnn′F (t)

(
−i

∂

∂k′ δ(k − k′)
)

, (9)

where we have introduced the matrix elements

Hnn′ (k; t) ≡ ER
n (k; t)δnn′ − F (t)ξnn′(k). (10)

Here ER
n (k; t) denotes the band energy renormalized by the

diagonal part of the Lax connection,

ER
n (k; t) ≡ En(k) − F (t)ξnn(k). (11)

The time evolution of the amplitudes cn(k,t) is given by the
time-dependent Schrödinger equation,

ih̄
∂

∂t
cn(k,t) =

∑
n′

Hnn′ (k; t)cn′(k,t) − iF (t)
∂

∂k
cn(k,t). (12)

Now we look at the case where the force F (t) is constant
for all times, that is,

F (t) = F , for t ∈ (−∞,∞). (13)

Consider a general unitary transformation Un′n(k) of the Bloch
states, ψn(k,x),

φn(k,x) ≡
∑
n′

ψn′(k,x)Un′n(k). (14)

In terms of these modified Bloch states, the wave packet (5)
becomes

�(x,t) =
∑

n

∫
dk bn(k,t)φn(k,x), (15)

where

bn(k,t) ≡
∑
n′

U ∗
n′n(k)cn′(k,t). (16)

From (12) the evolution of bn(k,t) is given by

ih̄
∂

∂t
bn(k,t) =

∑
n′

( ∑
mm′

U ∗
mn(k)Hmm′(k)Um′n′(k)

−
∑
m

U ∗
mn(k)iF · ∂

∂k
Umn′(k)

)
bn′ (k,t)

− iF · ∂

∂k
bn(k,t). (17)

In order to decouple the amplitude for the band n from the
rest of the bands, it would be desirable to find a transformation
Un′n(k) that diagonalizes the term in parentheses in (17),∑

mm′
U ∗

mn(k)Hmm′(k)Um′n′(k)

−
∑
m

U ∗
mn(k)iF · ∂

∂k
Umn′ (k) = δnn′Wn(k). (18)

If this equation could be solved, the solution to (17) would be

bn(k,t) = bn(k − 1

h̄
F t,0)e− i

h̄

∫ t

0 Wn(k−F (t−t ′)/h̄)dt ′ . (19)

Wannier proved that it is possible to find a transformation
that satisfies (18) using an expansion of (14) in powers of
F , and described a recurrence procedure to construct it [14].
Such a power series expansion is only valid if Zener tunneling
between bands is not significant [9,14]. This is appropriate for
the physical situations we will discuss here, where the force
is small enough so that the wave packet remains essentially in
one band. In the appendix we summarize Wannier’s procedure.
To first order in F , the unitary transformation Un′n(k) is

Un′n(k) ≈ δn′n + 	n′n(k), (20)
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where 	n′n(k) is a k-dependent dimensionless parameter that
compares the interband position matrix element times the force
with the energy difference between bands, En′n(k) ≡ En′(k) −
En(k),

	n′n(k) ≡ F · ξn′n(k)

En′n(k)
(1 − δn′n). (21)

The first order approximation for Wn(k) is

Wn(k) ≈ ER
n (k). (22)

Hence, the solution (19) valid to first order is [14]

bn(k,t) ≈ bn(k − 1

h̄
F t,0)e−iγn(k− 1

h̄
F t,t), (23)

where

γn(κ,t) ≡ 1

h̄

∫ t

0
ER

n (κ + 1

h̄
F t ′)dt ′, (24)

with κ = k − F t/h̄.
Adams and Argyres [10,11] used the modified Bloch states

(14) with the first-order approximation (20),

φn(k,x) ≈ ψn(k,x) +
∑
n′

ψn′ (k,x)	n′n(k), (25)

to construct states where the expectation value of the acceler-
ation,

〈a(t)〉 ≡ d2

dt2

∫ ∞

−∞
�∗(x,t) x �(x,t)dx, (26)

obeys the effective mass theorem (1). The parameter (21),
which controls the mixing between the bands, is assumed to
be small but it is necessary to dress the particle in the periodic
potential to establish the effective mass.

The expectation value of the acceleration can be written as

〈a(t)〉 = F (t)

m
+ 1

ih̄m

∫ ∞

−∞
�∗(x,t) [p,Ho] �(x,t)dx, (27)

where p denotes the momentum operator and the force F (t)
can have any time dependence. For a wave packet of the form

� ′
N (x,t) =

∫
dk bN (k,t)φN (k,x) (28)

and a constant force (13), the expectation value (27) becomes

〈a(t)〉 = F

m
+

∫
dk |bN (k,t)|2 1

m
FNN (k), (29)

where we defined

Fnn′ (k) ≡ i

h̄

∑
mm′

U ∗
mn(k) pmm′(k)Emm′(k) Um′n′ (k) (30)

in terms of the momentum matrix elements,

pnn′(k) ≡ 2π

b

∫ b

0
ψ∗

n (k,x)
h̄

i

d

dx
ψn′(k,x)dx. (31)

To first order in 	n′n(k), Fnn′(k) is

Fnn′ (k) ≈ i

h̄

(
Enn′ (k)pnn′(k) +

∑
m

pnm(k)Enm(k)	mn′(k)

−
∑
m

	nm(k)pmn′(k)Emn′(k)

)
. (32)

For n = n′ = N , Eq. (32) simplifies to

FNN (k) ≈ F ·
(

m

m∗
N (k)

− 1

)
, (33)

as a result of the well-known sum rule [21]

m

m∗
n(k)

= 1 + 2

m

∑
n′ �=n

pnn′(k)pn′n(k)

Enn′ (k)
. (34)

Therefore, the expectation value of the acceleration for the
wave packet (28) satisfies

〈a(t)〉 =
∫

dk|bN (k,t)|2 F (t)

m∗
N (k)

, (35)

with φN (k,x) in the approximation (25). This corresponds to
a particle accelerating with the usual effective mass (2) at all
times [10,11].

B. Expectation value of the acceleration and effective mass

We are interested in the situation where the wave packet is
prepared initially in one band only (denoted by N ),

�(x,0) =
∫

fN (k)ψN (k,x)dk, (36)

and the external (constant) force is suddenly applied at t = 0,
that is,

F (t) = �(t)F, (37)

where �(t) is the Heaviside function. The function fN (k) is
assumed to have a spread smaller than the size of the Brillouin
zone; for instance, in the numerical calculations presented in
the next sections we will assume a Gaussian shape (centered
at k = 0),

fN (k) ≡
√

1

σ
√

2π
e
− k2

4σ2 , (38)

characterized by the width σ .
For the initial wave packet (36) the term involving the

commutator in (27) vanishes because the momentum matrix
elements in the crystal momentum representation are diagonal
in k, ∫ ∞

−∞
ψ∗

n (k,x) p ψn′(k′,x)dx = pnn′ (k)δ(k − k′). (39)

Hence, the particle accelerates initially with its bare mass,
m [2]. Naively, we might think that the wave packet for t � 0
would be of the form

�N (x,t) =
∫

dk cN (k,t)ψN (k,x), (40)

with cN (k,0) = fN (k) to satisfy the initial condition (36),
but then the wave packet (40) would describe a particle
accelerating at all times with the bare mass. This seems
to contradict the effective mass theorem (1); however, the
contradiction is only apparent because the Bloch states of one
band only are not the appropriate states to describe the particle
in the presence of a homogeneous force.

The modified Bloch states (25) include the effect of the
interband mixing due to the external force (to first order)
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and allow us to construct a wave packet that describes a
particle accelerating according to the effective mass theorem
for a constant force as shown in (35). This property suggests
that such states form an appropriate basis even when the
force is turned on instantaneously at t = 0; thus, instead of
a wave packet of the form (28), we use an expansion of the
form (15), including the amplitudes bn(k,t) for n �= N , and
impose the initial condition (36), which forces the particle to
respond initially with its bare mass. For later times we use the
result (23) to describe the evolution of the amplitudes bn(k,t)
in time.

We find that the initial amplitudes bn(k,t = 0), correct to
first order in 	n′n(k), are

bN (k,0) ≈ fN (k), (41)

and

bn(k,0) ≈ −fN (k)	nN (k), for n �= N. (42)

For later times we have

bN (k,t) ≈ fN (κ)e−iγN (κ,t), (43)

and

bn(k,t) ≈ −fN (κ)	nN (κ)e−iγn(κ,t), for n �= N, (44)

where κ = k − F t/h̄. Within this approximation, the ampli-
tude for the modified Bloch state N is of zeroth order while
the amplitudes for the remaining modified Bloch states are of
first order. The same is true for the amplitudes (correct to first
order) for the usual Bloch states in the expansion (5),

cN (k,t) ≈ fN (κ)e−iγN (κ,t), (45)

and

cn(k,t) ≈ fN (κ)
(
	nN (k)e−iγN (κ,t)

−	nN (κ)e−iγn(κ,t)
)
, for n �= N. (46)

These solutions do not include Zener tunneling from the
initial band N to the neighboring bands because the ampli-
tudes in the latter remain at higher order in the expansion
[9,14].

Compared to (29), there are some additional terms in the
new expression for the expectation value of the acceleration
(27). For t � 0, the acceleration is

〈a(t)〉 = F

m
+

∑
n

∫
dk |bn(k,t)|2 1

m
Fnn(k)

+
∑
n,n′

n �= n′

∫
dk

1

m
Re[b∗

n(k,t)bn′(k,t)Fnn′(k)], (47)

where Re[·] denotes the real part. In the first-order approxima-
tion we find that (47) reduces to

〈a(t)〉 ≈ F

m

∫
dk|fN (κ)|2

(
m

m∗
N (k)

+ 2

m

∑
n�=N

EnN (k)

(EnN (κ))2
Re

[
pNn(k)pnN (κ)eiγNn(κ,t)

] )
,

(48)

where we have used (32), (33), (43), and (44). As be-
fore we use κ = k − F t/h̄ and additionally we introduce
γNn(κ,t) ≡ γN (κ,t) − γn(κ,t). The first term in (48) describes
the acceleration with the usual effective mass while the
second term contains the oscillations predicted by Pfirsch and
Spenke [2]. Using the sum rule (34) it can be verified that
〈a(t = 0)〉 = F/m as expected [15,17,18].

C. Example

Having presented the general formalism for a one-
dimensional periodic potential, we will now assume a Mathieu
potential to illustrate the behavior of the acceleration (48).
Therefore, we set

V (x) = V0 sin2(kLx), (49)

where V0 is a constant that determines the strength of the
potential, and kL ≡ π/b identifies half of the Brillouin zone.
The eigenvalue problem for the unperturbed Hamiltonian Ho

can be rewritten as Mathieu’s differential equation. The two
linearly independent solutions of Mathieu’s problem can be
combined appropriately to construct Bloch-type solutions (6)
analytical and periodic in k over the Brillouin zone [−kL,kL]
for each band index [22–25].

The energy scale can be characterized by the kinetic energy
associated with the wave vector kL,

ER ≡ h̄2k2
L

2m
, (50)

and we can write V0 = sER , where s is a dimensionless
constant. An example of the band structure calculated for
s = 10 is shown in Fig. 1. For future reference, the bands will
be labeled in order of increasing energy starting with n = 0
for the lowest band.

Because of the inversion symmetry of the potential V (x)
and the procedure used to find the Bloch functions, the diagonal
part of the Lax connection appearing in the renormalized

2

6

 10

 14

 18

 22

-1 -0.75 -0.5 -0.25 0  0.25  0.5  0.75 1

E
ne

rg
y 

(u
ni

ts
 o

f 
E

R
)

k (units of kL)

n=0

n=1

n=2

n=3

FIG. 1. (Color online) First four energy bands (n = 0,1,2,3) for
a potential strength s = 10.
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band energies (11) vanishes [23] and the momentum matrix
elements (31) are purely real. For such a potential, (48)
simplifies to

〈a(t)〉 ≈ F

m

∫
dk|fN (κ)|2

(
m

m∗
N (k)

+ 2

m

∑
n�=N

EnN (k)

(EnN (κ))2
pNn(k)pnN (κ) cos γNn(κ,t)

)
.

(51)

For times short enough after the force is applied, the
variations of the momentum matrix elements and the energy
differences as κ changes with time can be neglected and
we recover the expression found by Iafrate and Krieger for
an electron in a dc electric field, using a vector potential
gauge and accelerated Bloch states [15,17,18]. However, as
will be seen in some examples in Sec. IV, the expression
(51) gives a good approximation to the behavior of the
acceleration for longer times, over which the variations of the
momentum matrix elements and the energy differences cannot
be neglected, as long as the wave packet remains mainly in
the original band. Such long times might not be of practical
interest for typical solid-state systems where it is difficult
to maintain coherence over times comparable to the Bloch
period,

τB = h/bF, (52)

which is the time necessary for a wave packet to return to
its original position in the Brillouin zone under the action
of a constant force [1]. Experiments in optical lattices, on
the other hand, can access the dynamics on time scales
of the order of a Bloch period relatively easily [3,4], motivating
the study of the oscillations of the effective mass as the atoms
perform a full Bloch oscillation. This will be discussed in
Sec. IV.

We now illustrate some of the features contained in the
result (51) for an electron in a one-dimensional potential
(49) with parameters adjusted to resemble those of the band
structure of a semiconductor; specifically, we choose s = 10
and b = 0.5 nm. For this example the initial wave packet is
centered at k = 0 in the band N = 2, which resembles the first
conduction band of a semiconductor (see Fig. 1). We use a
force that corresponds to a strong dc field of 1.7 × 107 V/m
and the band gap E21(k = 0) is of the order of an electron
volt (here ER = 1.5 eV). Using the result (51) with these
parameters, we plot the effective mass of the wave packet,
defined as

m∗(t) ≡ F

〈a(t)〉 , (53)

in Fig. 2; note that this is to be distinguished from the effective
mass for an energy band (2). In this case we expect the first-
order approximation to be valid close to the center of the
Brillouin zone.

This example displays the features discussed by Pfirsch
and Spenke [2]. Notice that the system behaves initially with
the bare mass and, afterward, the effective mass (53) oscillates
around the usual effective mass (2) averaged over the extension
of the wave packet. Although there is a superposition of various
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FIG. 2. (Color online) Time-dependent effective mass (53) for
an electron wave packet (σ ≈ 0.2kL) initially at the center of the
Brillouin zone in the band N = 2 of a one-dimensional potential
(49) with s = 10 and b = 0.5 nm, calculated from the first-order
approximation (red solid line); the blue dotted line corresponds
to the usual effective mass associated with the wave packet. For
reference, the time is given both in femtoseconds and in units of
the Bloch period (here τB ≈ 485 fs). The first-order approximation
is essentially indistinguishable from the full numerical calculation
result (see Sec. III). We show both results for a smaller time interval
in the inset, where the red solid line corresponds to the first-order
approximation and the green crosses correspond to the full numerical
result. The units in the inset are the same as in the main plot.

oscillations in the second term of (51),

aosc(t) ≡ 2F

m2

∑
n�=N

∫
dk|fN (κ)|2

× EnN (k)

(EnN (κ))2
pNn(k)pnN (κ) cos γNn(κ,t), (54)

associated with the different neighboring bands, Fig. 2 shows
a distinctive oscillation with period

τosc(k) = h

|ENn̄(k)| , (55)

given by the energy difference between the initial band, N = 2,
and its next neighbor band, n̄ = 1, in the region near the center
of the Brillouin zone. For the example in Fig. 2 the period is
τosc(0) ≈ 1.30 fs. The remaining oscillating terms have small
contributions because of the much larger energy difference
with respect to the band N = 2.

For the same system but with the electron starting in the
lowest band, N = 0, the acceleration is also described very
well by the first-order approximation (51) as shown in Fig. 3.
Compared to the previous example, the effective mass of the
initial band N = 0 in this case is larger because this band
is flatter than the band N = 2 discussed before. Due to the
larger effective mass, the average value of the acceleration is
smaller and the expectation value of the acceleration goes to
zero several times. Therefore, it is more convenient to plot the
acceleration instead of the effective mass (53).

The oscillations decay as a consequence of the spread of
the wave packet in k [2]. It is possible to derive a simple
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FIG. 3. (Color online) Expectation value of the acceleration for
the same electron wave packet described in Fig. 2 but starting in the
lowest band, N = 0. The first-order approximation (51) corresponds
to the red solid line and the value predicted by the usual effective mass
corresponds to the blue dotted line. The light blue slash-dotted line
corresponds to the envelope function in (58), adjusted to give the right
initial value of the acceleration. As for the example shown in Fig. 2,
there is excellent agreement between the first-order approximation
and the full numerical calculation result (see Sec. III). We show both
results for a smaller time interval in the inset, where the red solid line
corresponds to the first-order approximation and the green crosses
correspond to the full numerical result. The units in the inset are the
same as in the main plot.

approximate expression for the envelope of the decaying
oscillations of the acceleration while the wave packet is
moving close to the center of the Brillouin zone. If we consider
only the contribution from the next neighbor band, n̄, and
neglect the change of the momentum matrix elements and
energy differences in Eq. (54) [2] we can write the approximate
expression

aosc(t) ≈ 2F (pn̄N (0))2

m2En̄N (0)

∫
dk|fN (k)|2 cos

(
1

h̄
ENn̄(k)t

)
.

(56)

The energy difference associated with the frequency of the
oscillations can be estimated approximating the band energies
close to k = 0 by parabolas, characterized by the usual
effective mass,

ENn̄(k) ≈ h̄2k2

2

(
1

m∗
N (0)

− 1

m∗̄
n(0)

)
+ ENn̄(0)

= h̄2k2

2mred
Nn̄(0)

+ ENn̄(0), (57)

where we introduced the reduced effective mass mred
Nn̄(k)

associated with the original band N and its closest neighbor n̄.
Using this approximation and the Gaussian quasimomentum
distribution (38), Eq. (56) can be evaluated analytically,
yielding an oscillating term with an envelope function that

controls the decay. The approximation for (54) reduces to

aosc(t) ≈
2F (pn̄N (0))2 cos

[
ENn̄(0)t

h̄
+ 1

2 tan−1
(

h̄σ 2t

mred
Nn̄(0)

)]
m2En̄N (0)

[
1 +

(
h̄σ 2

mred
Nn̄(0)

t
)2

]1/4 .

(58)

The oscillations are characterized by a frequency |ENn̄(0)|/h,
but there is an additional contribution to the phase of the cosine
in (58). This contribution, however, is small in the time ranges
where the approximation is appropriate.

Naturally, the approximation (58) is limited because we
have not included the contributions from the remaining bands
or the motion of the wave packet through the Brillouin zone,
but it describes appropriately the form of the decay as shown,
for instance, in Fig. 3. We use the time it takes the oscillations
in (58) to reduce by half,

τdecay ≡
√

15
∣∣mred

Nn̄(0)
∣∣

h̄σ 2
, (59)

as an estimate for the decay time of the oscillations of the
acceleration around the value predicted by the usual effective
mass. For the examples shown in Figs. 2 and 3 the estimated
decay times (59) are 1.89 fs and 4.78 fs, respectively, which
correspond to a small fraction of the Bloch period.

III. FULL NUMERICAL CALCULATION

According to the discussion in Sec. II A, the usual effective
mass can be understood as the result of a “dressing” process
of the wave packet in one band with small amplitudes over
the neighboring bands [10,11]; the initial response of the
wave packet, according to the bare mass (instead of the
usual effective mass), produces the oscillatory behavior shown
in expression (51). However, this simple picture is valid
only if the wave packet remains mainly in one band. The
approximate solution (46) for the amplitudes associated with
the neighboring bands predicts a small second-order correction
for the probability of finding the wave packet in those bands.
Hence, situations where the population of the neighboring
bands becomes important due to Zener tunneling cannot be
described within this scheme. In order to verify that the
effects of the population of neighboring bands beyond our
approximate solution can be neglected in our examples, we
compare the results from (51) with a full numerical calculation
that solves the time-dependent Schrödinger equation for the
Hamiltonian (3) assuming that the force has the form (37) and
the initial condition is given by (36).

For a full numerical calculation we use the split-step
operator method in its original version, where the evolution
due to the kinetic energy term of the Hamiltonian is done
in Fourier space [26,27]. The full Hamiltonian, given by (3)
in the position representation, corresponds to the operator
H ≡ p̂2/2m + V (x̂) − F x̂, where p̂ and x̂ are the momentum
and position operators, respectively. It is convenient [4] to
transform it to a new version,

H ′(t) = S†(t)HS(t) − ih̄S†(t)
dS(t)

dt
, (60)
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according to the unitary operator

S(t) = eiα(t)p̂/h̄e−iβ(t)x̂/h̄eiγ (t)/h̄, (61)

where α(t) ≡ aLt2/2, β(t) ≡ maLt and γ (t) ≡ ma2
Lt3/3. The

constant aL is set by the force, according to F = −maL. The
new Hamiltonian H ′(t) is time dependent for t � 0 and has
the same periodicity as the unperturbed Hamiltonian. It can be
written in the position representation as

H′(t) = − h̄2

2m

d2

dx2
+ sER sin2

[
kL

(
x − 1

2
aL t2

)]
. (62)

In the case of an electron in a dc electric field, this transfor-
mation is equivalent to a gauge transformation where the new
Hamiltonian is written in terms of the vector potential, as was
done by Krieger and Iafrate [16–18].

The results presented in Figs. 2 and 3, calculated from
expression (51), are in almost perfect agreement with the full
numerical calculation, confirming that (51) is appropriate for
short times after the force has been suddenly applied. In the
next section we will show that (51) is also a useful estimate for
longer times of the order of a full Bloch oscillation, which are
relevant for experiments with cold atoms in optical lattices.

IV. COLD ATOMS IN OPTICAL LATTICES

As illustrated in Sec. II C, the oscillations displayed in
Figs. 2 and 3 decay in a few femtoseconds for electron motion
in a semiconductor, a time scale that is difficult to resolve
experimentally. We will see that the corresponding time scales
in optical lattices are of the order of microseconds. Considering
the additional advantages of tunability and low decoherence
that experiments in optical lattices offer, we believe that
such systems are excellent candidates to study the oscillatory
behavior of the acceleration (51).

In experiments with cold atoms in optical lattices, a constant
and homogeneous force can be introduced by uniformly
accelerating the lattice with a linear increase in time of the
frequency difference between the two interfering laser fields
that create the lattice [3]. The appropriate Hamiltonian to
describe the system in the laboratory frame is Hlab(t) = H′(t),
introduced for convenience in Sec. III, with aL now being the
acceleration of the lattice [4].

For optical lattices the physical scales change drastically
compared to the electron case described in Sec. II C, but the
behavior of the oscillations in (51) is qualitatively the same. In
order to compare the two cases, it is appropriate to consider the
ratio of the initial oscillation period (55) to the Bloch period,

τosc(0)

τB

= bF

|ENn̄(0)| = πF̃

|ẼNn̄(0)| , (63)

and the ratio of the decay time (59) to the Bloch period,

τdecay

τB

=
√

15

2

bF
∣∣mred

Nn̄(0)
∣∣

πh̄2σ 2
=

√
15

4

F̃
∣∣m̃red

Nn̄(0)
∣∣

σ̃ 2
. (64)

In (63) and (64) we included the ratios in terms of the scaled
wave vector, energy, and mass:

k̃ ≡ k

kL

, Ẽn(k̃) ≡ En(k)

ER

, and m̃red
Nn̄(k̃) ≡ mred

Nn̄(k)

m
. (65)

Note that since σ is the spread in quasimomentum, the corre-
sponding scaled variable is σ̃ ≡ σ/kL. We also introduced the
scaled force [28],

F̃ ≡ b F

πER

, (66)

that compares the energy drop over a unit cell, bF , with the
characteristic energy of the system, ER .

For the example shown in Fig. 2 the ratios are τosc(0)/τB ≈
0.003 and τdecay(0)/τB ≈ 0.004, while for the example shown
in Fig. 3 they are τosc(0)/τB ≈ 0.001 and τdecay(0)/τB ≈ 0.01.
In both electron cases the ratios are small because F̃ ≈ 0.002
is also small, even though we employed a high electric field
to provide the force. In contrast, for cold atoms in optical
lattices it is easy to make these ratios bigger, while maintaining
coherence over times of the order of a Bloch period.

Consider, for example, the expectation value of the acceler-
ation calculated for rubidium atoms prepared at the center of
the lowest band N = 0 of an optical lattice with b = 390 nm,
s = 7, and acceleration aL = 24.2 m/s2. The ratios (63) and
(64) are now larger than in the electron case due to the increase
in the force parameter to F̃ ≈ 0.173. Here τosc(0)/τB ≈
0.105 and τdecay(0)/τB ≈ 0.425, which correspond to τosc(0) ≈
51.1 μs and τdecay(0) ≈ 207 μs. Figure 4 shows how the
atom’s acceleration oscillates around the behavior expected if
the atom responded with the usual effective mass at all times.
Similarly to the example shown in Fig. 3, the acceleration goes
to zero several times so we plot the acceleration instead of the
time-dependent effective mass (53). It is important to point
out that expression (64) does not apply here strictly speaking
because in this case the decay occurs as the center of the
wave packet has moved through a considerable portion of the
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FIG. 4. (Color online) Expectation value of the acceleration of a
wave packet (σ = 0.2kL) initially at the center of the Brillouin zone
in the band N = 0 for a rubidium atom in an optical lattice with s = 7
and b = 390 nm, calculated from the first-order approximation (red
solid line), the full numerical solution (green dashed line), and the
usual effective mass (blue dotted line). The acceleration of the lattice
is 24.2 m/s2, which corresponds to F̃ ≈ 0.173 [see (66)]. Notice
how well the approximate calculation reproduces the full numerical
solution.
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Brillouin zone. Nevertheless, the result (64) still gives a rough
idea of the initial decay time (see Fig. 4).

However, one of the most striking features of Fig. 4 is the
revival of the oscillations as the wave packet returns to k = 0
completing a Bloch oscillation. This is not surprising when
we consider expression (51), which predicts oscillations with
frequencies and amplitudes periodic over the Brillouin zone.
The revival is also present in the example shown in Fig. 3 for
the electron wave packet when the acceleration is plotted for
a full Bloch period. In the situation shown in Fig. 2, however,
we cannot use Eq. (51) to describe the behavior of the electron
wave packet for an entire Bloch oscillation because the gap
with respect to the band n = 3 (the closest band in the region
near the edge of the Brillouin zone) becomes increasingly
small as the wave packet moves closer to the band edge (k̃ = 1)
and significant Zener tunneling occurs.

In the context of cold atoms, the wave vector kL corresponds
to the wave vector of the optical lattice, and the energy ER ,
defined in (50), corresponds to the recoil energy, which is
the energy gained (lost) by absorbing (emitting) one photon
of the lattice. In (65) we used these quantities to define
scaled variables for the wave vector and the energy. We can
also employ them to introduce additional scaled variables for
position and time:

x̃ ≡ kLx and t̃ ≡ ER

h̄
t. (67)

Since the acceleration has units of force over mass, the
corresponding scaled acceleration is [29]

〈ã(t̃)〉 = mb

πER

〈a(t)〉 = 2m2b3

h̄2π3
〈a(t)〉. (68)

From (51) we have

〈ã(t̃)〉 ≈ F̃

∫
dk̃|f̃N (κ̃)|2

(
1

m̃∗
N (k̃)

+ 4
∑
n�=N

ẼnN (k̃)

(ẼnN (κ̃))2
p̃Nn(k̃)p̃nN (κ̃) cos γ̃Nn(κ̃,t̃)

)
.

(69)

Here we have introduced the additional scaled quantities:

κ̃ ≡ k̃ − F̃ t̃ , (70)

f̃N (κ̃) ≡
√

π

b
fN (κ), (71)

p̃nn′(k̃) ≡ b

h̄π
pnn′ (k), (72)

γ̃Nn(κ̃,t̃) ≡ γNn(κ,t). (73)

In many experiments that study the motion of cold atoms
in optical lattices, the measured variable is the velocity of the
wave packet rather than its acceleration [3–8]. In Fig. 5 we
show a plot of the velocity for the same parameters as Fig. 4.
As before, we include a plot of the prediction based on the usual
effective mass, which clearly shows a full Bloch oscillation.
Note also the good agreement between the prediction based
on the first-order calculation discussed in Sec. II and the full
numerical solution, even for long times after the force was
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FIG. 5. (Color online) Expectation value of the velocity of
rubidium atoms in the same situation described in Fig. 4, calculated
from the first-order approximation (red solid line), the full numerical
solution (green crosses), and the usual effective mass (blue dotted
line). The inset shows the difference between the first-order approxi-
mation and the usual effective mass prediction. The units in the inset
are the same as in the main plot.

suddenly applied for both the acceleration (Fig. 4) and the
velocity (Fig. 5).

In the rest of this section we discuss the behavior of the
velocity in various situations realizable in experiments with
cold atoms, where the natural scale for the velocity is given by
the recoil velocity,

vR ≡ h̄π

mb
. (74)

Accordingly, we use the scaled velocity

〈ṽ(t̃)〉 = 〈v(t)〉
vR

, (75)

which results from integrating the dimensionless acceleration,

〈ṽ(t̃)〉 ≡
∫ t̃

0
dt̃ ′〈ã(t̃ ′)〉. (76)

Note that we assumed the wave packet’s initial velocity is zero
because it starts at the center of the Brillouin zone in all the
examples considered here.

The deviations of the actual expectation value of the
velocity from the usual effective mass approximation value are
controlled by the amplitude of the oscillations of the scaled
acceleration (69) and the recoil velocity (74). First, we fix
the product of the mass and lattice constant to that used in
the previous example (rubidium atoms with b = 390 nm) and
explore the effect of changing 〈ã(t̃)〉. The recoil velocity in
this case is vR ≈ 5.89 mm/s.

According to expression (69), 〈ã(t̃)〉 for a given initial band
N depends only on the width of the quasimomentum distri-
bution; the strength of the periodic potential, characterized
by s; and the scaled force F̃ . For fixed values of these three
parameters the oscillations preserve their shape and are only
rescaled when the physical parameters, such as the bare mass
or the lattice constant, are changed.
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FIG. 6. (Color online) Expectation value of the velocity for a
wave packet (σ = 0.2kL) initially at the center of the Brillouin zone
in the band N = 0 for a rubidium atom in an optical lattice with
s = 7 and b = 390 nm, calculated from the first-order approximation
(red solid line), the full numerical solution (green dashed line),
and the usual effective mass (blue dotted line). The acceleration
of the lattice is 72.6 m/s2, which corresponds to F̃ ≈ 0.520. The
inset shows the difference between the first-order approximation and
the usual effective mass prediction; this difference oscillates with a
period approximately given by expression (63), τosc(0) ≈ 0.315τB ≈
51.1 μs. The units in the inset are the same as in the main plot.

The width of the quasimomentum distribution and the
reduced effective mass control how fast the oscillations decay
according to (64). However, as pointed out before, the estimate
(64) does not take into account the motion of the wave
packet through the Brillouin zone over one Bloch period since
it was derived from the approximation (58), which misses
completely the revival of the oscillations of the effective
mass. The decay can be minimized or even removed if the
oscillations of the effective mass do not have time to decay
before the periodicity of the terms in (51) (over one Bloch
period) returns the amplitude of the oscillations to the initial
value.

From (64) we would expect the decay time to become
comparable to the Bloch period when increasing the scaled
force F̃ and the reduced effective mass m̃red

Nn̄(0). The first case
is illustrated in Fig. 6 where we show how the increase of F̃ ,
keeping the other parameters fixed, eliminates the decay shown
in Fig. 5. The second case is shown in Fig. 7 where, instead of
changing F̃ , we increase s in the parameters used for Figs. 4
and 5 so that the bands N = 0 and n̄ = 1 become flatter and
the reduced effective mass increases. In both Figs. 6 and 7 the
spread of the wave packet is the same as for Figs. 2–5. We can
control the decay by changing the spread of the wave packet
as shown in Fig. 8, where we plot our results for sodium atoms
with F̃ ≈ 0.173 and s = 7 (as in Figs. 4 and 5) for a very small
spread of the initial wave packet (σ̃ = 0.004). Notice that in
this case, instead of a decay of the oscillations after half a
Bloch period, there is a slight increase of the amplitude of the
oscillations due to the higher sensitivity of the wave packet to
the changes of the momentum matrix elements and the energy
differences at the center of the wave packet as it moves through
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FIG. 7. (Color online) Expectation value of the velocity for a
wave packet (σ = 0.2kL) initially at the center of the Brillouin zone
in the band N = 0 for a rubidium atom in an optical lattice with s = 13
and b = 390 nm, calculated from the first-order approximation (red
solid line), the full numerical solution (green crosses), and the
usual effective mass (blue dotted line). The acceleration of the
lattice is 24.2 m/s2, which corresponds to F̃ ≈ 0.173. The inset
shows the difference between the first-order approximation and the
usual effective mass prediction; this difference oscillates with a
period approximately given by expression (63), τosc(0) ≈ 0.0859τB ≈
41.8 μs. The units in the inset are the same as in the main plot.

the Brillouin zone. Such small width in quasimomentum can
be achieved experimentally in Bose Einstein condensates of
sodium atoms [30].
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FIG. 8. (Color online) Expectation value of the velocity for a
wave packet (σ = 0.004kL, as has been achieved in [30]) initially
at the center of the Brillouin zone in the band N = 0 for a sodium
atom in an optical lattice with s = 7 and b = 295 nm, calculated
from the first-order approximation (red solid line), the full numerical
solution (green crosses), and the usual effective mass (blue dotted
line). The acceleration of the lattice is 800 m/s2, which corresponds
to F̃ ≈ 0.173. The inset shows the difference between the first-order
approximation and the usual effective mass prediction; this difference
oscillates with a period approximately given by expression (63),
τosc(0) ≈ 0.105τB ≈ 7.73 μs. The units in the inset are the same as
in the main plot.
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FIG. 9. (Color online) Expectation value of the velocity of a wave
packet (σ = 0.01kL) initially at the center of the Brillouin zone in the
band N = 1 for a sodium atom in an optical lattice with s = 13 and
b = 295 nm, calculated from the first-order approximation (red solid
line), the full numerical solution (green dashed line), and the usual
effective mass (blue dotted line). The acceleration of the lattice is
800 m/s2, which corresponds to F̃ ≈ 0.173. Parameters are as in [7].
The inset shows the difference between the first-order approximation
and the usual effective mass prediction. The oscillations shown in
the inset start with a period approximately given by expression (63),
τosc(0) ≈ 0.176τB ≈ 12.9 μs; then they squeeze as the wave packet
moves through the edge k = kL of the Brillouin zone (where the gap
between bands N = 1 and n = 2 increases); and finally they return
to the starting period. The units in the inset are the same as in the
main plot.

The parameters F̃ and s also control the amplitude of the
oscillations of 〈ã(t̃)〉 and 〈ṽ(t̃)〉. From expression (69) it is clear
that the amplitudes scale linearly with F̃ (compare Figs. 5
and 6). In the range of s values explored here (from s = 7
to s = 14), the effect of modifying s on the amplitude of
the oscillations is much smaller than the effect of F̃ (compare
Figs. 5, 6, and 7). Thus, in an experimental setting, the
oscillations can be made more visible by increasing the force
within the limits where Zener tunneling is not significant.

The velocity deviations tend to be larger for lighter atoms
and smaller lattice constants since the recoil velocity is larger.
For instance, the expectation value of the velocity calculated
for sodium atoms in an optical lattice with b = 295 nm for the
same s, σ̃ , and F̃ as in Fig. 5 is a simple rescaled version of
the results in that figure according to the new recoil velocity
of the system (vR ≈ 29.4 mm/s). Some other examples of
calculations for sodium atoms are shown in Figs. 9 and 10 with
parameters previously used in experiments that investigate the
acceleration of Bose Einstein condensates [6,7]. The detection
of the oscillations shown here imply resolving deviations from
the usual Bloch oscillation that are small compared to the
recoil velocity and probably within the uncertainty in the
measurements in those references.1

1The predicted oscillations are even smaller for other experiments
with rubidium atoms such as the ones in [3,4].
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FIG. 10. (Color online) Expectation value of the velocity for a
wave packet (σ = 0.01kL) initially at the center of the Brillouin zone
in the band N = 0 for a sodium atom in an optical lattice with s = 14
and b = 295 nm, calculated from the first-order approximation (red
solid line), the full numerical solution (green crosses), and the usual
effective mass (blue dotted line). The acceleration of the lattice
is 1700 m/s2, which corresponds to F̃ ≈ 0.369. Parameters are
as in [6]. The inset shows the difference between the first-order
approximation and the usual effective mass prediction; this difference
oscillates with a period approximately given by expression (63),
τosc(0) ≈ 0.176τB ≈ 6.10 μs. The units in the inset are the same as
in the main plot.

Figure 9 illustrates the case where the initial band is N = 1
instead of the ground-state band used in all the other examples
for cold atoms. An important difference with respect to the case
with N = 0 is the increase of the amplitude of the oscillations.
Compare, for instance, the insets of Figs. 7 and 9 in terms of the
scaled velocity (75). Although Fig. 7 corresponds to rubidium
atoms, in scaled units it is equivalent to a plot of the velocity
for sodium atoms with the same s = 13 and F̃ ≈ 0.173 but
with the wave packet starting in the band N = 0 with spread
σ̃ = 0.2. One of the reasons for this increase is the smaller gap
between bands N = 1 and n = 2 at k = 0. Both figures predict
almost no decay, but the reasons are different. For the situation
in Fig. 7 the cause is the small curvature of the band N = 0,
which increases the reduced effective mass associated with
N = 0 and n̄ = 1. In Fig. 9, on the other hand, the cause is the
small spread in quasimomentum and not the curvature of the
bands; in fact, the larger magnitudes of the curvatures of N = 1
and n̄ = 2 make the absolute value of the reduced effective
mass associated with them smaller, and therefore the decay
would be faster if the spread σ̃ were the same as for Fig. 7.

The last example, shown in Fig. 10, corresponds to a
situation where the wave packet is again in the lowest band,
N = 0, but under a force that is approximately two times larger
than the one used in previous examples with sodium atoms
and produces an acceleration a = 1700 m/s2; the strength
of the potential is set to s = 14. Accordingly, the amplitude
of the oscillations of the velocity is approximately doubled
compared to the cases shown in Figs. 8 and 7 (for the latter the
comparison is in terms of the scaled velocity). The first-order
approximation works very well due to the large gap between
the bands N = 0 and n̄ = 1 for s = 14 and the deviations
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FIG. 11. (Color online) Probability of the rubidium atoms in the
optical lattice described in Fig. 6 to be in (a) the initial band N =
0 (red solid line) and (b) the next two neighboring bands: n̄ = 1
(green dashed line) and n = 2 (blue dotted line). All the populations
were calculated using the full numerical solution. Notice that the
probability for the band n = 2 (� 0.07%) is significantly smaller
than for the other two bands; we have not included the populations
for higher bands since they are even smaller. The time is in units of
the Bloch period.

with respect to the full numerical solution shown in Fig. 6
(s = 7) when increasing the force do not occur. In Fig. 9 using
s = 13 is not enough to prevent deviations with respect to
the full numerical solution because the gap between the bands
N = 1 and n̄ = 2 at k = 0 is smaller than the energy difference
between bands N = 0 and n̄ = 1.

The validity of the first-order approximation (69), relies
on the populations in the bands n �= N being small because,
according to (46), there is no population of these bands to
first order in 	nN (k). In all the examples shown here the
probabilities in the bands n �= N do not exceed 2%, justifying
the good agreement in most of the cases. The largest deviations
occur for Figs. 6 and 9, although in both cases the first-order
approximation describes correctly the overall behavior.

Figure 11 shows the populations of various bands as they
change in time for the case presented in Fig. 6. Notice that
near the middle of the Bloch oscillation the population of
the band n̄ = 1 overshoots the population at the end of the
Bloch cycle. This overshooting has been discussed before
([31], and references therein) when studying Zener tunneling
for much stronger forces. The additional oscillations in the
population observed in our case are related to the oscillations
of the expectation value of the acceleration (and the velocity)
around the prediction from the usual effective mass. Only
a certain combination of amplitudes in the different bands
yields a wave packet behaving with the usual effective mass
as discussed in Sec. II A [see expression (28)]; thus, we would
expect that the oscillations of the population are accompanied
by oscillations in the dynamical response around the usual
effective mass prediction.

The connection between the oscillations in the population
and the oscillations of the effective mass is more evident after
comparing Figs. 11 and 12. The latter shows the oscillations
of the populations for the case discussed in Fig. 9, which
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FIG. 12. (Color online) Probability of the sodium atoms in the
optical lattice described in Fig. 9 to be in (a) the initial band N = 1
(dashed green line) and (b) the next three neighboring bands: n =
0 (red solid line), n = 2 (blue dotted line), and n = 3 (light blue
slash-dotted line). All the populations were calculated using the full
numerical solution. We have not included the populations for higher
bands since they are smaller than the populations for the bands shown
here. The time is in units of the Bloch period.

are faster as expected for faster oscillations of the velocity
shown in Fig. 9 compared to Fig. 6. This relation between
the oscillations of the population and the dynamical response
is found in all the other examples, where the amplitudes are
smaller than those shown in Figs. 11 and 12.

Figure 12 also explains the discrepancy between the full
numerical solution and the first-order approximation in Fig. 9,
near the end of the Bloch period. Compared to the example
with rubidium atoms in Fig. 6, where the main deviation occurs
for the amplitude of the oscillations, the deviations in Fig. 9
clearly show a superposition of faster oscillations. Such faster
oscillations are a clear indication that the population of the
neighboring bands n = 0 and n � 3 for the example in Fig. 9
are more important than the population of the bands n � 2 for
the example in Fig. 6. Consistent with this observation, the
probability in Fig. 12 for the band n = 3 (� 0.30%) is larger
than the probability in Fig. 11 for the band n = 2 (� 0.07%).

V. CONCLUSION

In summary, we have studied the effect of an external
homogeneous force acting on a particle prepared initially
in one band of a one-dimensional periodic lattice when the
force is suddenly applied and remains constant afterward. As
predicted by Pfirsch and Spenke [2], the expectation value
of the acceleration responds initially with the bare mass, and
oscillates around the value predicted using the usual effective
mass.

Using the perturbation scheme of Adams and Wannier
[10,14] for a wave packet located initially in one band only,
we derived an expression for the expectation value of the
acceleration that is valid over a full Bloch oscillation, provided
that Zener tunneling is not significant. In this picture, the wave
packet responds with the usual effective mass as it acquires
certain small components of Bloch functions from neighboring
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bands, but due to the initial condition, which requires the wave
packet to respond with the bare mass, the expectation value of
the acceleration (48) has various terms oscillating around the
usual effective mass prediction (35) with different frequencies.
For the cases considered here, the most important contribution
in the sum over the different bands in (48) comes from the
closest band to the initial one; accordingly, the frequency of the
oscillations is governed by the energy difference between these
two bands as the wave packet moves through the Brillouin
zone. The oscillations can decay because of the spread of
the wave packet in quasimomentum, but the periodicity of
the momentum matrix elements and energy differences in
(48) produces a revival of the oscillations as the wave packet
completes a full Bloch oscillation.

We presented calculations for a toy model of a one-
dimensional semiconductor illustrating the features described
by Pfirsch and Spenke. The initial decay in this case is very fast
(femtosecond time scale) and occurs while the wave packet has
moved over a small portion of the Brillouin zone, allowing
us to write a simple expression for the envelope function
that controls the decay of the oscillations according to the
predictions by Pfirsch and Spenke [see expression (58)].

We also showed an analysis of the oscillations in a system
of cold atoms in an optical lattice, where the time scales
of the oscillations and the decay are much longer (of the
order of microseconds) and comparable to a Bloch period.
We analyzed the effects of tuning the different parameters,
such as the force, the strength of the potential, the spread
of the wave packet in quasimomentum, the bare mass of
the atom, and the lattice constant. Since the velocity of the
atoms is a good candidate for experimental measurements, we
plotted its expectation value, showing how the deviations from
the usual effective mass prediction can be comparable to the
oscillations calculated from the usual effective mass alone.
Since the decoherence in optical lattices is much smaller than
in typical solid-state systems, it would be possible, in principle,
to detect the oscillations during times of the order of a Bloch
oscillation. In the case of optical lattices, the decay can be
easily minimized or even suppressed when the revival of the
oscillations of the effective mass is faster than the decay due to
the spread of the wave packet in quasimomentum. This feature
could be exploited to determine how much decoherence occurs
during one Bloch oscillation.
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APPENDIX: WANNIER’S PROCEDURE

In this Appendix we sketch the method developed by
Wannier to decouple the bands to any order in the force F [14].
Equation (18) can be rewritten as[

Ho − F

(
x + i

∂

∂k

)]
φn(k,x) = Wn(k)φn(k,x), (A1)

for the modified Bloch states (14). Notice that Eq. (A1) takes
the form of an eigenvalue problem, but with the peculiarity
that both the operator [acting on φn(k,x)] and Wn(k) depend
on k.

The parameter F̃ introduced in (66) is appropriate to
characterize how strong the external force is with respect to
the lattice potential. For convenience, we use the other dimen-
sionless variables defined in (65) and (67), and accordingly we
introduce H̃o ≡ Ho/ER and W̃n(k̃) ≡ Wn(k)/ER . The Bloch
states are kept unchanged so we can write ψ̃n(k̃,x̃) ≡ ψn(k,x)
in the new variables. The same is assumed for the unitary
transformation, Ũn′n(k̃) ≡ Un′n(k), and therefore φ̃n(k̃,x̃) ≡
φn(k,x).

With these definitions (A1) can be rewritten as[
H̃o − F̃

(
x̃ + i

∂

∂k̃

)]
φ̃n(k̃,x̃) = W̃n(k̃)φ̃n(k̃,x̃). (A2)

We attempt to solve this equation expressing

Ũn′n(k̃) ≈
∑

ν

Ũ (ν)
n′n(k̃) F̃ ν (A3)

and

W̃n(k̃) ≈
∑

ν

W̃ (ν)
n (k̃) F̃ ν (A4)

as power series in F̃ . It is assumed that the zeroth order
corresponds to the usual Bloch states and band energies. Thus,

Ũ (0)
n′n(k̃) = δn′n (A5)

and

W̃ (0)
n (k̃) = Ẽn(k̃). (A6)

Replacing the expansions (A3) and (A4) in (A2) and
collecting terms with equal powers of F̃ we can find a recurrent
system of equations. To first order it is found that, in the
original coordinates, the unitary transformation Un′n(k) is
given by (20) [10,14]. Note that if F̃ is small we expect the
parameter |	n′n(k)|, defined in (21), to be small because the
Lax connection is of the order of the lattice constant b, while
the energy difference is of the order of ER . The first-order
approximation for the energy Wn(k) is simply the band energy
renormalized by the diagonal part of the Lax connection [see
Eqs. (11) and (22)].
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