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The recently developed weak-field asymptotic theory [Phys. Rev. A 84, 053423 (2011)] is applied to the
analysis of tunneling ionization of a molecular ion (H+

2 ), several homonuclear (H2, N2, O2) and heteronuclear
(CO, HF) diatomic molecules, and a linear triatomic molecule (CO2) in a static electric field. The dependence of
the ionization rate on the angle between the molecular axis and the field is determined by a structure factor for the
highest occupied molecular orbital. This factor is calculated using a virtually exact discrete variable representation
wave function for H+

2 , very accurate Hartree-Fock wave functions for the diatomics, and a Hartree-Fock quantum
chemistry wave function for CO2. The structure factors are expanded in terms of standard functions and the
associated structure coefficients, allowing the determination of the ionization rate for any orientation of the
molecule with respect to the field, are tabulated. Our results, which are exact in the weak-field limit for H+

2 and,
in addition, under the Hartree-Fock approximation for the diatomics, are compared with results from the recent
literature.
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I. INTRODUCTION

The orientation-resolved ionization yields from molecules
have been addressed in an avalanche of recent experimental
papers using intense femtosecond near-infrared laser pulses
(see, e.g., Refs. [1–11]). The interest stems from the de-
tailed information on strong-field dynamics contained in such
alignment- or orientation-resolved data and the prospects for
retrieving properties of the ionizing orbital, potentially even
in a time-resolved way. So far, the experimental results have
been compared against predictions of a molecular tunneling
formula [molecular Ammosov-Delone-Krainov (MO-ADK)]
[3,6–24], approximate numerical solution of the time-
dependent Schrödinger equation (TDSE) [5,19,24–30], and
the molecular strong-field approximation (MO-SFA) [13–15,
17,31–33]. In many cases the predictions differ even at the
qualitative level, which is an unsatisfactory situation and a
challenge for the theory.

The interest in tunneling ionization is also fed by the
fact that it is the first step for rescattering and harmonic
generation processes ignited by intense low-frequency laser
pulses [34–36]. Recently it was realized [37,38] that photo-
electron momentum distributions near the back-rescattering
ridge and high-order harmonic generation spectra factorize
into a product of the elastic scattering and photorecombina-
tion cross sections of the target, respectively, and a target-
independent factor characterizing the flux of electrons arriving
for rescattering. The conjecture of factorization, originally
proposed in Ref. [37] on the basis of numerical solution of
the TDSE, was confirmed by different theoretical methods
for both photoelectron [39–41] and harmonic [42–44] spectra.
It enables one to retrieve the target structure information, as
was demonstrated experimentally for elastic scattering [45–48]
and photorecombination [49–51] cross sections. The retrieving
procedure again requires the knowledge of the orientation-
resolved tunneling ionization rate of the target.

The problem of tunneling ionization in a static electric field
is fundamental and has attracted attention since the early days
of quantum mechanics [52]. While the general theory is for-
mulated in terms of the solutions of the stationary Schrödinger
equation satisfying the regularity and outgoing wave boundary
conditions which can be constructed only numerically (see
Ref. [53] and references therein), in the weak-field limit
an asymptotic solution of the problem is possible. In this
connection it is important to note a difference in terminology.
In the case of a static field, the term “weak” is used if the
interaction with the field can be treated perturbatively, while a
time-dependent laser field with the same amplitude is usually
referred to as “strong” in the tunneling regime of ionization.
For atoms, the spherical symmetry simplifies the analysis and
the weak-field asymptotic formulas for the ionization rate have
been available for many years [54–58]. For hydrogen, even the
next to the leading order in the field correction to the ionization
rate for an arbitrary state was obtained [59]. For molecules,
the multicenter nature of the ionizing orbital complicates the
analysis. A breakthrough came with the so-called MO-ADK
formula [12], which was constructed by analogy with the
atomic case [56,60] rather than derived from the Schrödinger
equation. In contrast to the atomic case, the region of validity
of this formula for the lack of its derivation remained unclear.
For the same reason such an important physical factor as the
linear Stark shift caused by a permanent dipole moment of the
ionizing orbital was missed.

In our recent work [61], the asymptotic theory of tunneling
ionization in a weak electric field was reconsidered. A consis-
tent approach to the problem based on the adiabatic expansion
in parabolic coordinates [53] was developed. The previously
known asymptotic formulas for the atomic case [54–58] were
rederived and the correct leading-order asymptotics for the
ionization rate of molecules was obtained. In contrast to
the original MO-ADK formula [12], our theory accounts for
the possible existence of a permanent dipole moment of the
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ionizing orbital and hence is invariant under translations of
the coordinate origin. It classifies the different contributions
to the ionization rate by the power of the field in the pre-
exponential factor, thus attributing them to the different orders
of the asymptotic expansion, and introduces the notion of a
dominant channel which is the only one to be retained in
the leading-order approximation. The ionization rate in this
approximation is shown to factorize into a product of what
is called the structure factor, which depends only on the
orientation of the molecule with respect to the field, and a
simple analytically known function of the field. While the
previous paper [61] was devoted to developing and validating
the theory, in the present work we discuss its applications.
Our goal here is to illustrate the implementation of the theory
and provide a set of reliable results for tunneling ionization in
the weak-field limit. Since the dependence on the field in this
limit is trivial, we focus on the orientation-dependent structure
factor. It is determined by the behavior of the unperturbed wave
function of the tunneling electron in the asymptotic region.
We present results for a number of small linear polar and
nonpolar molecules of current theoretical and experimental
interest obtained from wave functions at different levels of
approximation and compare them with the recent literature.

The paper is organized as follows. In Sec. II, we list the
formulas needed to evaluate the tunneling ionization rate
within the weak-field asymptotic theory [61]. In Sec. III,
we present and discuss our results. We begin with the
benchmark results for H+

2 obtained from a virtually exact wave
function constructed using a discrete variable representation
[62] in prolate spheroidal coordinates [63]. Then we consider
diatomic molecules H2, N2, CO, O2, and HF with different
symmetry of the highest occupied molecular orbital (HOMO).
The HOMOs for these molecules are obtained using a very
accurate program X2DHF [64,65] implementing the Hartree-
Fock method for diatomic molecules and correctly accounting
for the asymptotic form of the wave function. Finally we
illustrate the performance of less accurate in the asymptotic
region quantum chemistry wave functions by the results for a
linear triatomic molecule CO2 using the code GAMESS [66].
The conclusions and an outlook are formulated in Sec. IV.

II. THEORY

In this section, we recapitulate the formulas needed to
apply the weak-field asymptotic theory of tunneling ionization
of molecules [61]. In this theory, a molecule is treated in
the single-active-electron approximation. For all molecules
considered in the present paper, the active electron will be
described by the HOMO. To find the ionization rate, one
needs the field-free energy E0, wave function ψ0(r), and dipole
moment μ of the active electron given by (atomic units are used
throughout)

μ = −
∫

ψ∗
0 (r)rψ0(r) dr. (1)

We use the notation

κ =
√

2|E0|. (2)

The direction of the external electric field F defines the
laboratory frame. We choose a geometry where the field is

always pointing in the positive z direction of the laboratory
frame, so F = F ez, F > 0. The orientation of the molecule is
specified by the three Euler angles (α,β,γ ) defining a rotation
from the laboratory frame to a molecular frame, where α is
the angle of rotation around the laboratory z axis, β is the
angle of rotation around the new y axis, and γ is the angle of
rotation around the molecular z axis [67]. The wave function
and dipole moment are assumed to be originally given in the
molecular frame; then ψ0(r) and μ are obtained by applying
the rotation. Thus, the dependence on (α,β,γ ) is implicitly
contained in ψ0(r) and μ. Since the field is axially symmetric
in the laboratory frame, the ionization rate does not depend
on α, so we set α = 0. Since the field is homogeneous, the
ionization rate does not depend on the position of the origin of
the coordinate system used to define ψ0(r) and μ. The latter
invariance is an important issue in the theory [61] and is used
below.

A. Weak-field asymptotics

The theory of tunneling ionization of molecules can be
formulated as a multichannel eigenvalue problem in parabolic
coordinates (ξ,η,ϕ) [53,61]. In the weak-field limit, the total
ionization rate is given by [61]

	 =
∞∑

nξ =0

∞∑
m=−∞

	nξ m + O(	2), (3)

where 	nξ m is the partial rate for ionization into a channel
with parabolic quantum numbers nξ and m. The asymptotics
of 	nξ m for F → 0 has the form [61]

	nξ m = |Gnξ m(β,γ )|2Wnξ m(F )[1 + O(F )], (4)

where the leading-order term is defined by

Gnξ m(β,γ ) = e−κμzgnξ m(β,γ ) (5)

and

Wnξ m(F ) = κ

2

(
4κ

2

F

)2Z/κ−2nξ −|m|−1

exp

(
−2κ

3

3F

)
. (6)

Here Z is the charge in the Coulomb tail of the one-electron
potential supporting the orbital ψ0(r), μz = ezμ is the z

component of μ, and gnξ m(β,γ ) is the asymptotic coefficient in
the expansion of ψ0(r) in terms of the parabolic basis defined
by the projection

gnξ m(β,γ ) =
√

κ
|m|+1

|m|! η1+|m|/2−Z/κeκη/2

×
∫ ∞

0

∫ 2π

0
φnξ |m|(ξ )

e−imϕ

√
2π

ψ0(r) dξ dϕ

∣∣∣∣
η→∞

(7)

The channel functions φnξ |m|(ξ ) are explicitly given by

φnξ |m|(ξ ) = κ
1/2(κξ )|m|/2e−κξ/2

√
nξ !

(nξ + |m|)! L(|m|)
nξ

(κξ ),

(8)
where L(α)

n (x) are the generalized Laguerre polynomials [68].
They satisfy ∫ ∞

0
φnξ |m|(ξ )φn′

ξ |m|(ξ ) dξ = δnξ n
′
ξ
. (9)
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An important consequence of Eq. (4) is that in the leading-
order approximation the partial rate 	nξ m factorizes into two
factors, one of which depends only on the orientation angles
(β,γ ) and the other depends only on the field F . We recall that
the dependence of the right-hand sides of Eqs. (5) and (7) on
(β,γ ) is contained in μz and ψ0(r). The orientation-dependent
structure factor Gnξ m(β,γ ) is the most important characteristic
which should be extracted from the active electron’s orbital.
It is given by a product of an exponential factor depending
on μz and the asymptotic coefficient gnξ m(β,γ ) characterizing
ψ0(r). Only this product is invariant under translations of the
coordinate origin; each of the factors is not [61]. We mention
that the standard MO-ADK formula [12] does not account for
a permanent dipole moment of the active electron, and hence
its predictions for molecules with nonzero μ depend on the
choice of the origin. The field-dependent factor Wnξ m(F ) is a
simple function which depends on the molecule only via Z

and κ.
The bound-state wave function ψ0(r) can always be chosen

to be real. Then

Gnξ ,−|m|(β,γ ) = G∗
nξ ,|m|(β,γ ), 	nξ ,−|m| = 	nξ ,|m|, (10)

and Eq. (3) takes the form

	 =
∞∑

nξ =0

[
	nξ 0 + 2

∞∑
m=1

	nξ m

]
+ O(	2). (11)

In the following, we assume that this is the case and consider
only channels with m � 0. The channels are referred to by
(nξ ,m).

B. Dominant channels

The equations given in the previous section are sufficient.
However, we feel that it is worthwhile to clarify some aspects
of the asymptotic theory [61] which may raise questions
in applications. It is important to realize the fact that the
ionization rate 	 is obtained as an asymptotic expansion for
F → 0 and understand the structure of this expansion. First,
as can be seen from Eq. (6), for F → 0 the error term O(	2)
in Eq. (3) is exponentially smaller than not only the total rate
	, but also each of the partial rates 	nξ m. This term therefore
should be neglected independently of how many partial rates
are retained in the sum. Second, the different partial rates
have different powers of F in Eq. (6), and the dominant for
F → 0 channel corresponds to the minimum values of nξ

and m present in the sum. Third, Eqs. (5) and (6) define
only the leading-order term in the asymptotics of 	nξ m. So
it is inconsistent to include higher channels unless corrections
of the same order are taken into account in Eq. (4) for the
dominant channel. All this means that in the leading-order
approximation only the dominant channel is to be retained in
Eq. (11).

Although the main focus in this work is on linear molecules,
we include a discussion of the general case of nonlinear
molecules for completeness. For nonlinear molecules, the
dominant channel generally is (0,0), and we have from
Eqs. (4) and (11)

	 ≈ |G00(β,γ )|2W00(F ). (12)

There may exist specific orientations (β0,γ0) related to nodal
lines and nodal surfaces of the wave function ψ0(r), where
g00(β0,γ0) = 0 and g01(β0,γ0) �= 0. For such an orientation
the dominant channel is (0,1), and we have

	 ≈ 2|G01(β0,γ0)|2W01(F ). (13)

The situation when the orientation (β,γ ) of the molecule
is close to (β0,γ0) is the only case when the two channels
in Eq. (11) can be summed up without introducing an
inconsistency. Thus, for orientations near (β0,γ0) we have

	 ≈ |G00(β,γ )|2W00(F ) + 2|G01(β,γ )|2W01(F )

≈
[
|G00(β,γ )|2 + F

2κ
2

|G01(β,γ )|2
]

W00(F ). (14)

This formula remains consistent as (β,γ ) departs from (β0,γ0)
up to the moment when the two terms become comparable,
and the size of the region where the channel (0,1) should
be retained decreases as F → 0. We note that channels with
nξ �= 0 never can be dominant, since the integral in Eq. (7) for
a given m and nξ = 0 is generally nonzero.

Let us mention an issue related to the notion of the dominant
channel. In this work, we do not consider contributions to
the ionization rate from the next-highest occupied molecular
orbital, the HOMO-1. As is clear from the above discussion,
the role of the HOMO-1 in the ionization dynamics requires
special attention near the orientations where the contribution to
ionization from the dominant channel of HOMO vanishes [15].

Linear molecules require a special consideration. In this
case, the unperturbed bound-state wave function ψ0(r) is
characterized by the projection of the electronic angular
momentum onto the molecular axis which is denoted by M .
The energy of the state does not depend on the sign of M ,
so the states with M �= 0 are degenerate. This degeneracy
is removed by an arbitrarily weak field, provided that the
molecular axis does not coincide with the direction of the field.
The correct bound-state wave functions of the zeroth order are
certain linear combinations of the two degenerate states [54]. If
the molecular axis is rotated by an angle β in the xz plane of the
laboratory frame, one of these states is even with respect to the
plane of rotation and the other is odd. The states with M = 0 (σ
states) belong to the class of even states. For both even and odd
states, the factors Gnξ m(β,γ ) in Eq. (4) do not depend on γ ;
therefore, for linear molecules we use the simplified notation
Gnξ m(β). For even states, the dominant channel is (0,0), and
we have

	 ≈ |G00(β)|2W00(F ). (15)

For odd states g00(β) = 0; hence, the dominant channel is
(0,1), and we have

	 ≈ 2|G01(β)|2W01(F ). (16)

Near an orientation β0, where g00(β0) = 0 and g01(β0) �= 0
(for example, β0 = 0 and π for even states with M �= 0), the
two terms can be summed up similarly to Eq. (14),

	 ≈
[
|G00(β)|2 + F

2κ
2

|G01(β)|2
]

W00(F ). (17)

In the particular case of states with |M| = 1 (π states), the
wave function ψ0(r) has a nodal plane. For β = 0, the nodal
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plane of the even state coincides with the yz plane, and the
nodal plane of the odd state coincides with the xz plane. In
this case it is convenient to identify the states by the nodal
plane and denote the even and odd states by (yz) and (xz),
respectively. We use this notation in Sec. III in the discussion
of the results.

C. Expansion of the structure factors

Let us reiterate that the dependence of the ionization rate
on the orientation (β,γ ) of the molecule with respect to the
field is determined by the structure factors (5). In the present
leading-order approximation, a single factor corresponding
to the dominant channel is needed to implement the theory.
However, its values are needed for all possible orientations
of the molecule. This factor as a function of the orientation
can be expanded in terms of an appropriate set of standard
functions. This may help to compress the information needed
for applications and facilitate its exchange between researches.

In the general case of nonlinear molecules, the structure
factors Gnξ m(β,γ ) can be expanded as

Gnξ m(β,γ ) =
∑
lm′

C(lm′)
nξ m

Ylm′(β,γ ), (18)

where

Ylm(β,γ ) = �lm(β)
eimγ

√
2π

(19)

are spherical harmonics and �lm(β) is given in terms of the
associated Legendre polynomials P m

l (x) by

�lm(β) =
√

(2l + 1)(l − m)!

2(l + m)!
P m

l (cos β). (20)

We use the Condon-Shortley [69] phase convention for
�lm(β), that is,

�l−m(β) = (−1)m�lm(β). (21)

The structure factor for the dominant channel G00(β,γ ) is real,
so we have

C
(l−m′)
00 = (−1)m

′
C

(lm′)∗
00 . (22)

For linear molecules there is no dependence on γ , and the
structure factors Gnξ m(β) can be expanded in the form

Gnξ m(β) = ip
∞∑

l=|M−m|
C(l)

nξ m
�l|M−m|(β). (23)

For even states M � 0, m � 0, and p = 0; for odd states M �
1, m � 1 [from gnξ 0(β) = 0 we have C

(l)
nξ 0 = 0], and p = 1.

The structure coefficients C(lm′)
nξ m

and C(l)
nξ m

in the expansions
(18) and (23) can be tabulated for the molecules under
investigation and then used for calculating the structure factors
(5). Given these coefficients, the application of the present
theory becomes straightforward. This approach is especially
efficient if expansions (18) and (23) rapidly converge, which
is the case for all molecules considered below.
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FIG. 1. (Color online) The dependence of the structure factors on
the angle β between the internuclear axis and the electric field [see
Eqs. (4) and (5)] for the ground 1sσg state of H+

2 with nuclei fixed
at a distance R = 2. The different channels are indicated by (nξ ,m).
The dominant channel (0,0) is shown by solid black curve.

III. RESULTS AND DISCUSSION

In this section we present the results for structure factors
Gnξ m(β) as functions of the angle β between the molecular
axis and the field for a number of linear molecules. As follows
from Eq. (7), to implement the weak-field asymptotic theory
[61] we need an approach capable of accurately describing
the asymptotic behavior of ψ0(r) at large η. We begin with
the simplest one-electron molecular system H+

2 for which
a virtually exact wave function can be obtained. Then we
consider several many-electron diatomic molecules H2, N2,
CO, O2, and HF in the Hartree-Fock approximation. Following
Ref. [14], the HOMOs in these molecules are constructed by
solving the Hartree-Fock equations using X2DHF [64,65]. To
extend applications of the theory to polyatomic molecules, it is
natural to try to use standard quantum chemistry codes based
on an expansion of the active orbital in terms of Gaussian
basis functions placed at the different atomic centers. Because
of the difficulty in reproducing the exponentially decaying tail
of the wave function by the Gaussian basis, such codes cannot
be expected to be very suitable for the present purposes. We
illustrate what can be achieved in this approach by the example
of CO2 with the HOMO obtained from GAMESS [66].

A. Hydrogen molecular ion: Benchmark results

The hydrogen molecular ion is an excellent test ground
for illustrating the theory [61]. For this molecule Z = 2 and
μ = 0 in the center-of-mass frame. We have performed a very
accurate calculation of the ground 1sσg state of H+

2 for a fixed
internuclear distance R = 2 using discrete variable representa-
tions (DVRs) based on Jacobi and Laguerre polynomials [62]
for prolate spheroidal coordinates η and ξ [63], respectively.
The bound-state energy E0 = −1.102 634 214 5 obtained by
this method agrees in all significant digits with that from
X2DHF [64,65].

Figure 1 shows the results for H+
2 obtained using the DVR

wave function. The wave function from X2DHF [64,65] gives
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TABLE I. Structure coefficients for the dominant channel (0,0)
for the ground 1sσg state of H+

2 with R = 2 using the DVR wave
function. a[b] = a × 10b.

l C
(l)
00

0 2.910
2 0.340
4 0.980[−2]
6 0.130[−3]
8 0.221[−5]

results which look identical. The present procedure to extract
the structure factors Gnξ m(β) from the wave function ψ0(r)
is described in the next section. In the figure, we plot the
absolute values squared of Gnξ m(β) for several lowest channels
with (nξ ,m) = (0,0), (0,1), (0,2), and (1,0). The orientation
dependence of the ionization rate in the weak-field limit is
determined by the contribution from the dominant channel
(0,0) [see Eq. (15)]. The structure coefficients C

(l)
00 in Eq. (23)

for this channel are given in Table I. From the figure, we see
that |G00(β)|2 peaks at β = 0◦ and 180◦, when the field is
parallel to the molecular axis, and has a minimum at β =
90◦. This behavior reflects the fact that the charge density is
elongated along the internuclear axis, which is common for σ

states in other homonuclear molecules discussed below. This
behavior was also found in TDSE calculations performed in
the tunneling regime [70,71]. The structure factors for higher
channels are shown to illustrate that the different partial rates
have different orientation dependencies. Their contributions
to the total ionization rate cannot be simply added to that
from the dominant channel, as explained in Sec. II B. One can
see from Eq. (6) that in the weak-field limit the contribution
from channel (0,1) is smaller by a factor of F and that the
contributions from channels (0,2) and (1,0) are smaller by a
factor of F 2. If a correction of order O(F ) in Eq. (4) for the
dominant channel (0,0) were obtained, one could include the
contribution from channel (0,1) having the same order. As far
as we know, such a correction is available only for the hydrogen
atom [59]. The present results for the dominant channel are
very accurate and may serve as a benchmark for testing future
calculations of the tunneling ionization rate of H+

2 in a weak
static electric field.

B. Diatomic molecules: Hartree-Fock wave functions with
correct asymptotic behavior

The agreement between the X2DHF and the DVR results for
H+

2 supports the accuracy of both methods. For many-electron
diatomic molecules we performed additional Hartree-Fock
calculations using GAMESS [66] to compare the energies
and dipole moments. For each molecule the nuclei were
placed at the experimental equilibrium distance given by the
NIST Computational Chemistry Comparison and Benchmark
Database [72]. Table II gives the energies of the HOMO
obtained with the two methods. The agreement between the
energies is generally very good except for the triplet ground
state in O2. In this case, the difference in the HOMO energy is
attributed to the difference between the restricted open-shell
Hartree-Fock (ROHF) method [64,65] in X2DHF and the

TABLE II. HOMO energies (in atomic units) for selected
molecules. The GAMESS calculations were performed with the
augmented correlation-consistent valence triple ζ (aug-cc-TZV) basis
set.

Method N2 O2 CO HF

X2DHF [64,65] −0.6345 −0.5324 −0.5549 −0.6504
GAMESS [66] −0.6346 −0.5594 −0.5549 −0.6506

unrestricted Hartree-Fock (UHF) method in GAMESS [66].
However, the total electron energy of the O2 molecule agrees
well in the two methods, −149.6675 with the ROHF method
and −149.6781 with the UHF method, illustrating that only
the total energy is well-defined for open-shell molecules.

The wave function and dipole from X2DHF are originally
given in the geometrical-center frame. For homonuclear
molecules, the geometrical-center and center-of-mass frames
coincide, but for heteronuclear molecules they do not. Our
theory is invariant under translation of the origin, so any
frame can be used in the calculations. We have checked that
the results for heteronuclear molecules do not depend on the
choice of frame. Table III gives the dipoles of the HOMO
of CO and HF with respect to the center of mass, and the
agreement between the two methods is fairly good.

1. Molecules with HOMOs of σ symmetry

We first focus on molecules with HOMOs of σ symmetry
and consider H2, N2, and CO. In Figs. 2–4 we show the
orientation dependence of the structure factors |Gnξ m(β)|2 for
the (0,0) and (0,1) channels for each molecule. Table IV gives
the structure coefficients C

(l)
00 .

Figure 2 shows |G00(β)|2 and |G01(β)|2 for H2. The small
variation in |G00(β)|2 with the angle β reflects that the shape of
the HOMO is nearly spherically symmetric. There has recently
been quite some interest in the orientation dependence of the
ionization yield for H2. The ratio between the ionization yields
at β = 0◦ and β = 90◦ was measured in two different strong-
field ionization experiments using a wavelength of 800 nm
[17] and 1850 nm [27], respectively. In Ref. [17] a value of
1.32 was obtained for this ratio at an intensity of 2.3 × 1014

W/cm2 and a smaller value of 1.17 at a higher intensity of
4.5 × 1014 W/cm2. In Ref. [27] a ratio of 1.15 was measured at
2 × 1014 W/cm2. Recent TDSE calculations within the single-
active-electron model reported ratios decreasing from 1.3 to
1.1 with increasing intensity [24], which is a predicted trend in
qualitative agreement with the experimental results. The value
for this ratio predicted by the standard MO-ADK formula [12]

TABLE III. HOMO dipole moments (in atomic units) for selected
molecules in the center-of-mass molecular frame. ẑ is a unit vector in
the direction of the molecular z axis. For CO and HF, O and F are on
the positive side of this axis, respectively. The GAMESS calculations
were performed with the aug-cc-TZV basis set.

Method CO HF

X2DHF [64,65] 1.72 ẑ −0.0383 ẑ
GAMESS [66] 1.72 ẑ −0.0386 ẑ
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FIG. 2. (Color online) The dependence of the structure factors on
the angle β between the internuclear axis and the electric field [see
Eqs. (4) and (5)] for the ground state in H2 of σg symmetry. Solid
(black) curve, m = 0; dashed (red) curve, m = 1. The nuclei are fixed
at the experimental equilibrium distance.

was given to be 1.17 in Refs. [17,27]. A later work revised
the MO-ADK calculation and adjusted the value to around 1.4
[19]. Our value for the ratio, 1.33, is accurate in the weak-field
limit and should be used as a reference rather than the multitude
of different MO-ADK values.

We now turn to the results for N2. We first note that the
energy of the 1πu orbital is slightly higher than the 3σg orbital
in the Hartree-Fock approximation. However, experimental
photoelectron spectra [73] show that single ionization leaves
the cation in a �g state, and hence the correct orbital to choose
for the HOMO is the 3σg . As seen in Fig. 3 also for N2, the
structure factor |G00(β)|2 peaks at β = 0◦ and β = 180◦ and
has a minimum at 90◦. Compared to H2 the variation in the
orientation dependence of |G00(β)|2 is larger. This difference
can be explained by noting that the HOMO of N2 has a
shape that is more elongated along the molecular axis than is
the case with the HOMO of H2. The prediction of maxima in
the structure factor at β = 0◦ and β = 180◦ and a minimum
at β = 90◦ agrees with the results found in measurements
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FIG. 3. (Color online) The dependence of the structure factors on
the angle β between the internuclear axis and the electric field [see
Eqs. (4) and (5)] for the HOMO in N2 of σg symmetry. Solid (black)
curve, m = 0; dashed (red) curve, m = 1. The nuclei are fixed at the
experimental equilibrium distance.
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FIG. 4. (Color online) The dependence of the structure factors on
the angle β between the internuclear axis and the electric field [see
Eqs. (4) and (5)] for the HOMO in CO of σ symmetry. The C (O)
atom is on the negative (positive) z axis in the molecular fixed frame.
Solid (black) curve, m = 0; dashed (red) curve, m = 1 channel. The
nuclei are fixed at the experimental equilibrium distance.

performed with intense femtosecond near-infrared laser pulses
[1–3], as well as with predictions from the MO-ADK [3,13,20],
the MO-SFA [13,32], time-dependent density-functional cal-
culations [74], and an approach based on the TDSE with
contributions from multiple orbitals [30]. We find the ratio
between the |G00(β)|2 at β = 0◦ and β = 90◦ to be 8.44,
which is somewhat larger than the experimental value of 4
reported in Ref. [1], but close to the value found in previous
calculations [13].

As a last example of a diatomic molecule with a HOMO
of σ symmetry we consider CO, which has a permanent
dipole. Recent combined experimental and theoretical studies
showed the importance of the permanent dipole in strong-field
ionization [6–8,10,11,75], and it is therefore interesting to
consider the predictions of the weak-field asymptotic theory
for polar molecules. In CO the HOMO has an excess charge
on the C atom, so that the dipole in Eq. (1) with respect to
the center of mass is nonvanishing and points from C to O. In
Table III the dipole associated with the HOMO is given in the
center-of-mass frame. In Fig. 4 we see that |G00(β)|2 is almost
constant from β = 0◦ and up to β = 90◦. It then monotonically

TABLE IV. Structure coefficients C
(l)
00 for diatomic molecules in σ

states (M = 0) using a X2DHF wave function [64,65]. a[b] = a × 10b.

l H2 N2 CO

0 2.468 4.972 3.330
1 − 0.974
2 0.107 1.729 0.791
3 − 0.439
4 0.104[–2] 0.678[–1] 0.160
5 − 0.449[–1]
6 0.465[–5] 0.930[–3] 0.104[–1]
7 − 0.206[–2]
8 0.149[–4] 0.357[–3]
9 − 0.551[–4]
10 0.777[–5]
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TABLE V. Structure coefficients C
(l)
00 for diatomic molecules in

even π states (M = 1) using a X2DHF wave function [64,65]. a[b] =
a × 10b.

l O2(yz) HF(yz)
1 2.227
2 1.438 0.227
3 0.519[–1]
4 0.604[–1] 0.968[–2]
5 0.156[–2]
6 0.785[–3] 0.219[–3]
7 0.269[–4]
8 0.541[–5] 0.293[–5]

increases and peaks at β = 180◦, where the dipole of the
HOMO is antiparallel to the field. In the conventional MO-
ADK model [12], the orientation dependence of the rate is
just the opposite to the one shown in Fig. 4 [10,16,21]. This
wrong prediction can be understood in terms of the excess
charge on the C atom compared to the O atom with lack
of permanent dipole effect: When the field points from C
to O there is simply more charge close to the tunnel exit,
and ionization is expected to occur more readily. When the
permanent dipole is included in the MO-ADK by accounting
for the associated Stark shift, that formalism predicts a result
in qualitative agreement with the present findings [10]. We
note that there are several discussions of the strong-field
ionization of polar molecules in terms of the total permanent
dipole of the molecule, the dipole of the probed orbital,
and the dipole from the single-active-electron potential [29].
The orientation dependence of the ionization yield for the
CO molecule was recently addressed experimentally using
linearly polarized two-color near-infrared intense femtosecond
laser pulses [9,10]. The measurements showed a dominant
ionization at β = 0◦, where |G00(β)|2 is smallest. We note that
the low-energy electrons produced by a linearly polarized laser
pulse are strongly affected by postionization dynamics [29].
To exclude effects of field-induced rescattering of the tunneled
electron with the core, strong-field ionization from oriented
polar molecules in circularly polarized light is an attractive
experimental approach [6–8,11]. Also for atoms the use of
circularly polarized light can be advantageous. For example,
the effect on the photoelectron momentum distribution of
the dipole potential induced by the polarization of the inner
core electrons was recently identified using close to circularly
polarized light [76,77]. Further studies would be needed to
understand the ionization dynamics of polar molecules under
experimental conditions.

2. Molecules with HOMOs of π symmetry

For molecules with HOMOs of π symmetry there are
two degenerate states, even (yz) and odd (xz), as defined in
Sec. II A. Here, (yz) and (xz) denote the nodal planes of the
orbitals at β = 0◦. In the figures below we show the structure
factors |G0m(β)|2 (m = 0,1,2) for both even and odd states for
O2 and HF. In Tables V and VI the structure coefficients C

(l)
0m

are given for m = 0 and m = 1, respectively.
In Fig. 5, we show the orientation dependence of |G0m(β)|2

for the πg HOMO of O2. The top panel shows results for the

TABLE VI. Structure coefficients C
(l)
01 for diatomic molecules in

odd π states (M = 1) using a X2DHF wave function [64,65]. a[b] =
a × 10b.

l O2(xz) HF(xz)

0 2.592
1 2.311 0.347
2 0.852[–1]
3 0.107 0.164[–1]
4 0.270[–2]
5 0.145[–2] 0.383[–3]
6 0.475[–4]
7 0.104[–4] 0.527[–5]

(0,0) and (0,1) channels for the even (yz) HOMO. The bottom
panel shows the results for the odd (xz) HOMO in the (0,1)
and (0,2) channels. From the figure, we see that the dominant
channel (0,0) has minima at 0◦, 90◦, and 180◦ and maxima at

42◦ and 138◦. This prediction is in qualitative agreement with
previous MO-ADK [3,12,16,20,21], TDSE [30], and time-
dependent density-functional calculations [78], as well as with
the findings from strong-field ionization experiments [3]. The
qualitative shape of the orientational dependence in the (0,0)
channel as seen in Fig. 5 with two peaks between the minima
at 0◦, 90◦, and 180◦ is generic for linear molecules with a
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FIG. 5. (Color online) The dependence of the structure factors on
the angle β between the internuclear axis and the direction of the
electric field [see Eqs. (4) and (5)] for the two degenerate HOMOs in
O2 of πg symmetry. In the top [bottom] panel O2(yz) [O2(xz)] denotes
that the nodal plane of the π orbital is in the yz [xz] plane. Solid
(black) curve, m = 0; dashed (red) curve, m = 1; dot-dashed (blue)
curve, m = 2. The nuclei are fixed at the experimental equilibrium
distance.
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FIG. 6. (Color online) The dependence of the structure factors on
the angle β between the internuclear axis and the direction of the
electric field [see Eqs. (4) and (5)] for the two degenerate HOMOs
in HF of π symmetry. In the top [bottom] panel HF (yz) [HF (xz)]
denotes that the nodal plane of the π orbital is in the yz [xz] plane. The
H [F] atom is on the negative [positive] z axis in the molecular fixed
frame. Solid (black) curve, m = 0; dashed (red) curve, m = 1; dot-
dashed (blue) curve, m = 2. The nuclei are fixed at the experimental
equilibrium distance.

HOMO of πg symmetry (see also Fig. 10). In a simple physical
picture the shape reflects that most ionization occurs when
the orientations with an antinodal surface coincide with the
direction of the external field.

Next, in Fig. 6 we show the results for the HOMO of HF
with π symmetry and a small permanent dipole moment in the
center of mass (see Table III). In the molecular frame (or at
β = 0◦) F (H) is on the positive (negative) z axis. It is seen from
the figure that |G00(β)|2 has a peak at β 
 76◦, which is smaller
than the angle β 
 90◦ predicted by MO-ADK [20] and TDSE
calculations within the single-active-electron approximation
performed for short pulse with 800 nm and a peak intensity
of 2 × 1014 W/cm2 [20]. The results using the accurate wave
functions in the present study led us to conclude that the TDSE
study [20] was performed outside the range of applicability of
the weak-field asymptotic theory.

The behavior of the rate close to an orientation β0 where the
contribution from the (0,0) channel vanishes requires special
consideration. Examples of such β0’s are seen in Fig. 5 at
β = 0◦,90◦, and 180◦ and in Fig. 6 at β = 0◦ and 180◦. As
discussed in Sec. II, and explicitly contained in Eq. (17), near
such an orientation β0 it is consistent to add the two terms
corresponding to the channels (0,0) and (0,1). We illustrate
the effect of adding these two terms for the even (yz) HOMO
of O2 in Fig. 7. In the figure, we focus on the ranges of β around
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FIG. 7. (Color online) The dependence of the ratio of the rate
	 and the function W00(F ) [see Eq. (17)] on the angle β between
the internuclear axis and the direction of the electric field for the
O2(yz) HOMO of πg symmetry near β = 0◦ and β = 90◦, where the
contribution to the rate from the (0,0) channel vanishes (see Fig. 5).
The different curves show the results for the field strengths indicated.
The nuclei are fixed at the experimental equilibrium distance.

0◦ and 90◦. We see that the rate is slightly higher for β = 0◦
than for β = 90◦, which was also found in other theoretical
works [12,16,20,21,30,78]. In our theory, the reason for this
asymmetry is traced back to the behavior of the structure factor
G01 (Fig. 5), which attains a higher value for β = 0◦ (and
β = 180◦) than for β = 90◦.

We now return to a technical issue and outline briefly the
procedure for the extraction of the structure factors Gnξ m(β)
from the wave function ψ0(r) used in the present calculations.
The program X2DHF [64,65] accounts very accurately for
the asymptotic part of the HOMO for diatomic molecules.
Consequently, the integral in Eq. (7) can be reliably calculated
for a wide range of η. We do this by using the Laguerre
and Chebyshev quadratures for the integrals in ξ and ϕ,
respectively. In this way, the right-hand side of Eq. (7) as a
function of η is obtained. As a typical example, we consider
the dominant channel (0,0) for the HOMO of O2(yz). The
right-hand side of Eq. (7) as a function of η is shown for several
orientations of this molecule by solid curves in Fig. 8. One can
see that for each orientation β this function monotonically
approaches a constant value as η grows, as it should. To
extract this asymptotic constant, we fit the results in the
interval η � 10 by an expansion in powers of 1/η. Usually,
the coefficients of the first three to four terms can be reliably
obtained, which amounts to three to four significant digits
in the value of gnξ m(β). This procedure for calculating the
asymptotic coefficients (7) and hence structure factors Gnξ m(β)
from the X2DHF wave function is stable for all diatomic
molecules considered.

C. Polyatomic molecules: Hartree-Fock wave function using a
Gaussian basis

In the case of the diatomic molecules studied above, we used
HOMO wave functions from X2DHF with the correct asymp-
totic behavior [64,65]. Unfortunately, the program X2DHF can
only be efficiently implemented for diatomic molecules, since
it is based on prolate spheroidal coordinates. For polyatomic
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FIG. 8. (Color online) The value of the structure factor G00(β)
[see Eq. (5)] as a function of η for the O2(yz) HOMO of πg symmetry
and for three different orientations β of the internuclear axis with
respect to the direction of the electric field. Solid curves, using the
HOMO wave function obtained by X2DHF [64,65]; dashed curves,
using the HOMO wave function obtained by GAMESS [66] with the
aug-cc-TZV basis set.

molecules the correct asymptotic form can be obtained by
a solution of the one-electron Schrödinger equation with a
single-active-electron model potential [20–22,25,29]. Here
we investigate the prospects for obtaining a good estimate
for G00(β) directly from conventional quantum chemistry
methods expanding the wave function in Gaussians placed
at the atomic centers.

To gauge the accuracy of this approach, we return to the
results shown in Fig. 8. In the figure, the dashed curves show
for different β the structure factor G00(β) as a function of
η defined by the right-hand side of Eq. (7) obtained using
a Hartree-Fock wave function from the quantum chemistry
program GAMESS with the aug-cc-TZV basis set [66]. Contrary
to the situation when using the X2DHF wave function, the value
of G00(β) no longer stabilizes for large η, but has a wavy
structure and decreases for large η. This lack of convergence
is due to the difficulty of representing the asymptotic part of
the wave function, which goes like an exponential function,
by a sum of Gaussians as used in GAMESS. We have performed
similar calculations for all molecules investigated in this work
and obtained qualitatively the same results in all cases. In the
representative example of Fig. 8 the dashed curves indicate
an onset of a plateau for η around 6–7. Using the values for
G00(β) around the plateau, we estimate that the asymptotic
values of G00(β) can be extracted within an accuracy of about
20%. With this limit on the accuracy of the structure factors
obtained using a Hartree-Fock wave function expressed in a
Gaussian basis, we are then ready to move to the consideration
of a polyatomic molecule. As a case study we choose CO2

and use a GAMESS wave function obtained with the aug-
cc-TZV basis set. This molecule has attracted considerable
attention after the appearance of the experiments [3,4]. In the
experiments the ionization yield was found to peak at β 
 45◦:
in Ref. [3] sharply; in Ref. [4] less sharply. The MO-ADK
predicted β 
 25◦ [3], or β 
 33◦ [18,20–22] depending on
the procedure used for the extraction of the entering Clm

coefficients. A TDSE result within the single-active-electron
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FIG. 9. (Color online) The value of the structure factor G00(β)
[see Eq. (5)] as a function of η for the CO2(yz) HOMO of πg symmetry
and for three different orientations β of the internuclear axis with
respect to the direction of the electric field. Dashed curves, using the
HOMO wave function obtained by GAMESS [66] with the aug-cc-TZV
basis set.

approximation predicted β 
 45◦ [25], a multiple orbital
TDSE calculation at the experimental peak intensity β 

40◦ [30], a multielectron TDSE approach β 
 35◦ [26], a
mixed position and momentum space approach to tunneling
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FIG. 10. (Color online) The dependence of the structure factors
on the angle β between the internuclear axis and the electric field
[see Eqs. (4) and (5)] for the two degenerate HOMOs in CO2 of πg

symmetry. In the top [bottom] panel CO2(yz) [CO2(xz)] denotes that
the nodal plane of the π orbital is in yz [xz] plane. Solid (black)
curve, m = 0; dashed (red) curve, m = 1; dot-dashed (blue) curve,
m = 2. The nuclei are fixed at the experimental equilibrium distance.
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β 
 45◦ [79], and a time-dependent density-functional theory
calculation β 
 40◦ [28]. Very recent experimental results
indicate that contributions from lower-lying orbitals may be
involved [80].

As is clear from all these works, the situation is not clarified.
Thus it is worth presenting a set of reference data, where the
uncertainty can be estimated as explained above. We extracted
the asymptotic values of G00(β) using the curves as shown
in Fig. 9 and plot the results of |G00(β)|2 in Fig. 10. Note
that the resulting values are subject to an error of about 20%
in the extraction of G00(β). We see from Fig. 10 that the
weak-field asymptotic theory predicts a maximum in the rate
at β 
 32◦.

IV. CONCLUSIONS AND OUTLOOK

In this work we have demonstrated the application of the
weak-field asymptotic theory of tunneling ionization [61] by
considering seven linear molecules of current interest. To
implement the theory, the initial bound-state orbital from
which tunneling occurs is required. In contrast to the situation
in much of quantum chemistry, an accurate description of the
asymptotic part of the wave function at large η is crucial. For
one-electron molecular ions, a virtually exact wave function
can be obtained. This case is illustrated by calculations for
H+

2 . The benchmark results for this molecule in the weak-field
limit are presented. For many-electron molecules, one has to
resort to some kind of single-active-electron approximation.
For diatomic molecules, it is possible to obtain an accurate
wave function in the asymptotic region [64,65]. Apart from
an error incurred by the Hartree-Fock approximation, our
results for H2, N2, O2, CO, and HF also should be considered
as benchmark results in the weak-field limit. In the general
case of polyatomic molecules, one needs to rely on standard
approaches in quantum chemistry using an expansion of the
active orbital in terms of Gaussian basis functions [66]. As
illustrated by the examples here, it is tedious with such a basis
to obtain an accurate asymptotic form of the wave function
beyond, say, η ∼ 7–10. Nevertheless, the experience gained
by the detailed comparison with accurate calculations for di-
atomics allowed us to extract the structure factor for a triatomic
molecule CO2 with an error of ∼20%. If this level of accuracy
is acceptable, our results show that standard quantum chem-
istry calculations for the wave function are sufficient. This
opens a possibility to apply the theory to bigger molecules of
current experimental interest like benzonitrile and naphthalene
[11,23], as was demonstrated recently by a study of C2H4 [48].
However, if higher accuracy is needed, new reliable methods
to construct the wave function in the asymptotic region should
be sought. One approach that has already been explored is
to construct a single-active-electron model potential from the
density-functional theory and calculate the wave function in

this potential [20–22,25]. Alternatively, one could start with
the wave function from a quantum chemistry code in the region
where this function is still accurate and continue it to larger
distances by the R-matrix method using the known analytic
form of the multipole expansion of the long-range part of
the electron-molecule interaction. The exploration of these
possibilities for the present theory is left for future studies.

An important issue is an experimental verification of the
weak-field asymptotic theory [61] and, on the other hand,
its use for the analysis and prediction of the experimental
results. First of all, one should clearly realize the range
of experimental situations where the theory applies. It is
limited by the following: The electric field is assumed to be
(i) weak (in the static sense) and (ii) independent of time. Since
experimental results on tunneling ionization can be obtained
only with time-dependent laser fields, the latter assumption
means that the laser frequency ω should be sufficiently low.
Tunneling ionization in a time-dependent field F (t) can be
treated as that in a static field F equal to the momentary value of
F (t) under the condition of applicability of the adiabatic theory
[41,81] which for weak fields is ω � F 2/κ

4; we note that this
is a more stringent condition than the one ω � F/κ defining
the tunneling regime of the Keldysh theory [82]. The former
assumption means that the laser intensity should be sufficiently
low as well, F � κ

3, but not too low to satisfy the previous
condition. An additional condition dictated by the difference
between static and oscillating laser fields is that rescattering
of ionized electrons should not affect tunneling. Under these
conditions, the theory [61] predicts the factorization of the
ionization rate (4) into the absolute value squared of the
orientation-dependent structure factor Gnξ m(β,γ ) of Eq. (5)
and the field-dependent factor Wnξ m(F ) of Eq. (6). This
property suggests an experimental procedure for determining
whether a given laser pulse belongs to the range of applicability
of the present theory. If the experimental orientation-resolved
signal is constant when divided by Wnξ m(F ) of the dominant
channel for all laser parameters kept fixed except the intensity,
then the present theory applies. If not, then the laser parameters
do not satisfy the specified conditions. This should enable one
to select suitable experimental conditions and reliably retrieve
the target information contained in the structure factor.
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