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Dichroism in short-pulse two-color XUV plus IR multiphoton ionization of atoms
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Circular and linear dichroism in the angular distributions of photoelectrons in multiphoton ionization of
unpolarized atoms by a combination of two short pulses in the extreme ultraviolet (XUV) and infrared (IR)
range is theoretically considered. A noticeable circular dichroism is predicted in the case when both XUV and
IR pulses are circularly polarized. Here the dichroism may be observed not only in angle-resolved but also in
angle-integrated experiments. When the XUV photons are linearly polarized while the IR pulses are circularly
polarized, the circular dichroism can be observed only in angle-resolved experiments. In this case the dichroism
averaged over a spectral line is small. When both pulses are linearly polarized, the photoelectron yield strongly
depends on the angle between the polarizations, which leads to the considerable linear dichroism.
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I. INTRODUCTION

Studies of polarization effects, including different types
of dichroism, constitute a substantial part of investigations
of photoemission from atoms, molecules, and solids (see,
for instance, Refs. [1–3]). In particular, dichroism in single-
photon ionization of atoms (weak field), which is defined as
the difference in the photoelectron yield for two different
directions of either the polarization of the ionizing photon
or of the target atom polarization, has been intensively studied
in the past two decades ([4,5] and references therein). If
only one electron is emitted by single-photon absorption,
then the general condition for existence of the dichroism
is polarization (orientation and/or alignment) of the target
atom. For an unpolarized atom the dichroism is zero. (One
exception is the so-called linear dichroism in the angular
distribution of photoelectrons, which is nonzero also for
unpolarized atoms [4]). Depending on the type of the target
polarization and on the polarization of the photon beam,
different kinds of dichroism are discussed: magnetic [6–8]
and alignment [9,10] dichroism, circular and linear dichroism
[4,11–13], and their combinations. The driving force for
majority of the experimental and theoretical investigations of
dichroism in atoms was the idea put forward by Klar and
Kleinpoppen [14] that studies of photoionization of polarized
atoms could provide sufficient measurable parameters for real-
ization of the so-called complete experiment, i.e., experimental
determination of photoionization amplitudes including their
phases. Dichroism measurements facilitate extraction of those
parameters from the experimental angular distributions of
photoelectrons.

In many of the dichroism investigations the technique of
“two-color ionization” was used [15]. Here the initial polarized
state of the atom is prepared by optical pumping with an
optical laser. The prepared state is subsequently ionized by
an extreme ultraviolet (XUV) or x-ray photon. This technique
was widely used for studying the magnetic dichroism in atomic
core level photoemission [5]. Recent advance in production

of intense short pulses of XUV and x-ray radiation, due to
commissioning of free-electron lasers (FEL), has provided the
possibility to produce another type of two-color experiments,
namely to study the two-color multiphoton processes [16]. In
these experiments the photoionization of atoms by XUV or
x-ray photons occurs in the field of a synchronized powerful
infrared (IR) laser. The emitted photoelectron, interacting with
the optical field, can absorb or emit a few IR photons. Thus,
in the spectrum of electrons on both sides of the photoline
additional lines appear, the so-called sidebands, separated by
the energy of the IR photon. The sidebands in XUV + IR
two-color ionization, first studied with the sources based on
high-harmonic generation [17–19], now are also investigated
with the FEL radiation [20,21]. These investigations have
proved to be an effective method of studying photoionization
dynamics as well as to be useful instruments for characterizing
the parameters of the FEL beams [20,22]. By analogy with the
single-photon absorption, one can expect that the polarization
analysis of the two-color multiphoton processes, including a
study of dichroism, could be even more informative.

In Refs. [23,24] it was suggested to study elliptical and
circular dichroism (CD) in two-color two- and three-photon
ionizations of initially unpolarized atoms. This new type of
dichroic measurement of the angular distribution of photoelec-
trons has a potential to yield the relative magnitudes and phases
of the various interfering transition amplitudes. It is interesting
to note that in single-color multiphoton ionization by circularly
polarized light, the photoelectron yield is independent of
photon helicity [25] and therefore the CD is absent. However,
in two-color experiments it can exist. General analysis of the
elliptical and circular dichroism in the two-photon ionization
of atoms has been given in Ref. [23]. The theory was extended
to the three-photon ionization in Ref. [24], where CD in the
angular distribution of photoelectrons produced by linearly
polarized XUV photons assisted by the circularly polarized
optical laser field was investigated. In Refs. [23,24] analytical
expressions for the photoelectron angular distributions in terms

053409-11050-2947/2012/85(5)/053409(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.053409


A. K. KAZANSKY, A. V. GRIGORIEVA, AND N. M. KABACHNIK PHYSICAL REVIEW A 85, 053409 (2012)

of photoionization amplitudes have been given for two- and
three-photon two-color ionization. However, it was noticed
[24] that an extension of this method to the multiphoton
case entails prohibitively cumbersome computations. Using
another theoretical approach, we have predicted [26] a strong
dichroic effect in multiphoton two-color ionization when
both XUV and IR pulses are circularly polarized. Recently,
the first experimental investigation of linear dichroism (LD)
in two-color XUV + IR ionization of He atom has been
performed [21]. Combining XUV radiation from the FEL in
Hamburg (FLASH) with an intense synchronized optical laser,
it was shown that the intensity of sidebands strongly varies as
a function of relative orientation of the linear polarization
vectors of the two fields. Thus, the LD in the multiple
ionization of atoms, defined as the difference in photoelectron
yield for parallel and perpendicular polarizations of the two
beams, has been demonstrated.

In the present paper we analyze various types of dichroism
in two-color XUV + IR photoionization of unpolarized atoms
using the theoretical approach based on the strong-field
approximation (SFA), which we developed earlier [27]. In
this approach it is assumed that the IR field is moderately
strong and does not affect the target atom before the XUV
pulse arrives. In contrast, after ionization by the XUV pulse,
the emitted electron moves in the IR field, while the influence
of the ionic field is ignored. This approximation permits one
to consider multiphoton ionization without limitation on the
number of photons exchanged between the electron and the IR
field. Some selected results have been previously published in
Ref. [26]

In the next section we present the theoretical approach used
for the description of the two-color multiphoton ionization.
Since the model has been well documented in our recent
paper [27], here we consider only basic approximations and
introduce the necessary notations for the following discussion.
In Sec. III different types of dichroism, circular and linear, are
described and the results of their numerical simulations are
presented. Section IV contains conclusions and outlook.

II. THEORETICAL DESCRIPTION OF TWO-COLOR
MULTIPHOTON IONIZATION

Consider an unpolarized atom irradiated by two short
(femtosecond) electromagnetic pulses, an XUV or x-ray pulse,
and a pulse of a powerful IR laser. If the atom is ionized during
this so-called laser-assisted photoemission (LAPE) process, in
the photoelectron spectrum, apart from the usual photoline,
a system of additional lines—sidebands—is observed. The
sidebands appear due to absorption or emission of one or
several IR photons in the process of laser-assisted XUV
photoionization. Using the wave language, the origin of the
sidebands can be described as the interference of the electron
waves emitted at the same phase of the IR field but at different
periods. The sidebands are formed if the duration of the XUV
pulse is longer than the period of the IR laser light [27].

In our recent publications we have developed a theory
of short-pulse LAPE, based on the numerical solution of
the time-dependent Schrödinger equation (TDSE) [28–30]. In
particular, we have shown that for sufficiently high kinetic
energy of photoelectrons (several tens of eV and higher)

and moderately strong IR fields (1012–1013 W/cm2) the
results of the calculations agree very well with the simpler
approach [31,32], which uses the SFA [33]. Since this latter
approximation is simpler and less time-consuming in practical
calculations than the solution of TDSE, we use it in this work.

We consider the process within the first-order time-
dependent perturbation theory and use the rotating wave ap-
proximation for the XUV photon-electron interaction [34]. The
amplitude of the transition from the initial state �0 exp(−iE0t)
to the final state, which contains the ionic state �f exp(−iEf t)
and the emitted photoelectron state ψ�k , can be written as
follows (atomic units are used throughout unless otherwise
indicated):

A�k = −i

∫ ∞

−∞
dt ĒX(t)〈�f ψ�k(t) | D̂ | �0〉 exp[i(Eb − ωX)t],

(1)

where ĒX(t) is the envelope of the XUV pulse, ωX is its
mean frequency, and Eb = Ef − E0 is the binding energy
(positive) of the electron. The wave function ψ�k(t) describes
the “dressed” photoelectron in the laser field, which is
characterized by the final (asymptotic) momentum �k. The
operator D̂ is the dipole operator describing the XUV pulse
interaction with atomic electrons, which can be written in the
length gauge as

D̂ =
∑

i

d̂i =
∑

i

(�εX · �ri), (2)

where �εX is the polarization vector of the XUV beam, �ri are
the coordinates of the ith electron, d̂i is a single-electron
dipole operator, and the summation is over all electrons of
the atom. In the following we consider two cases, circularly
and linearly polarized XUV beams. It is convenient to choose
the quantization axis z along the direction of the photon beam.
If the XUV photons are circularly polarized, then the dipole
operator d̂ can be expressed as

d̂± = ∓
√

4π/3 r Y1,±1(r̂) =
√

1/2 r(x̂ ± iŷ), (3)

where x̂(ŷ) is a unit vector along the x(y) axis and Yl,m(r̂)
is a spherical function with r̂ being a unit radius-vector. The
upper and lower signs in Eq. (3) correspond to right and left
circularly polarized XUV photons, respectively. The linearly
polarized beam may be presented as a superposition of right
and left circularly polarized ones. Then the dipole operator can
be written as

d̂x =
√

4π/3 r [−Y1,1(r̂) + Y1,−1(r̂)]. (4)

Here the light is assumed to be polarized along the x axis.
Within the SFA, we ignore the influence of the laser field on

the bound ionic and atomic states, which is a sufficiently good
approximation for not very strong laser fields considered here.
Besides, the wave function of the photoelectron is represented
by the nonrelativistic Volkov wave function [35]:

ψ�k(t) = exp{i[�k − �AL(t)]�r − i�(�k,t)}. (5)

Here,

�(�k,t) = −1

2

∫ ∞

t

dt ′[�k − �AL(t ′)]2, (6)
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with �AL(t) being the vector potential of the laser field, defined
hereafter as �AL(t) = ∫ ∞

t
dt ′ �EL(t ′), where �EL(t) is the IR laser

electric field vector. Suppose that the IR pulse is circularly
polarized, then the pulse field is:

�EL(t) = ĒL(t)√
2

[x̂ cos(ωLt) ± ŷ sin(ωLt)] , (7)

where ĒL(t) is the envelope, ωL is the basic frequency,
and upper (lower) sign corresponds to right (left) circularly
polarized IR field.

Equations (1) with (5) and (6) show that the process may
be considered as photoemission of the electron at the moment
t with the momentum �k0(t) = �k − �AL(t) in the IR field, which
steers the electron to the final state with the momentum �k at
the infinity. Here, �k0 is the momentum of the electron at the
moment of its emission from the atom into the IR laser field.
During the propagation, the electron acquires the phase �(�k,t).
The relation of the momenta �k and �k0(t) follows from the above
definition. The modulus of the momenta are connected by the
relation

k2
0(t) = [�k − �AL(t)]2. (8)

Additional relation follows from the conservation of the
transverse momentum of the electron relative to the electric
field. This relation depends on the direction of the IR electric
field vector. For simplicity we consider the most important
(from the point of view of experiments) case of collinear
propagation of the XUV and IR pulses along the z axis. Then,
in the chosen coordinate system, we have

k0 cos ϑ0 = k cos ϑ. (9)

Besides

exp[iϕ0(t)] = [kx − ALx(t)] + i[ky − ALy(t)][
k2

0(t) − k2
z

]1/2 , (10)

where kx (ky) and ALx(t) [ALy(t)] are x(y) components of
vectors �k and �AL(t), respectively. We remind that the angles
ϑ,ϕ are the detection angles of the electron, while ϑ0,ϕ0 are the
primary angles at which the electron is ejected from the atom
into the IR field. The former angles are fixed by the detection
conditions, while the latter depend on the time of the emission,
ϑ0(t),ϕ0(t).

Within the independent electron model, the matrix element
in Eq. (1) can be easily reduced to the single electron matrix
element d�k0

= 〈ψ�k(�r)|d̂|φl0 (�r)〉 [36], where φl0 (�r) is the wave
function of the electron in the initial state characterized by
the orbital angular momentum l0. Expanding the continuum
electron wave function in partial waves, one can present this
photoionization amplitude (for a particular projection m0 and
for circularly polarized XUV photons) as

d�k0
= dl0−1[Yl0−1,m0±1(ϑ0,ϕ0)

+ Rei(δl0+1−δl0−1)Yl0+1,m0±1(ϑ0,ϕ0)], (11)

where dl0±1 are the partial dipole amplitudes for the transitions
from the initial state with the orbital angular momentum l0, Ylm

are spherical harmonics, R = |dl0+1|/|dl0−1|, and δl0±1 are the
photoionization phases. If l0 = 0 (ionization from s shell),

only a p wave is emitted, and the amplitude is

d�k0
= ∓dspY1,±1(ϑ0,ϕ0). (12)

For simplicity, in what follows we discuss s shell ionization
only. A generalization to the case of l0 	= 0 is straightforward.

We are interested in the case when the sidebands consist
of many lines. This happens when the optical field is
comparatively strong and the energy of photoelectrons is large.
The spread of the sidebands is proportional to

√
IEp, where

I is the intensity of the optical beam, and Ep = ωX − Eb

is the kinetic energy of the photoelectron in absence of the
optical field. If the electrons are sufficiently fast (several tens
of electronvolts), at moderate IR intensity the spread of the
sidebands is much smaller than Ep. Since at large energies the
dipole matrix element depends weakly on the energy, one can
ignore its energy dependence. Then the amplitude of s shell
photoionization may be approximated as

A�k ≈ −idsp F(�k), (13)

where the function F(�k) is defined as

F(�k) = ∓
∫ tM

t0

dt ĒX(t)Y1,±1[ϑ0(t),ϕ0(t)]

× exp

[
i

∫ ∞

t

dt ′
(

1

2
[�k − �A(t)]2 − Ep

)]
, (14)

with t0 and tM corresponding to the beginning and the
end of the XUV pulse, respectively. The upper and lower
signs correspond to the right and left circularly polarized
IR radiation. Here and in the following, the XUV pulse
is supposed to be shorter than the optical laser pulse, and
it completely overlaps with the latter. The value |F(�k)|2
represents the spectrum of photoelectrons in the optical laser
field. In order to evaluate F(�k) for a given set (k,ϑ,ϕ), one
should calculate k0(t),ϑ0(t),ϕ0(t) at each moment t and then
integrate over t . The above simple model describes very
well the peculiarity of the photoelectron spectra in two-color
multiphoton ionization of atoms [27] and it is convenient for
the analysis of different kinds of dichroism.

III. CIRCULAR AND LINEAR DICHROISM IN
TWO-COLOR XUV + IR IONIZATION

One can consider several types of dichroism experiments
with different combinations of polarization of optical laser
and XUV beam. In real experiments, the polarization of FEL
radiation is usually fixed, linear or (in the near future) circular.
In contrast, the polarization of the optical laser can be easily
manipulated to study dichroism: the circular polarization can
be changed from left to right, the linear polarization can
be made in two perpendicular directions. Accordingly, we
consider three different cases: When the FEL beam is circularly
polarized one can discuss: (a) CD in two-color ionization
with circularly polarized XUV and IR beams, CD(circ), i.e.,
the difference in electron yield for left and right circularly
polarized optical beams combined with, for example, the
right circularly polarized FEL beam. When the FEL beam
is linearly polarized one can consider: (b) CD in two-color
ionization, which is defined as the difference in the electron
yield for left and right circularly polarized IR beams combined
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with the linearly polarized FEL beam, CD(lin); and (c) LD
in two-color ionization with linearly polarized XUV and IR
beams, which is defined as a difference in the electron yield
for two mutually perpendicular directions of optical laser
linear polarization. Note that the fourth combination of the
linearly polarized optical laser beam with the copropagating
circularly polarized FEL beam is equivalent to the case (c),
with perpendicular beam geometry. In fact, the ionization
by circularly polarized FEL photons oriented and aligned
the system along the beam direction; however, the angular
distribution of photoelectrons after absorption of additional
linearly polarized optical photons does not depend on the
system orientation but only on its alignment. Therefore, this
case can be reduced to the case (c) of two linearly polarized
beams, perpendicular to each other.

Qualitatively, the two cases (a) and (b) are analogous to CD
in single-photon absorption by oriented and aligned targets,
respectively. In fact, absorption of the XUV photon creates a
polarized intermediate (virtual) state, aligned if the photon is
linearly polarized and oriented if it is circularly polarized.
The following absorption (or emission) of the IR photons
should have similar geometrical and symmetry properties
as photoabsorption by the aligned or oriented target, thus
revealing dichroism. Similarly, the cases (c) is analogous to
LD in single-photon absorption by aligned atoms.

A. Circular IR dichroism with circularly polarized XUV pulse

Consider first the case of the two-color multiphoton
ionization when both the IR and the XUV photon beams
are circularly polarized. The CD(circ) can be measured by
reversing the helicity of either of the beams. From symmetry
arguments it is clear that for the case of collinear beams the
resulting dichroism will be the same (with the accuracy of sign)
independent of which circular polarization is reversed: of IR or
XUV photons. Since the system in the initial state (unpolarized
atom + photons) is axially symmetrical with respect to the
beam direction (z axis) and also symmetrical with respect to
reflection in the plane perpendicular to the beam direction, the
angular distribution of photoelectrons should be also axially
symmetrical and symmetrical with respect to the polar angle
ϑ = π/2. The considered case is analogous to the CD in
the single-photon ionization from oriented targets, when the
target is oriented along the beam [37]. From this analogy
it follows that one can expect nonzero dichroism not only
for the angle-resolved photoelectron emission but also for
angle-integrated measurements.

As an example, we have calculated the spectra, the
angular distribution of photoelectrons, and the CD(circ) for
XUV + IR two-color photoionization of He. We have chosen
the following parameters of the pulses: the IR pulse has a
duration of 30 fs with mean wavelength of 800 nm and intensity
3.5 × 1012 W/cm2; the XUV pulse has a duration of 2.4 fs with
mean photon energy of 120 eV (circularly polarized beams
with similar parameters will be soon available at FEL Fermi
(Italy) [38]). The photoelectron energy is 95.4 eV. We consider
the case of right circularly polarized XUV beam and right and
left circularly polarized IR beam. Equations (13) and (14) are
used for calculations. The dichroism is usually characterized
by the ratio of the difference in the electron intensity for

FIG. 1. (Color online) Color-scale plots of DDCS and CD(circ)

as functions of photoelectron energy and polar emission angle ϑ .
Left panel: DDCS calculated for photoionization of He by right-
hand circularly polarized XUV photons at the energy of 120 eV in
the field of right-hand circularly polarized IR laser (800 nm, 3.5 ×
1012 W/cm2). See other parameters in text. Right panel: Circular
dichroism [Eq. (15)] calculated for the same parameters.

right and left circularly polarized beam and the sum of these
intensities:

CD(circ) =
∣∣AR

�k
∣∣2 − ∣∣AL

�k
∣∣2

∣∣AR
�k
∣∣2 + ∣∣AL

�k
∣∣2 , (15)

where AR
�k and AL

�k are the amplitudes of the two-color
photoionization with right and left circularly polarized IR
photons, respectively. The results of calculations are presented
in Figs. 1–4. In two-color experiments at FELs, the phase of the
IR laser is usually not stabilized. Therefore, in the calculations
we have simulated this effect by averaging over the time delay
between IR and XUV pulses within one IR optical cycle. As
it was shown in Ref. [26], the effect of averaging is not large
since the dichroism is weakly dependent on the time delay
between the XUV and IR pulses.

80 85 90 95 100 105 110
Electron energy  (eV)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
D

 a
nd

 s
pe

ct
ru

m
 (

ar
b.

 u
ni

ts
)

FIG. 2. (Color online) Theoretical spectrum (in arbitrary units)
for laser-assisted photoionization by right circularly polarized XUV
and IR light (red dashed line) and CD(circ) in absolute units (black
solid line) at emission angle ϑ = π/2. The results are averaged over
the time delay between IR and XUV pulses within one optical period.
The parameters are the same as in Fig. 1. Dot-dashed line shows the
dichroism calculated for a long IR pulse using Eqs. (16)–(18).
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FIG. 3. (Color online) Calculated angular distributions of photoelectrons (in arbitrary units) generated by left (blue long-dashed line) and
right (red short-dashed line) circularly polarized IR light and angular distribution of CD(circ) in absolute units (black solid line): (a) for the
central line at the energy of 95.4 eV and (b) for the first sideband at the energy of 97.0 eV. The results are averaged over the time delay between
IR and XUV pulses within one optical period. All parameters are the same as in Fig. 1.

In Fig. 1 we show the two-dimensional color-scale plots
of the angular and energy distribution of the photoelectrons,
i.e., double differential cross section (DDCS), and of the CD.
In the spectra (Fig. 1, left panel) one can clearly see the
system of sidebands, their number and intensity strongly vary
with the emission angle. The maximal number of sidebands
is at ϑ = π/2, where the optical laser field is parallel to
the emission direction. At ϑ = 0 and π only the central
photoelectron line is seen since the IR field, perpendicular to
the electron motion, does not affect it. The right panel shows
the calculated CD. For each particular angle and for low-order
sidebands the CD alternates its sign from sideband to sideband.
Interestingly, the CD is practically constant in every sideband;
it changes abruptly between the sidebands. For higher-order
sidebands the sign of CD is permanent (negative). Also, for
each individual sideband of low order the CD changes its sign
with the emission angle. We note that the stripes of large CD
at the angles close to zero and 180◦ have little meaning, since
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FIG. 4. (Color online) Angle-integrated cross section (red dashed
curve) in arbitrary units and CD(circ) in absolute units (black solid
curve), calculated for the same parameters as in Fig. 1. The results
are averaged over the time delay between IR and XUV pulses within
one optical period.

the corresponding cross sections in these area are vanishingly
small [see Fig. 1 (left panel)].

Figure 2 shows the spectrum and the dichroism for the
emission angle of ϑ = π/2 (a cut of the plots in Fig. 1). The
stepwise character and the alternating sign of the CD is clearly
seen. The angular distributions of photoelectrons as well as
the angular distribution of the CD is presented in Fig. 3 for
two particular spectral lines, at the energies 95.4 and 97.0 eV.
The photoelectron angular distributions produced by left and
right circularly polarized optical photons are quite similar but
slightly shifted with respect to each other. This shift causes a
typical dispersion-like behavior of the CD which changes sign
abruptly at the angles where the angular distribution curves
cross each other.

Figure 4 presents the angle-integrated spectrum and the
corresponding CD. Although the general character of the CD
energy dependence is the same as for particular angles, the
absolute value of the dichroism is only several percent which is
several times smaller than in the angle-resolved case. However,
experimental observation of this small effect may be possible
due to much larger statistics in angle-integrated experiments.

It is of interest to consider long XUV and IR pulses because
in this case it is possible to obtain analytical result for the
dichroism. As it is shown in the Appendix, when both XUV
and IR pulses are right circularly polarized, the factor F(�k),
Eq. (14), can be expressed as

FR(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp[i(1 − n)ϕ]

×
[

sin ϑ

(
1 − nωL

k2

)
Jn(q) + AL

k
Jn−1(q)

]
, (16)

where q = kAL sin ϑ/(ωL

√
2), Jn(q) is the Bessel function

and the following notation is introduced:

Ẽ (n)
X =

∫ ∞

−∞
dt ẼX(t) exp

[
i

(
Eb − ωX + k2

2
+ nωL

)
t

]
.

(17)
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For the case of left circular polarization of the IR pulse, Eq. (16)
becomes

FL(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp[i(n + 1)ϕ]

×
[

sin ϑ

(
1 − nωL

k2

)
Jn(q) + AL

k
Jn+1(q)

]
. (18)

If the XUV pulse is sufficiently long, covering many oscilla-
tions of the IR field, then the function Ẽ (n)

X is close to δ function:

Ẽ (n)
X → ẼX2πδ

(
Eb − ωX + k2

2
+ nωL

)
. (19)

In this case for each of the sidebands (for each n) one can ignore
the contributions from all other terms as well as interference
between the sidebands. Then the intensity of the sideband,
In, is proportional to the square of the nth term in the sums
(16),(18): In ∼ |F (n)

R(L)|2 for right R and left L circularly
polarized IR fields. Using the analytical Eqs. (16) and (18)
one can calculate the CD(circ) (for details see Appendix). For a
particular sideband of the order n one obtains the dichroism

CD(circ) = 2
AL

k
Jn(q)

dJn(q)

dq

[
sin ϑ

(
1 − nωL

k2

)
+ nωL

k2 sin ϑ

]

×
{
J 2

n (q)

[
sin ϑ

(
1 − nωL

k2

)
+ nωL

k2 sin ϑ

]2

+ A2
L

k2

[
dJn(q)

dq

]2}−1

. (20)

In this expression the denominator (expression in curly
brackets) is the sum of squares of the two terms, while the
numerator is the product of these terms; thus, the values of CD
are limited to the interval [-1,1] as it should be according to the
definition. Moreover, since the expression in square brackets
in the numerator is always positive, the zeros of the CD are
determined by the zeros of Bessel functions or their derivatives.
Using Eq. (20) we have calculated the CD for the same atomic
parameters as above. The spectrum was simulated by a sum of
Gaussian with the appropriate positions and width. The result
is shown in Fig. 2 by a dot-dashed line. Comparing it with
more accurate calculations (solid line) we see that the results
are rather close for all lines except for a couple of weak lines.
Thus Eq. (20) can be used for estimation of CD in case of
comparatively long pulses.

B. Circular IR dichroism with linearly polarized XUV pulse

Now we consider the case when the ionization is produced
by the linearly polarized XUV beam in the field of the
circularly polarized IR laser. For particular cases of two- and
three-photon absorption this case was considered in Ref. [24].
We choose the coordinate system in such a way that the z axis
is directed along the collinear photon beams and the x axis is
directed along the XUV electric vector. The circular dichroism
is revealed by reversing the helicity of the IR beam. This case is
analogous to the single-photon ionization of aligned system by
circularly polarized light when alignment is perpendicular to
the direction of the beam [4]. Therefore, one can expect the cir-
cular dichroism in the angular distribution of photoelectrons,

FIG. 5. (Color online) Color-scale plots of DDCS and CD(lin) as
functions of photoelectron energy and azimuthal emission angle ϕ in
the plane perpendicular to the photon beams (θ = π/2). Left panel:
DDCS calculated for photoionization of He by linearly polarized
XUV photons at the energy of 120 eV in the field of right-hand
circularly polarized IR laser (800 nm, 2 × 1012 W/cm2). See other
parameters in text. Right panel: Circular dichroism [Eq. (15)]
calculated for the same parameters.

while the integral dichroism is strictly zero. In the considered
geometry, the circular dichroism appears when the projection
of the electron momentum onto the plane perpendicular to
the beam direction and the XUV electric vector reveal some
“chirality,” i.e., clockwise and anticlockwise rotations of one
direction to another one are not equivalent. The chirality can
be thus probed by the circularly polarized light. The dichroism
is zero if photoelectrons are detected along the beam direction
(ϑ = 0 and π ). The maximal dichroism is expected when the
detector is in the plane perpendicular to the beams (ϑ = π/2).
However, the dichroism turns to zero when the photoelectrons
are detected at the azimuthal angles ϕ = nπ/2 when both
clockwise and anticlockwise rotations are equivalent; thus,
there is no chirality in experimental conditions.

As an example, we have calculated the He two-color pho-
toionization for electron emission in the plane perpendicular to
the beams (xy plane, ϑ = π/2). The parameters of the beams
are the same as in the previous section, but the intensity of the
IR laser is assumed to be 2 × 1012 W/cm2. The calculations
have been done using Eqs. (13) and (14), taking into account
Eq. (4). The results are shown in Figs. 5–7.

Figure 5 shows the DDCS and the CD as two-dimensional
color-scale plots. The DDCS is shown in the left panel as
functions of photoelectron energy and azimuthal angle ϕ,
counted from the direction of the linear polarization of the
XUV pulse. Since electrons, ionized by the XUV photons
from the s shell, have a p-wave character, their angular
distribution has maxima at ϕ = 0(2π ) and π and no emission
at ϕ = π/2 and 3π/2, which is clearly seen in the left panel
of Fig. 5. The number of sidebands is obviously independent
of azimuthal angle ϕ. The CD(lin), connected with the change
of helicity of the IR beam, is calculated by the formally same
expression as Eq. (15). The result is shown in the right panel
of Fig. 5. As expected, the CD is zero for the emission along
the XUV linear polarization [ ϕ = 0(2π ) and π ], as well as
for ϕ = π/2 and 3π/2. Most interesting is the behavior of
the CD for particular sidebands. One can see that the CD

053409-6



DICHROISM IN SHORT-PULSE TWO-COLOR XUV PLUS . . . PHYSICAL REVIEW A 85, 053409 (2012)

85 90 95 100 105 110
Electron energy (eV)

-0.2

0

0.2

0.4

0.6
C

D
 a

nd
 s

pe
ct

ru
m

 (
ar

b.
 u

ni
ts

)

FIG. 6. (Color online) Theoretical spectrum (in arbitrary units)
for laser-assisted photoionization by linearly polarized XUV light
in the field of right circularly polarized IR laser (red dashed line)
and CD(lin) in absolute units (black solid line) at emission angle ϕ =
45◦, in the plane perpendicular to the photon beams (θ = π/2). The
calculations have been done for the same parameters described in the
legend of Fig. 5.

changes sign within the energy range of one sideband. It is
seen more clearly in Fig. 6, where we present the spectrum
and CD for the emission angle ϕ = 45◦ (a cut of the plots in
Fig. 5). One can notice that within each of the spectral lines
the dichroism changes sign, having zero at the maximum of
the line. In general, the CD is very small within any spectral
line, reaching large values only between lines where the cross
section is small. Thus, in real measurements with not very
good resolution, the dichroic signal will be averaged out to a
small value. This is confirmed by our results for the limiting
case of long pulses, obtained in the Appendix, where it is
shown that the CD for an individual sideband is zero. In Fig. 7
the angular distribution for two spectral lines is shown. The
CD is antisymmetrical with respect to ϕ = π . As we have
mentioned, the CD is zero near ϕ = nπ/2. The character of
the angular distributions is similar for all lines. Similar angular
distributions have been obtained for two-photon absorption
in Ref. [24]. By dot-dashed lines in Fig. 7 we show the CD,
calculated with the cross sections convoluted with the Gaussian

curve imitating the typical overall apparatus energy resolution
of 0.8 eV. The resulting CD becomes small (less then 5%). We
note that our result is consistent with the results of Ref. [24],
where it was shown that CD for the case of linearly polarized
XUV pulse tends to zero at large electron energy.

C. Linear dichroism with linearly polarized XUV beam

When both XUV and IR beams are linearly polarized, one
can consider the difference in the yield of photoelectrons
for two mutually perpendicular directions of the linear po-
larization of one of the beams. In the case of single-photon
absorption, the difference in photoelectron yields for parallel
and perpendicular polarizations of the two beams is called
linear dichroism (LD) or linear alignment dichroism [4]. Here
we consider LD in the two-color multiphoton ionization. We
assume that the direction of the linear polarization of the
XUV beam, propagating along the z axis, is fixed along the x

axis. The linear polarization of the collinear IR beam can be
rotated and the LD can be studied. The angular distribution
of photoelectrons in this case is symmetrical with respect to
the plane perpendicular to the beams (xy plane). Usually the
angular distribution of photoelectrons and LD are measured in
this plane.

The calculated DDCSs and LD as functions of photoelec-
tron energy and the azimuthal emission angle ϕ are shown in
Fig. 8 for the two-color photoionization of He (1s) for the same
parameters of pulses as in previous sections. It is assumed that
photoelectrons are registered in the xy plane perpendicular
to the photon beams. The left panel shows the results when
linear polarizations of the XUV and IR beams are parallel and
directed along the x axis. The system of sidebands is clearly
seen with maximum number of sidebands at ϕ = 0 and π .
The number of sidebands quickly diminishes with increase
of angle from 0 to π/2. Because of the p-wave character of
photoemission by XUV photons, the photoelectron intensity at
ϕ = π/2 is zero. The central panel shows the calculated DDCS
for the case of perpendicular polarizations of the beams. When
the emission angle is zero or π the intensity of the photoline
produced by the XUV photons is maximal. However, there
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FIG. 7. (Color online) Calculated angular distributions of photoelectrons (in arbitrary units) generated by linearly polarized XUV light
in the field of right (red long-dashed line) and left (blue short-dashed line) circularly polarized IR light; the angular distribution of CD(lin) in
absolute units is shown by black solid line: (a) for the central line at the energy of 95.4 eV and (b) for the first sideband at the energy of 97.0 eV.
The observation plane is perpendicular to the photon beams (θ = π/2). All parameters are the same as described in the legend of Fig. 5. The
dot-dashed lines show the averaged CD (see text).
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FIG. 8. (Color online) Color-scale plots of DDCSs and LD as functions of photoelectron energy and azimuthal angle ϕ in the plane
perpendicular to the beams (θ = π/2). Left panel: DDCS calculated for photoionization of He by linearly polarized XUV photons at the
energy of 120 eV in the field of linearly polarized IR laser for parallel polarizations of the beams. Central panel: the same for perpendicular
polarizations of the beams. Right panel: LD [Eq. (21)]. All parameters are the same as described in the legend of Fig. 5

are no sidebands because the IR field is now perpendicular
to the electron velocity. The maximum number of sidebands
could be expected at emission angle ϕ = π/2. However, no
photoelectrons are emitted at this angle by the XUV photons.

The LD is defined as

LD =
|A‖

�k|2 − |A⊥
�k |2

|A‖
�k|2 + |A⊥

�k |2
, (21)

where A‖
�k and A⊥

�k are amplitudes of photoionization for
parallel and perpendicular polarizations of ionizing beams,
respectively. The calculated LD for He multiphoton ioniza-
tion is presented in the right panel as a two-dimensional
color-scale plot. Here red (medium gray) color indicates
positive dichroism while blue (dark grey) color indicates
negative dichroism. The LD is practically constant within
every particular sideband, sharply changing its sign for the
neighboring sidebands at least for the low-order sidebands.
Also within one sideband the LD shows quick variation with
angle and change of sign several times. At emission angles 0
and π the LD =1 for all sidebands except the central line. This
is clear from definition Eq. (21) and the fact that at these angles
the intensity of sidebands in perpendicular case is zero. At the
emission angle ϕ = π/4 (3π/4), the LD = 0 since the cross
sections for parallel and perpendicular polarizations are equal.
At ϕ = π/2, the LD is not defined since both cross sections
are zero. (The horizontal lines seen in this figure at ϕ = π/2
are artifacts.)

In more detail, the spectra and LD are shown in Fig. 9 for
a particular emission angle ϕ = 40◦. The stepwise character
of the LD and the alternating signs for low-order sidebands
is clearly seen. For high-order sidebands the sign of LD is
positive. Note that the absolute value of LD is rather high in
this case. Figure 10 displays the angular distributions of pho-
toelectrons for two neighboring sidebands and corresponding
LD. The general character of the LD as function of emission
angle is similar to the cases of CD: quick variation with angle
and change of sign several times. Remember, in the small
energy interval around ϕ = π/2, the LD is not defined due
to extremely small cross sections. In the Appendix we have
derived an expression, Eq. (A25), for the LD for long XUV and

IR pulses, which can serve as approximate expression for quick
and easy estimation of the expected effect. For a particular
geometry considered here (ϑ = π/2), one gets the dependence
of LD on the emission angle ϕ for the mth sideband:

LDm = |Jm(q̄‖)|2 − |Jm(q̄⊥)|2
|Jm(q̄‖)|2 + |Jm(q̄⊥)|2 , (22)

where q̄‖ = ALk
ωL

cos ϕ and q̄⊥ = ALk
ωL

sin ϕ. From this expres-
sion one can easily obtain all the peculiarities mentioned
above. For example, if ϕ = 0 (an electron is emitted along the
XUV polarization), q̄⊥ = 0 and all Bessel functions Jm(q⊥)
except J0(q⊥) turn to zero; thus, LD= 1 when m 	= 0; if
ϕ = π/4, then q̄⊥ = q̄‖ and LD =0 for all sidebands, etc.

Similar to the case of two circularly polarized beams, also
for the linearly polarized IR and XUV beams, the angle-
integrated cross section reveals LD. The calculated angle-
integrated cross sections and the LD are shown in Fig. 11(a) for
the same conditions as above. The angle-integrated LD is quite
large, being of the order of unity. Note that at the considered IR
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FIG. 9. (Color online) Theoretical spectrum (in arbitrary units)
for laser-assisted photoionization by linearly polarized XUV pulse in
the field of linearly polarized IR laser for parallel (blue short-dashed
line) and perpendicular (red long-dashed line) polarizations, and LD
in absolute units (black solid line) at the emission angle ϕ = 40◦ in
the plane perpendicular to the beams (θ = π/2). The parameters of
the beams are the same as described in the legend of Fig. 5.
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FIG. 10. (Color online) Calculated angular distributions of photoelectrons (in arbitrary units) generated by linearly polarized XUV and IR
pulses with parallel (blue short-dashed line) and perpendicular (red long-dashed line) polarizations and angular distribution of LD in absolute
units (black solid line): (a) for the first sideband at the energy of 97.0 eV and (b) for the second sideband at the energy of 98.5 eV. All other
parameters are the same as described in the legend of Fig. 5.

laser flux, the dichroism for the low-order sidebands is negative
while for the higher-order sidebands it is positive. Negative LD
means that the intensity of the sideband for the perpendicular
polarizations is larger than for the parallel ones. In the only
published experiment [21] where the dependence of intensity
of the first sideband on the angle between polarizations was
measured, the intensity was larger for the parallel rather than
for perpendicular polarizations. However, in that experiment,
the IR pulse was rather weak, 8 × 1010 W/cm2. In Fig. 11(b)
we show the results of the LD calculations for this intensity.
Here even for the first sideband the dichroism is positive, which
is consistent with the experimental data and the calculations
within the soft-photon approximation [21].

IV. SUMMARY AND CONCLUDING REMARKS

We have analyzed different types of dichroism in short-
pulse two-color XUV + IR multiphoton ionization of unpo-
larized atoms when in the photoelectron spectrum a well-
developed sideband structure appears. In particular, three
cases have been considered: (a) CD(circ) when both IR and

XUV pulses are circularly polarized, (b) CD(lin) when the IR
pulse is circularly polarized while the XUV pulse is linearly
polarized, and (c) LD when both pulses are linearly polarized.
The calculations have been done within the SFA approach
for the realistic pulse durations and optical laser intensities
similar to those used in experiments at FELs such as FLASH
and LCLS. Thus, one can use the results for planning future
experiments. The numerical evaluations are confirmed by the
analytical results obtained for comparatively long XUV and
IR pulses. In cases (a) and (c) the dichroic effect in the angular
distribution of photoelectrons is quite substantial and can be
measured with the modern experimental facilities. In case (b)
the CD is small and its measurements might be prohibitively
difficult at least for large photoelectron energies. In all cases
the dichroism is shown to variate strongly from one sideband
to another. It also changes considerably with the emission
angle. The study of the circular and linear dichroism gives
deeper insight into the dynamics of the interaction of short
intense pulses with atoms and molecules, since the dichroism
is sensitive both to the values and to the phases of the matrix
elements involved. Besides, such measurements can be used
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FIG. 11. (Color online) Angle-integrated yield of photoelectrons (in arbitrary units) generated by linearly polarized XUV and IR lights
with parallel (blue short-dashed line) and perpendicular (red long-dashed line) polarizations and the LD in absolute units (black solid line): (a)
for the IR field of 2 × 1012 W/cm2 and (b) for the IR field of 8 × 1010 W/cm2. All other parameters are the same as described in the legend of
Fig. 5.
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for characterization of the FEL photon beams. Particularly,
the measurements of the CD with circularly polarized XUV
beam can be of certain interest, since they can be used for
measuring and/or monitoring the circular polarization of the
XUV beam in the energy range where there is no other effective
methods [26].
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APPENDIX

Let us derive Eqs. (16) and (18) for the case of a very long
IR pulse. Suppose that the IR pulse is circularly polarized, then
the pulse electric field may be presented as

EL(t) = g(αt)
ĒL√

2
[x̂ cos(ωLt) ± ŷ sin(ωLt)] , (A1)

where ĒL is the field amplitude and upper (lower) sign
corresponds to right (left) circularly polarized IR field. The
corresponding vector potential is

AL(t) = g(αt)AL [x̂ sin(ωLt) ∓ ŷ cos(ωLt)] (A2)

with AL = −ĒL/
√

2ωL. Here and in Eq. (A1) we have
introduced an auxiliary function g(x), which is smooth, equal
to unity at small x, and tends to zero limit at large |x|. It
allows us to calculate the integral Eq. (6) when the upper
limit T → ∞ and α → 0. In the following we assume that
k � AL and ignore the quadratic term A2

L in Eq. (14). In this
approximation, taking into account that kx = k sin ϑ cos ϕ and
ky = k sin ϑ sin ϕ, the Volkov phase can be presented as

�(�k,t) = k2

2
t + kAL

ωL

sin ϑ cos(ϕ ∓ ωLt). (A3)

Substituting this expression into Eq. (14) and using the Jacobi-
Anger expansion

exp(iκ cos α) =
+∞∑

m=−∞
im exp(imα)Jm(κ), (A4)

where Jm(κ) is the Bessel function, one obtains

F(�k) = −
+∞∑

m=−∞

∫ ∞

−∞
dt ẼX(t)Y1,1(ϑ0,ϕ0)im exp(imϕ)

× exp(∓imωLt)Jm(q) exp

[
i(Eb + k2

2
− ωX)t

]
,

(A5)

where q = kAL sin ϑ/ωL and we assumed that the XUV
pulse is right circularly polarized. The spherical harmonic
Y1,1(ϑ0,ϕ0) can be expressed in terms of angles ϑ,ϕ using

Eqs. (9) and (10) as follows:

Y1,1(ϑ0,ϕ0) ≡ −
√

3

8π
sin ϑ0 exp(iϕ0)

≈ −
√

3

8π

[
sin ϑ exp(iϕ) ± i

AL

k
exp(±iωLt)

+ AL

k
sin2 ϑ exp(iϕ) sin(ωLt ∓ ϕ)

]
. (A6)

Here upper (lower) sign corresponds to the right (left) circular
polarization of the IR field, and we have kept only linear term
in AL/k, which is considered to be small AL/k � 1.

Substituting this expression for the right circular polariza-
tion of the IR pulse (upper signs) into Eq. (A5) one obtains the
factor FR(�k)

FR(�k) =
√

3

8π

+∞∑
m=−∞

im exp(−imϕ)Jm(q)

×
[

sin ϑ exp(iϕ)Ẽ (m)
X + i

AL

2k
(2 − sin2 ϑ) Ẽ (m+1)

X

+ i
AL

2k
sin2 ϑ exp(2iϕ)Ẽ (m−1)

X

]
, (A7)

where the following notation is introduced:

Ẽ (m)
X =

∫ ∞

−∞
dt ẼX(t) exp

[
i

(
Eb − ωX + k2

2
+ imωL

)
t

]
.

(A8)

This expression can be rewritten by rearranging the terms in
the sums as

FR(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp[i(1 − n)ϕ]

×
[

sin ϑJn(q) + AL

2k
(2 − sin2 ϑ) Jn−1(q)

−AL

2k
sin2 ϑ Jn+1(q)

]

=
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp[i(1 − n)ϕ]

×
[

sin ϑ
(

1 − nωL

k2

)
Jn(q) + AL

k
Jn−1(q)

]
. (A9)

Similarly, for the case of left circular polarization of the IR
pulse one can obtain the factor FL(�k) by substituting Eq. (A6)
with lower signs into Eq. (A5):

FL(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp[i(n + 1)ϕ]

×
[

sin ϑ
(

1 − nωL

k2

)
Jn(q) + AL

k
Jn+1(q)

]
. (A10)

If the XUV pulse is left circularly polarized [Eq. (A5)
contains Y1−1(ϑ0,ϕ0)], the amplitudes for right and left
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circularly polarized IR radiation look, respectively, as

FR(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp[−i(n + 1)ϕ]

×
[

sin ϑ
(

1 − nωL

k2

)
Jn(q) + AL

k
Jn+1(q)

]
, (A11)

and

FL(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp[i(n − 1)ϕ]

×
[

sin ϑ
(

1 − nωL

k2

)
Jn(q) + AL

k
Jn−1(q)

]
. (A12)

If the XUV pulse is sufficiently long, covering many oscilla-
tions of the IR field, then the function Ẽ (n)

X is close to the δ

function [Eq. (19)], and for each of the sidebands (for each
n) one can ignore the contributions from all other terms and
interference between the sidebands. Then the intensity of the
sideband, In, is proportional to the square of the nth term
in the sum In ∼ |F (n)

R(L)|2 for right (R) and left (L) circularly
polarized IR fields.

The CD is determined by the difference of the cross
sections for the right and left circularly polarized light, which
is proportional (for a particular n) to |F (n)

R (�k)|2 − |F (n)
L (�k)|2.

Using Eqs. (A9) and (A10), one can obtain

∣∣F (n)
R (�k)

∣∣2 − ∣∣F (n)
L (�k)

∣∣2 = 3

8π

∣∣Ẽ (n)
X

∣∣2
4
AL

k
Jn(q)

dJn(q)

dq

×
[
sin ϑ

(
1 − nωL

k2

)
+ nωL

k2 sin ϑ

]
.

(A13)

For relative dichroism one needs to calculate also the sum of
the cross sections which is proportional to∣∣F (n)

R (�k)
∣∣2 + ∣∣F (n)

L (�k)
∣∣2

= 3

8π

∣∣Ẽ (n)
X

∣∣2
2

{
J 2

n (q)

[
sin ϑ

(
1 − nωL

k2

)
+ nωL

k2 sin ϑ

]2

+ A2
L

k2

[
dJn(q)

dq

]2}
. (A14)

The ratio of Eqs. (A13) and (A14) gives relative CD for the
nth sideband:

CD(circ)
n ≡

∣∣F (n)
R (�k)

∣∣2 − ∣∣F (n)
L (�k)

∣∣2

|F (n)
R (�k)

∣∣2 + |F (n)
L (�k)

∣∣2

= 2
AL

k
Jn(q)

dJn(q)

dq

[
sin ϑ

(
1 − nωL

k2

)
+ nωL

k2 sin ϑ

]

×
{
J 2

n (q)

[
sin ϑ

(
1 − nωL

k2

)
+ nωL

k2 sin ϑ

]2

+ A2
L

k2

[
dJn(q)

dq

]2}−1

. (A15)

If the XUV beam is linearly polarized, the corresponding
amplitude can be obtained by summing amplitudes for right
and left circularly polarized XUV beams. Thus, for the right
circularly polarized IR radiation one should sum Eqs. (A9)

and (A11), which gives

FR(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp(−inϕ)

×
{

2 cos ϕ sin ϑ

(
1 − nωL

k2

)
Jn(q)

+ AL

k
[eiϕJn−1(q) + e−iϕJn+1(q)]

}
. (A16)

For the left circularly polarized IR radiation one gets by
summing Eqs. (A10) and (A12):

FL(�k) =
√

3

8π

+∞∑
n=−∞

Ẽ (n)
X in exp(inϕ)

×
{

2 cos ϕ sin ϑ

(
1 − nωL

k2

)
Jn(q)

+ AL

k
[eiϕJn+1(q) + e−iϕJn−1(q)]

}
. (A17)

Comparing Eqs. (A16) and (A17), we see that expressions
in square brackets are complex conjugate. Therefore, for each
particular sideband (individual n) the cross sections, calculated
within our approximation for infinitely long IR pulse, are
equal for left and right circularly polarized light and CD is
strictly zero. Nonzero dichroism for finite pulses is discussed
in Sec. III B.

Now we consider the case when both beams are linearly
polarized. As above, we consider collinear beams propagating
along the z axis. We choose the x axis along the polarization
vector of XUV pulse and suppose that the IR polarization is
directed at the angle χ relative to the x axis. In this case, the
vector potential of the IR field may be presented as

AL(t) = g(αt)AL sin(ωLt)[x̂ cos χ + ŷ sin χ ]. (A18)

The Volkov phase in this case is

�(�k,t) = k2

2
t + kAL

ωL

sin ϑ cos(ϕ − χ ) cos(ωLt). (A19)

Expanding the amplitude in terms of Bessel functions, we
obtain

F(�k) =
+∞∑

m=−∞

∫ ∞

−∞
dt ẼX(t)[ReY1,1(ϑ0,ϕ0)]im exp(imϕ)

× exp(imωLt)Jm(q̄) exp

[
i(Eb + k2

2
− ωX)t

]
,

(A20)

where q̄ = ALk
ωL

sin ϑ cos(ϕ − χ ). The operator −ReY1,1

(ϑ0,ϕ0) corresponds to the XUV light polarized along x axis.
In analogy with the previous case of circular polarized light,
we obtain the following expression for this operator in terms
of emission angles ϑ and ϕ:

ReY1,1(ϑ0,ϕ0) ≡ −
√

3

8π
sin ϑ0 cos ϕ0

≈ −
√

3

8π

{
sin ϑ cos ϕ − AL

k
[cos χ − sin2 ϑ

× cos ϕ cos(ϕ − χ )] sin(ωLt)

}
. (A21)

053409-11



A. K. KAZANSKY, A. V. GRIGORIEVA, AND N. M. KABACHNIK PHYSICAL REVIEW A 85, 053409 (2012)

Substituting this expression in Eq. (A20) we get

F(�k) =
+∞∑

m=−∞
E (m)

X im exp(imϕ)Jm(q̄)

×
[

sin ϑ cos ϕ + ALm

kq̄
f (ϑ,ϕ,χ )

]
, (A22)

where f (ϑ,ϕ,χ ) = cos χ − sin2 ϑ cos ϕ cos(ϕ − χ ). For not
very large m we can ignore the second term in the square
brackets due to the small value of ωL/k2 and obtain

F(�k) =
+∞∑

m=−∞
E (m)

X im exp(imϕ)Jm(q̄) sin ϑ cos ϕ. (A23)

Thus, for the mth sideband the angular distribution and
the dependence on the angle χ between polarizations is

determined by the expression

σ (m)(�k) ∼ |Jm(q̄)|2 sin2 ϑ cos2 ϕ. (A24)

Using this expression one can calculate the LD for a
particular sideband. Since the LD, defined by Eq. (21),
is determined by the difference of the cross sections for
parallel (χ = 0) and perpendicular (χ = π/2) orientation of
the photon polarizations, one obtains for the mth sideband and
for ϑ 	= 0

LDm = |Jm(q̄‖)|2 − |Jm(q̄⊥)|2
|Jm(q̄‖)|2 + |Jm(q̄⊥)|2 , (A25)

where q̄‖ = ALk
ωL

sin ϑ cos ϕ and q̄⊥ = ALk
ωL

sin ϑ sin ϕ.
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[22] S. Düsterer et al., New J. Phys. 13, 093024 (2011).
[23] N. L. Manakov, A. Maquet, S. I. Marmo, V. Veniard, and

G. Ferrante, J. Phys. B 32, 3747 (1999).
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