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Excitation of heavy hydrogenlike ions by light atoms in relativistic collisions
with large momentum transfers
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We present a theory for excitation of heavy hydrogenlike projectile ions by light target atoms in collisions
where the momentum transfers to the atom are very large on the atomic scale. It is shown that in this process the
electrons and the nucleus of the atom behave as (quasi-) free particles with respect to each other and that their
motion is governed by the field of the nucleus of the ion. The effect of this field on the atomic particles can be
crucial for the contribution to the excitation of the ion caused by the electrons of the atom but, because of large
nuclear mass, may be neglected in the contribution to the excitation due to the nucleus of the atom. The theory
is applied to calculate excitation of Bi82+(1s) ions in collisions with hydrogen.
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I. INTRODUCTION

Projectile-electron excitation and loss occurring in colli-
sions of projectile ions with atomic targets in the nonrelativistic
domain of impact energies and projectile charges have been
extensively studied during the past few decades (for a review,
see [1,2]). Starting with pioneering articles of Bates and
Griffing [3], most of the theoretical studies of these processes
have been based on the first-order perturbation theory in the
projectile-target interaction [4].

In contrast to nonrelativistic collisions, in the relativistic
domain of collision parameters the first consistent theoretical
approaches for treating projectile-electron excitation and loss
was formulated relatively recently [5]. Like in the nonrela-
tivistic domain, the simplest description of these processes
is given by the first-order theory in the interaction between
the projectile and the target. This theory is strictly valid
provided the following conditions are fulfilled simultaneously:
(i) ZI � v and (ii) ZA � v, where ZI and ZA are the atomic
numbers of the projectile ion and target atom, respectively, and
v is the collision velocity (atomic units are used throughout
except where otherwise stated).

In the present paper we shall discuss excitation of heavy
hydrogenlike projectiles in collisions with very light atoms
when the condition ZA � v is very well fulfilled but the atomic
number of the projectile ion is so high that one has ZI � v

even for collision velocities from the relativistic domain v ∼ c,
where c is the speed of light. In such a case the field of the target
per se represents just a weak perturbation for the electron of
the projectile. Nevertheless, large higher-order contributions to
the projectile-electron excitation may arise “indirectly”since
the strong field of the nucleus of the projectile can substantially
distort the motion of the target electrons, which in turn changes
the cross section for excitation.

Note that some aspects of projectile-electron excitation and
loss in asymmetric collisions (ZI � ZA) have been already
considered in [6] and [7] where eikonal-like theories of these
processes were formulated for the nonrelativistic [6] and
relativistic [7] domains. Those theories, however, were based
on the assumption that both in the initial and final channels the
motion of the electrons of the atomic target is mainly driven by
the field of the atomic nucleus while the field of the projectile

ion just distorts somewhat this motion. In the present paper, the
work on which was triggered by a recent experiment performed
at GSI (Darmstadt, Germany) [8], we consider a situation in
which the above assumption is no longer true. It is realized
in collisions characterized by momentum transfers which are
very large on the scale of the target atom. It turns out that
under such a condition it is the field of the nucleus of the
projectile-ion which is the main driving force in the collision,
not only for the electron of the projectile but also for those of
the atomic target.

The paper is organized as follows. In the next section, based
on the first-order theory in the projectile-target interaction,
we show that in collisions with large momentum transfers the
electrons and the nucleus of the target atom act in the excitation
process incoherently behaving like quasifree particles with
respect to each other. In this section we also show that in such
collisions the motion of the particles constituting the atom is
driven primarily by the field of the nucleus of the ion and
that this field may strongly affect the motion of the atomic
electrons. As a result, a better (compared to the first order)
treatment of the excitation can be obtained by describing the
electrons of the atom in their initial and final states as moving
in the field of the nucleus of the ion.

Since the electrons and the nucleus of the atom excite the ion
independently and the excitation by the nucleus is very simply
related to the excitation by a proton, in Secs. III and IV we
present treatments for the excitation by proton and electron
impacts, respectively. In Sec. V the theory is illustrated by
calculating cross sections for excitation of Bi82(1s) ions in
relativistic collisions with hydrogen.

II. SOME PECULIARITIES OF EXCITATION OF A HEAVY
ION IN COLLISIONS WITH LIGHT ATOMS

Let us consider excitation of a heavy hydrogenlike ion in
collisions with a light atom. For the moment we shall assume,
for the sake of simplicity, that the atom consists of a nucleus
with a charge ZA and just one electron.

It can be shown (see, e.g., [9]) that within the first-order
approximation in the ion-atom interaction the cross section for
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the ion-atom collision reads

d2σ 0→m
0→n

d2q⊥

= 4

v2

∣∣∣(F I
0 + v

c
F I

3

) (
F 0

A + v
c
F 3

A

) + F I
3 F 3

A

γ 2 + F I
1 F 1

A+F I
2 F 2

A

γ

∣∣∣2

(
q2

i − (εn−ε0)2

c2

)2 .

(1)

Here, ε0 and εn are initial and final internal energies of the
ion, respectively, and qi is the three-momentum transferred to
the ion; all the quantities are given in the rest frame of the
ion. We also introduce quantities ε0, εm, and qa which have
similar meanings but are for the atom and given in the rest
frame of the atom. The momentum transfers are defined by
qi = (q⊥,qi

min) and qa = (−q⊥, − qa
min), where q⊥ is the two-

dimensional part of the momentum transferred to the atom,
which is perpendicular to the collision velocity v, and the
components of the momentum transfers along the collision
velocity read

qi
min = εn − ε0

v
+ εm − ε0

vγ
,

(2)
qa

min = εm − ε0

v
+ εn − ε0

vγ
,

where γ = 1/
√

1 − v2/c2 is the collisional Lorentz factor.
The inelastic four-component form factor of the ion (in the ion
frame) and the four-component form factor of the atom (in the
atom frame) are given by

F I
0 ≡ F I

0 (qi) = −〈ϕn| exp(iqi · r)|ϕ0〉,
(3)

F I
l ≡ F I

l (qi) = 〈ϕn| exp(iqi · r)αl|ϕ0〉,

F 0
A ≡ F 0

A(qa) = ZAδm0 − 〈um| exp(iqa · ξ )|u0〉,
(4)

F l
A ≡ F l

A(qa) = −〈um|αl exp(iqa · ξ )|u0〉,
respectively (l = 1,2,3). In Eq. (3) ϕ0 = ϕ0(r) and ϕn = ϕn(r)
are the initial and final internal states of the ion, r the
coordinates of the ion electron with respect to the ion nucleus,
and αl the Dirac matrices for the electron of the ion. In Eq. (4)
u0 = u0(ξ ) and um = um(ξ ) are the initial and final internal
states of the atom, and ξ are the coordinates of the atomic
electron with respect to the atomic nucleus.

If one is interested only in the electron transitions in the ion,
without knowing what happens to the atom in the collision,
then one has to consider the cross section

d2σ0→n

d2q⊥
=

∑
m

d2σ 0→m
0→n

d2q⊥
, (5)

where the sum runs over all possible internal states of the
atom including its initial state and the atomic continuum. The
cross section (5) can be conveniently written as the sum of the
contributions from the elastic (m = 0) and inelastic (m �= 0)
atomic collision modes

d2σ0→n

d2q⊥
= d2σ 0→0

0→n

d2q⊥
+

∑
m�=0

d2σ 0→m
0→n

d2q⊥
, (6)

where the sum over m �= 0, which represents the contribution
from the inelastic atomic mode, includes also the sum over the
continuum states of the atom.

In collisions resulting in excitation of heavy hydrogenlike
ions the momentum transfer to the atom qa can, under
certain conditions, be much larger than the typical momentum
(�ZA) of the electron bound in the atom. From the second
equation in (2) one may see that this will be the case when
(εn − ε0)/(vγ ) � ZA. Taking into account that εn − ε0 ∼ Z2

I

we obtain that provided the condition

Z2
I

ZA

� vγ (7)

is fulfilled, the collision will always be characterized by
momentum transfers to the atom which are very large on its
scale. This enables one to greatly simplify and, as we shall see
below, also to improve the description of the excitation of the
ion. In what follows we shall assume that the condition (7) is
fulfilled.

Let us first consider the elastic atomic mode. In this mode,
because of the rapidly oscillating exponent exp(iqa · ξ ), the
elastic form factors of the atom can be approximated by F 0

A =
ZA − 〈u0| exp(iqa · ξ )|u0〉 ≈ ZA and F l

A = −〈u0|αl exp(iqa ·
ξ )|u0〉 ≈ 0, respectively. Then, taking into account (1), we
obtain
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, (8)

where q0 = (q⊥,(εn − ε0)/v).
Let us now turn to the inelastic atomic mode. The rapidly

oscillating term exp(iqa · ξ ) in the inelastic form factors (4) of
the atom tends to make their magnitude very small unless its
oscillations are compensated by similar oscillations in the final
atomic state. For this the latter has to be a continuum state, in
which the momentum ka of the electron emitted from the atom
is approximately equal to qa . Since in order to balance large
qa the absolute value of the momentum of the emitted electron
has to be as large (and thus ka � ZA) the state of this electron
can be to a good approximation described by replacing the
Coulomb atomic wave by the corresponding plane wave.

The simultaneous realization of the conditions ka ≈ qa and
ka � ZA physically means that the electron of the atom in the
collision process can be treated as quasifree with respect to
the nucleus of the atom. The fact that initially the electron
was bound is reflected merely by the Compton profile of the
state u0. Note that this profile appears in the consideration in a
natural way once the final atomic state has been approximated
by a plane wave.

Based on the above considerations of the elastic and inelas-
tic atomic modes we arrive at a rather simple picture of the
collision process. In this picture, due to very large momentum
transfers involved, the excitation of the ion is produced by
the independent (incoherent) actions of the two quasifree
particles—the nucleus and the electron—constituting initially
the atom.

One has, however, to keep in mind the following. Large
momentum transfers are associated with a very large difference
between the initial and final energies of the electron of the
ion. This difference is in turn the consequence of a very high
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charge of the nucleus of the ion. Because of the latter the field
produced by the nucleus of the ion in the collision can be so
strong that it may determine the character of the motion of the
electron of the atom.

In order to see this let us make some simple estimates. This
is convenient to do in the rest frame of the ion. The range
of impact parameters be of the incident atomic electron with
respect to the nucleus of the ion, which are typical for the
excitation process, can be roughly estimated by comparing
the collision time T ∼ be/γeve (ve ≈ v is the velocity of the
atomic electron with respect to the nucleus of the ion and γe ≈
γ the corresponding Lorentz factor) with the transition time
τ ∼ Z−2

I of the electron of the ion. Since for the excitation to
proceed effectively one needs T � τ , we obtain be � γeve/Z

2
I .

On the other hand, by comparing the force, which acts between
the atomic electron and the nucleus of the atom, with the force
exerted on this electron by the nucleus of the ion, we see that
the latter will be the dominant one when the atomic electron
enters the sphere, which is centered on the nucleus of the ion
and has the radius RI = RA

√
ZI/ZA (where RA � 1/ZA is the

size of the atom). Therefore, provided the inequality be � RI ,
which can be written in the form√

ZI

ZA

Z2
I

ZA

� γ v, (9)

is fulfilled the motion of the atomic electron in the projectile-
electron excitation process will be predominantly governed by
the field of the nucleus of the ion. Comparing (9) and (7) and
taking into account that

√
ZI/ZA > 1 (or � 1), we see that

in collisions with momentum transfers, which are very large
on the scale of the atom, the condition (9) is indeed always
fulfilled.

Provided the condition (7) is fulfilled, the main interaction
acting on the nucleus of the atom in the collision process is of
course also due to the field of the nucleus of the ion.

A simple estimate for the magnitude of the effect of the
field of the ionic nucleus on the motion of the electrons and
the nucleus of the atom in the process of excitation can be
obtained in the following way. Assume that there is a particle
with a charge z and mass m which is incident with a velocity v

on the nucleus ZI . The change in the momentum of this particle
caused by the field of ZI is roughly given by q ∼ ZIz/(bv),
where b is the impact parameter. For the problem of excitation
the typical impact parameters are of the order of 1/ZI or
larger. One can estimate the effect of the field by using the
ratio ς = |q|/pi , where pi = mγv is the initial momentum of
the incident particle and, thus,

ς = |z|
mγ

Z2
I

v2
. (10)

From this estimate it is obvious that for the impact energies of
interest the field of the nucleus of the ion does not really affect
the motion of the nucleus of the atom (|z|/mNγ < 10−3) but
may very strongly change the motion of the atomic electrons
(|z|/meγ < 1).

The first-order cross section (1), with which we have
started our current discussion, of course does not take into
account the effect of the nucleus of the ion on the motion
of the electrons of the atom. Besides, this cross section

also does not account for the exchange effect of the atomic
and ionic electrons. We, however, have already seen that in
very asymmetric collisions the general two-center problem of
excitation can be reduced to a single-center one in which only
one center of force—the nucleus of the ion—is effectively
present. Therefore, one can improve the description of the
excitation process in collisions with large momentum transfers
if, instead of regarding the atomic electrons as (quasi-) free,
we would treat these electrons, both in their initial and final
states, as moving in the field of the nucleus of the ion and,
besides, would take into account the exchange effect.

In such an approach the cross section σA for the excitation of
a heavy highly charged ion in collisions with an atom is given
by the incoherent addition of the cross sections for excitation
by the impacts of the atomic nucleus and electrons:

σA = Z2
Aσp + ZAσe, (11)

where σp and σe are the cross sections for excitation by proton
and electron, respectively. This means that, if one would be
able to compute the cross sections for the excitation by protons
and electrons, one could use them for evaluating excitation
cross sections in collisions with atoms [10]. Therefore, in
the next two sections we shall discuss excitation of heavy
hydrogenlike ions in collisions with protons and electrons.

III. EXCITATION IN COLLISIONS WITH PROTONS

Let us first consider the excitation of a heavy hydrogen-like
ion by protons. The charge of the proton is much smaller than
that of the highly charged nucleus of the ion. This means that
the interaction between the proton and the electron of the ion in
the process of excitation is much weaker than the interaction
between the electron and the ionic nucleus and, hence, can
be treated as a weak perturbation. Further, the proton mass
is much heavier than that of the electron and, as was already
mentioned, for collision energies of interest for the present
study the influence of the field of the ionic nucleus on the
proton motion can be ignored. Therefore, regarding the proton
as a Dirac particle, one can approximate the initial and final
states of the proton by (Dirac) plane waves.

In our consideration the nucleus of the ion will be taken
as infinitely heavy representing, thus, just an external field.
We shall work in the rest frame of this nucleus and choose its
position as the origin.

Taking all the above into account the transition amplitude
for the excitation of the ion by proton impact can be written
according to

S
pr
fi = − i

c2

∫
d4x

∫
d4y jμ(x) Dμν(x − y)Jν(y). (12)

Here, jμ(x) and Jν(y) (μ,ν = 0,1,2,3) are the electromagnetic
transition four-currents generated by the electron of the ion
at a space-time point x and by the proton at a space-time
point y, respectively, and Dμν(x − y) is the propagator of the
electromagnetic field which transmits the interaction between
these particles. The contravariant aμ and covariant aμ four-
vectors are given by aμ = (a0,a) and aμ = (a0, − a). The
metric tensor gμν of the four-dimensional space is defined by
g00 = −g11 = −g22 = −g33 = 1 and gμν = 0 for μ �= ν. In
(12) the summation over the repeated Greek indices is implied.
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The transition currents of the electron and proton are
given by

jμ(x) = −cψf (r,t)γμψi(r,t) (13)

and

Jμ(y) = cf (R,T )γμi(R,T ), (14)

respectively, where γμ are the gamma matrices. In Eq. (14)
the vector re denotes the electron coordinates, and ψi(re,t) =
ϕi(re) exp(−iεi t) and ψf (re,t) = ϕf (re) exp(−iεf t) are the
initial and final states of the electron with total energies εi

and εf , respectively. These states describe the motion of the
electron in the field of the nucleus of the ion.

Further, R are the coordinates of the proton, i(R,T ) =
φi(R) exp(−iEiT ) and f (R,T ) = φf (R) exp(−iEf T ) are
the initial and final states of the proton with corresponding
total energies Ei and Ef . These states describe a free proton
with a given value of spin projection.

By applying the Fourier transformation to the currents and
the photon propagator in the integrand of (12) the transition
amplitude can be rewritten in a more convenient form,

S
pr
fi = −4πi

c3

∫
d4q j̃μ(q)

1

q2 + i0
J̃ μ(−q), (15)

where

j̃μ(q) = 1

4π2

∫
d4x jμ(x) exp(−iqx)

= 1

2π
δ(q0 + (εi − εf )/c)

∫
d3r ϕf (r)γμ

× exp(iq · r)ϕi(r),

J̃μ(−q) = 1

4π2

∫
d4y Jμ(y) exp(iqy)

= 1

2π
δ(q0 − (Ei − Ef )/c)

∫
d3R φf (R)γμ

× exp(−iq · R)φi(R). (16)

Due to the relatively large mass of the proton the change in
its initial momentum caused by the collision is much smaller
than the initial momentum itself. As a result, the proton not
only moves in the collision practically along a straight line but
also, as one can easily show, the change in the direction of its
spin is very unlikely. Taking this into account, assuming for
definiteness that initially the proton moves along the z axis and
using the explicit form of the Dirac plane-wave states for the
proton the expression for the four-current J̃μ(−q) in (16) can
be greatly simplified:

J̃0(−q) = 1

2π
δ(q0 − (Ei − Ef )/c)δ(3)(Pi − q − Pf ),

J̃3(−q) = v

2πc
δ(q0 − (Ei − Ef )/c)δ(3)(Pi − q − Pf ),

J̃1(−q) = 0, J̃2(−q) = 0. (17)

In the above equations Pi = (0,0,Pi) and Pf are the initial and
final momenta of the proton, respectively, (|Pi − Pf | � |Pi |)
and v is the proton velocity with respect to the nucleus, which
to excellent accuracy remains a constant in the collision.

Using Eqs. (15) and (17) and the expression for the electron
transition current from Eq. (16) the transition amplitude is

obtained to be

S
pr
fi = i

π

δ(εi + Ei − εf − Ef )

q2 − (εf − εi)2/c2

×
∫

d3r ϕ
†
f (r) exp(iq · r)

(
1 − v

c
α3

)
ϕi(r)

= i

π
δ(εi + Ei − εf − Ef )

〈ϕf | exp(iq · r)
(
1 − v

c
α3

)|ϕi〉
q2 − (εf − εi)2/c2

,

(18)

where q = Pi − Pf is the momentum transfer to the ion, α3 is
the Dirac matrix, and the delta function expresses the energy
conservation in the collision.

Using the well-known procedure in order to obtain the cross
section from the transition amplitude for the excitation cross
section differential in the momentum transfer we get

d3σfi

dq3
= 4

v

∣∣〈ϕf

∣∣exp(iq · r)
(
1 − v

c
α3

)∣∣ϕi

〉∣∣2

[q2 − (εf − εi)2/c2]2

× δ(εi + Ei − εf − Ef ). (19)

In the above consideration we have already used the fact that
the change in the momentum of the proton caused by the
collision is very small compared to its initial value. Using
this fact again one can show that, to an excellent accuracy,
the change in the proton energy is very simply related to the z

component, qz, of the momentum transfer vector q: Ei − Ef =
vqz. This enables us to integrate the cross section (19) over qz

and obtain

d2σfi

dq2
⊥

= 4

v2

∣∣〈ϕf

∣∣exp(iq0 · r)
(
1 − v

c
α3

)∣∣ϕi

〉∣∣2[
q2

0 − (εf − εi)2/c2
]2 , (20)

where

q0 = (q⊥,qmin) , (21)

with q⊥ being the transverse part of the momentum transfer
(q⊥ · v = 0) and

qmin = εf − εi

v
(22)

is the minimum momentum transfer in the collision. It is not
difficult to see that the only difference between the cross
section (8), obtained in the previous section, and the cross
section (20) and is that the latter was derived by assuming
ZA = 1.

The initial and final bound states of the electron in (20) are
given by

ϕi(re) =
(

gniκi
(re) χμi

κi
(r̂e)

ifniκi
(re) χ

μi

−κi
(r̂e)

)
(23)

and

ϕf (re) =
(

gnf κf
(re) χ

μf

κf
(r̂e)

ifnf κf
(re) χ

μf

−κf
(r̂e)

)
, (24)

respectively. In Eqs. (23) and (24) gnκ (fnκ ) are the large
(small) components of the radial Dirac-Coulomb states of the
electron in the field of the nucleus with a charge ZI .

If we denote ζ = ZIα, where α = e2/h̄c = 1/137.04 is the
fine structure constant, and � =

√
κ2 − ζ 2, then the energies
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and the radial wave functions of the bound states are given,
respectively, by (see, e.g., [11])

ε = mc2

[
1 +

(
ζ

n′ + �

)2
]− 1

2

(25)

and {
gnκ

fnκ

}
= ±(1 ± ε/mc2)

1
2

√
2k

5
2 λ-e

�(2� + 1)

×
(

�(2� + n′ + 1)

n′!ζ (ζ − κkλ-e)

)1/2

(2kr)�−1e−kr

×
[

∓ n′
1F1(−n′ + 1,2� + 1; 2kr)

−
(

κ − ζ

kλ-e

)
1

F1(−n′,2� + 1; 2kr)

]
.

(26)

Here, �(x) and 1F1(a,b; z) are the gamma function and conflu-
ent hypergeometric function [12], respectively, λ-e = h̄/mc is
the electron Compton wavelength, k = ζ

λ-e
[ζ 2 + (n′ + �)2]−

1
2 ,

n = n′ + |κ| is the principal quantum number, and the quantity
κ is related to the orbital momentum l and the total angular
momentum j by

l =
{

κ, if κ > 0

−κ − 1 if κ < 0
and j = |κ| − 1

2 . (27)

Further, χμ
κ are the normalized spin-angular functions (see,

e.g., [11]) which read

χμ
κ (r̂e) =

∑
ml

(
l 1

2 j

ml μ − ml μ

)
Y ∗

lml
(r̂e)χμ−ml

1
2

, (28)

where

χ
1
2
1
2

=
(

1

0

)
, χ

− 1
2

1
2

=
(

0

1

)
(29)

are the Pauli spinors and Ylml
are the spherical harmonics.

IV. EXCITATION IN COLLISIONS WITH ELECTRONS

Let us now turn to the excitation of a heavy hydrogenlike
ion by electron impact. As in the previous section we assume
that the nucleus of the ion is infinitely heavy and taken as the
origin.

Like in the case of collisions with protons, the interaction
between the incident electron and the electron of the ion is
comparatively very weak. Therefore, this interaction can be
treated as arising due to just single-photon exchange between
the electrons.

However, as was already mentioned, there are two impor-
tant differences between the excitation of a highly charged ion
by proton and electron impacts. First, the mass of an electron
is much lighter than that of a proton. As a result, in contrast
to the proton case, the motion of the incident (and scattered)
electron can be very substantially distorted by its interaction
with the nucleus of the ion. Second, since the electrons are
indistinguishable, the exchange effect has to be taken into
account.

The first point can be addressed by describing not only
the bound but also the continuum electron as moving in the
Coulomb field of the nucleus of the ion. The second point leads
to the necessity to include an additional first order diagram (the
so-called exchange diagram) into the theoretical treatment of
electron-impact excitation.

Taking all the above into account the transition amplitude
for electron-impact excitation is given by

S tot
fi = Sdir

fi + Sexc
fi , (30)

where Sdir
fi and Sexc

fi are the direct and exchange contributions,
respectively, to the total transition amplitude.

Similarly to the case of proton impact for the direct
contribution one can obtain

Sdir
fi = −4πi

c3

∫
d4q j̃ dir

μ (q)
1

q2 + i0
J̃

μ

dir(−q), (31)

where

j̃ dir
μ (q) = 1

2π
δ(q0 + (εi − εf )/c)

×
∫

d3r ϕf (r)γμ exp(iq · r)ϕi(r) (32)

describes the current generated by the electron in its bound-
bound transition in the ion and

J̃ dir
μ (−q) = 1

2π
δ(q0 − (Ei − Ef )/c)

×
∫

d3r ϕpf
(r)γμ exp(−iq · r)ϕpi

(r) (33)

represent the current generated by the incident and scattered
electron with asymptotic momenta pi and pf , respectively
(continuum-continuum transition).

The exchange part of the transition amplitude reads

Sexc
fi = +4πi

c3

∫
d4q j̃ exc

μ (q)
1

q2 + i0
J̃ μ

exc(−q). (34)

In this expression

j̃ exc
μ (q) = 1

2π
δ(q0 + (εi − Ef )/c)

×
∫

d3r ϕpf
(r)γμ exp(iq · r)ϕi(r) (35)

describes the current generated by the electron, which was
initially bound in the ion and emitted during the collision
having asymptotically a momentum pf (bound-continuum
transition). Further,

J̃ exc
μ (−q) = 1

2π
δ(q0 − (Ei − εf )/c)

×
∫

d3r ϕf (r)γμ exp(−iq · r)ϕpi
(r) (36)

represent the current generated by the electron, which was
initially incident on the ion with an asymptotic momentum
pi and become bound in the collision (continuum-bound
transition).

In the above expressions the form of the bound states is
given, as before, by Eqs. (23)–(27). The continuum states
[the incident and scattered electron(s)] are described using
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the corresponding Dirac wave function in the Coulomb field
of the nucleus of the ion.

Namely, for the incident electron which propagates initially
in the positive z-axis direction [pi = (0,0,pi)] and has spin
projection ms one has

ψ
(ms )
i (r,t) = e−iEi t

√
πc2

2piEi

∑
κi

il
√

4π (2l + 1)

(
l 1

2 ji

0 ms ms

)

× ei�κi

(
gEiκi

(r) χms
κi

(r̂)

ifEiκi
(r) χ

ms−κi
(r̂)

)
. (37)

The state of the scattered electron, which asymptotically has a
momentum pf and spin projection ms , reads

ψ
(ms )
f (r,t) = e−iEf t4π

√
πc2

2pf Ef

∑
κf μf

il

(
l 1

2 jf

ml ms μf

)

×e
−i�κf Y ∗

lml
(p̂f)

(
gEf κf

(r) χ
μf

κf
(r̂)

ifEf κf
(r) χ

μf

−κf
(r̂)

)
. (38)

The radial wave functions gEκ (r) and fEκ (r) are given by{
gEκ

fEκ

}
= ±(E ± mc2)

1
2

2p
1
2

cπ
1
2

(2pr)�−1eπη/2 |�(� + iη)|
�(2� + 1)

×
{

Re

Im

}
e−ipreiδκ (� + iη)1F1

× (� + 1 + iη; 2� + 1,2ipr), (39)

where η = ZI E

pc2 is the Sommerfeld parameter, the Coulomb
phase shift δκ is defined by the relation

e2iδκ = −κ + ic2η/E

� + iη
,

and �κ = δκ − arg�(� + iη) − π
2 � (see [11]). In expression

(39) the notations Re and Im mean that one has to take the real
or the imaginary part, respectively, of its second line.

V. SOME NUMERICAL RESULTS AND DISCUSSION

In this section we shall briefly consider excitation of
Bi82+(1s) projectiles into the L-shell occurring in colli-
sions with atomic hydrogen: Bi82+(1s) + H(1s) → Bi82+(n =
2,j ) + p+ + e−, where j (j = 1/2 and j = 3/2) is the total
angular momentum of the electron in the final state of the Bi
ion. This consideration is based on two theoretical approaches.
One of them (approach I) is the first-order perturbation theory
in the ion-atom interaction [see Eqs. (1)–(6)]. The other is the
approach presented in this paper (approach II). It relates the
cross sections in collisions with an atom to the cross sections
in collisions with protons and electrons constituting the atom
[see formula (11)], and fully takes into account the interaction
between these electrons and the nucleus of the highly charged
ion and also the electron exchange effect.

Figure 1 shows the contribution of the inelastic target mode
to the excitation cross sections. The figure contains two sets
of theoretical results. One of them, depicted by dash curves,
was obtained by using approach I. The other one, displayed
by solid curves, was calculated by employing approach II. Let

FIG. 1. Cross sections for excitation of Bi82+(1s) projectiles into
the L-shell in collisions with hydrogen in the inelastic target mode.
Dash and solid curves show the results obtained using approach I and
approach II, respectively. For more explanation, see the text.

us remind the reader that within the latter the inelastic target
mode is simply equal to collisions with electrons.

As it follows from Fig. 1, there is a large difference
between these two sets of the results with approach II yielding
substantially higher cross sections. This is especially obvious
in the case of the excitation of the 1s1/2–2s1/2 transition
where even at an impact energy as high as � 700 MeV/u
the difference is still of a factor of 2.

The origin of this difference may lie in the strong attraction
between the electron of the atom and the nucleus of the ion
which increases the probability for the atomic electron to come
closer to the electron of the ion. Such a “focusing”could be
especially effective namely in the excitation of the 1s1/2–2s1/2

transition since the latter needs small impact parameters in
order to proceed.

In Fig. 2 we compare the cross sections for excitation
of Bi82+(1s) ions by the impact of the proton and electron
which have (initially) equal velocities with respect to the ion.
Note that according to approach II these cross sections also
correspond to the contributions to the excitation by the elastic
(proton) and inelastic (electron) target modes in collisions with
atomic hydrogen. It is seen that in the interval of collision
velocities considered in the figure the results for excitation
by electrons and protons are rather different. In particular,
despite the incident protons possess kinetic energy, which is
by three orders of magnitude larger than that of the equivelocity
electrons, it turns out that the latter ones can be more effective
in exciting the 1s1/2–2s1/2 and 1s1/2–2p1/2 transitions.

The larger efficiency of the electrons in the excitation
process is most substantial for the 1s1/2–2s1/2 transition for
which the electron is more efficient by a factor of 2.5 at the
lower boundary of the velocity interval. The origin of this
difference most likely lies in a very strong distortion of the
motion of the incident electron by the field of the nucleus of the
ion. While the heavy proton moves in the collision practically
undeflected the strong attraction of the light incident electron
by the field of the ion increases the probability for this electron
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FIG. 2. Cross sections for excitation of Bi82+(1s) ions into the
L-shell by the impact of equivelocity electrons (solid curves) and
protons (dash curves).

to come closer to the location of the bound electron. Since the
1s1/2– 2s1/2 transition, as a nondipole one, occurs at small
impact parameters, the focusing of the incident electron by
the field of the nucleus may increase the chances for the
excitation.

VI. CONCLUSIONS

We have considered excitation of highly charged hydrogen-
like ions in relativistic collisions with light atoms in which the

momentum transfer to the atom is very large on the typical
atomic scale. In the process of excitation in such collisions
the nucleus and the electrons of the atom behave as quasifree
particles with respect to each other and it is the field of the
nucleus of the ion which is the main force acting on them.
Therefore, excitation of the ion essentially proceeds via two
distinct reaction pathways, which involve the collision of the
electron of the ion either with the atomic nucleus or with the
atomic electrons, whose contributions add up incoherently in
the cross section.

Since the nucleus of the atom is much heavier than the
electron, its motion remains practically not distorted by the
interaction with the field of the nucleus of the ion. Because of
that and also due to the condition ZI � ZA the contribution
to the excitation of the ion, caused by the interaction with
the nucleus of the atom, can be evaluated already within the
first-order perturbation theory in the interaction between the
nucleus of the atom and the projectile ion.

Contrary to this, the field of the nucleus of the projectile in
collisions with large momentum transfer has a crucial impact
on the motion of the electrons of the atom. Therefore, for a
proper description of the excitation by atomic electrons one
needs to take into account the distortion of their states both in
the initial and final reaction channels. Besides, since there is in
general a noticeable overlap between the phase spaces of the
electron of the ion and those of the atom, the exchange effect
has to be taken into account.
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[8] A. Gumberidze and Th. Stöhlker (private communication).
[9] A. B. Voitkiv and J. Ullrich, Relativistic Collisions of Structured

Atomic Particles (Springer-Verlag, Berlin, 2008); A. B. Voitkiv,
Phys. Rep. 392, 191 (2004).

[10] In general, the cross section for excitation by electron impact
should be averaged over the Compton profile of the atomic
electrons.

[11] M. E. Rose, Relativistic Electron Theory (John Wiley and Sons,
New York, 1961).

[12] Handbook of Mathematical Functions, edited by M. Abramovitz
and I. Stegun (Dover Publications, New York, 1964).

052712-7

http://dx.doi.org/10.1016/S1049-250X(08)60079-8
http://dx.doi.org/10.1016/S1049-250X(08)60079-8
http://dx.doi.org/10.1088/0370-1298/66/11/301
http://dx.doi.org/10.1088/0370-1298/66/11/301
http://dx.doi.org/10.1088/0370-1298/68/2/305
http://dx.doi.org/10.1088/0370-1298/68/2/305
http://dx.doi.org/10.1103/PhysRevA.61.052704
http://dx.doi.org/10.1103/PhysRevA.61.052704
http://dx.doi.org/10.1088/0953-4075/33/7/302
http://dx.doi.org/10.1088/0953-4075/33/7/302
http://dx.doi.org/10.1088/0953-4075/38/19/011
http://dx.doi.org/10.1103/PhysRevA.72.062705
http://dx.doi.org/10.1016/j.physrep.2003.11.003

