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It is shown that the atom-molecule collision problem in the presence of an external electric field can be solved
using the total angular momentum representation in the body-fixed coordinate frame, leading to a computationally
efficient method for ab initio modeling of low-temperature scattering phenomena. Our calculations demonstrate
rapid convergence of the cross sections for vibrational and Stark relaxation in He-CaD collisions with the number
of total angular momentum states in the basis set, leading to a 5- to 100-fold increase in computational efficiency
over the previously used methods based on the fully uncoupled space-fixed representation. These results open
up the possibility of carrying out numerically converged quantum scattering calculations on a wide array of
atom-molecule collisions and chemical reactions in the presence of electric fields.
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I. INTRODUCTION

Recent experimental and theoretical studies have shown
that external electromagnetic fields can be used as a powerful
tool to manipulate molecular collisions and chemical reac-
tivity at low temperatures [1–17]. Examples include resonant
control of atom-molecule collisions and chemical reactions
in ultracold molecular gases [10–12,14], electric field control
of nascent product state distributions [15,16], and off-resonant
laser field control of motional degrees of freedom [9,17]. These
pioneering studies demonstrate that future progress in the field
of cold molecules—in particular, the ability to create large,
dense, and stable ensembles of chemically diverse molecular
species—will depend to a large extent on our understanding
of their collisional properties [1–7].

Theoretical modeling of molecular collision experiments
performed at temperatures below 1 K requires quantum scat-
tering calculations based on multidimensional potential energy
surfaces (PESs) of unprecedented accuracy, which generally
remain beyond the capabilities of modern ab initio methods.
A way out of this difficulty is to adjust the interaction PESs
based on experimental measurements of collision observables
such as trap loss rates [8,9,18–26]. The crucial link between
intermolecular PESs and laboratory observations is provided
by quantum scattering calculations, which yield collisional
properties of molecules exactly for a given PES. Because
of the need to incorporate symmetry-breaking effects arising
from the presence of external fields [7], such calculations
are more challenging than their field-free counterparts. In
particular, the total angular momentum of the collision pair
is no longer conserved in the presence of external fields, inval-
idating the standard approaches of molecular collision theory
[27,28].

A theoretical formalism for quantum scattering calculations
of molecular collisions in external fields was developed by
Volpi and Bohn and by Krems and Dalgarno [29,30]. The
formalism is based on the fully uncoupled space-fixed repre-
sentation, in which the wave function of the collision complex
is expanded in direct products of rotational basis functions
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and spherical harmonics describing the orbital motion of
the collision partners in a space-fixed (SF) coordinate frame
[29,30]. Several groups have used this representation to exam-
ine the effects of external electric, magnetic, and microwave
fields on atom-molecule [11,12,23,31–34] and molecule-
molecule [35–37] collisions. These studies have shown that the
fully uncoupled SF formalism meets with serious difficulties
when applied to collision problems characterized by strongly
anisotropic interactions [15,35,38]. More specifically, the
interaction anisotropy strongly couples different rotational and
partial wave basis states, leading to very large systems of
coupled-channel equations that are beyond the capability of
present-day computational resources. As most atom-molecule
and molecule-molecule interactions are strongly anisotropic,
this difficulty has precluded converged calculations on many
interesting collision systems, including Li + HF ↔ LiF + H
[15], Rb + ND3 [26], Li + NH [38], and NH + NH [37].

We have recently developed an alternative approach to
atom-molecule and molecule-molecule scattering in a mag-
netic field based on the total angular momentum represen-
tation [39]. The total angular momentum of the collision
complex is approximately conserved even in the presence of
external fields; thus, using basis functions with well-defined
total angular momentum allows for a substantial reduction
in the number of scattering channels [39]. This advantage
made it possible to obtain numerally converged scattering
cross sections for strongly anisotropic atom-molecule [40]
and molecule-molecule [41] collisions in the presence of
a magnetic field. Magnetic fields interact with the electron
spin of the molecule, which can be weakly coupled to the
intermolecular axis and often plays a spectator role during
the collision. As a result, while an applied magnetic field
shifts the energies of the colliding molecules and may lead to
the appearance of scattering resonances, it hardly affects the
mechanism of collision-induced energy transfer. In contrast,
electric fields break the inversion symmetry of the collision
problem and alter the selection rules for parity-changing
transitions, leading to more dramatic changes in collision
mechanisms. Examples include electric field-linked dimers
[42], dipolar resonances [43], enhancement and suppression of
spin relaxation in 2� and 2� molecules [11,44], and stimulated
chemical reactions [8,17].
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The purpose of this article is to extend the approach
developed in Ref. [39] to describe atom-molecule collisions in
electric fields. In Sec. II, we formulate the collision problem
in the total angular momentum representation and outline
the procedure of evaluating atom-molecule collision cross
sections. We then apply our formulation to calculate the
cross sections for Stark relaxation (Sec. III A) and vibrational
relaxation (Sec. III B) in 3He-CaD collisions in the presence
of an electric field. Our results agree well with benchmark
calculations based on the fully uncoupled SF representation,
demonstrating the validity and efficiency of our approach.
These findings lead us to conclude that numerical algorithms
based on the total angular momentum representation are a
powerful way of carrying out quantum scattering calculations
in the presence of electric fields. Section IV presents a
brief summary of main results and outlines future research
directions opened up by this work.

II. THEORY

A nonreactive collision of a diatomic molecule (BC) with
a structureless atom (A) in the presence of a dc electric field is
described by the Hamiltonian (in atomic units) [39]

Ĥ = − 1

2μR

∂2

∂R2
R + �̂2

2μR2
+ V (R,r) + Ĥas, (1)

where R is the atom-molecule separation vector, r = r r̂
defines the length and the orientation of the internuclear axis
(BC) in the SF frame, �̂ is the orbital angular momentum
for the collision, V (R,r) is the atom-molecule interaction
potential, and μ is the A-BC reduced mass. The asymptotic
Hamiltonian Ĥas describes the rovibrational structure of the
diatomic molecule and its interaction with an electric field of
strength E oriented along the SF quantization axis Z

Ĥas = − 1

2μBCr

d2

dr2
r + ĵ 2

2μBCr2
+ V (r) − Ed cos θr , (2)

where ĵ is the rotational angular momentum, d is the perma-
nent electric dipole moment of the molecule with reduced mass
μBC , V (r) is the intramolecular interaction potential [45], and
θr is the polar angle of the internuclear axis (r̂) in the SF
frame [11,12].

The orbital angular momentum �̂2 in Eq. (1) can be
expressed via the total angular momentum of the collision
complex Ĵ in the body-fixed (BF) coordinate frame as [28,39]

�̂2 = ( Ĵ − ĵ )2 = Ĵ 2 + ĵ 2 − Ĵ+ĵ− − Ĵ−ĵ+ − 2Ĵzĵz, (3)

where Ĵ± and ĵ± are the BF raising and lowering operators
(note that Ĵ± satisfy anomalous commutation relations [46]).
The BF z axis coincides with the vector R and the y axis is
perpendicular to the collision plane.

As in our previous work [39], we expand the wave function
of the collision complex in direct products of BF basis
functions [28,39]

� = 1

R

∑
J

∑
v, j, k

FM
Jvjk(R)|vjk〉|JMk〉, (4)

where k is the BF the projection of J and j , and M is the SF pro-
jection of J . In Eq. (4), |JMk〉 =

√
(2J + 1)/8π2DJ∗

Mk(
E)

are the symmetric top eigenfunctions, D(
E) are the Wigner
D functions, and 
E are the Euler angles which specify the
orientation of BF axes in the SF frame. The functions |vjk〉 =
r−1χvj (r)

√
2πYjk(θ,0) describe the rovibrational motion of

the diatomic molecule in the BF frame. The rovibrational
functions χvj (r) satisfy the Schrödinger equation[
− 1

2μBC

d2

dr2
+ j (j + 1)

2μBCr2
+ V (r)

]
χvj (r) = εvjχvj (r), (5)

where εvj is the rovibrational energy of the molecule in the
absence of an electric field [47].

The radial expansion coefficients FM
Jvjk(R) satisfy a system

of coupled-channel (CC) equations,[
d2

dR2
+ 2μEtot

]
FM

Jvjk(R)

= 2μ
∑

J ′, v′,j ′,k′
〈JMk|〈vjk|V (R,r,θ ) + 1

2μR2
( Ĵ − ĵ )2

+ Ĥas|J ′Mk′〉|v′j ′k′〉FM
J ′v′j ′k′(R), (6)

where Etot is the total energy. The matrix elements of the
interaction potential and of �̂2 can be evaluated as described in
Refs. [28,39]. In the absence of an electric field, the asymptotic
Hamiltonian (2) has only diagonal matrix elements

〈JMk|〈vjk|Ĥas|J ′M ′k′〉|v′j ′k′〉
= δJJ ′δMM ′δvv′δjj ′δkk′εvj (E = 0). (7)

In order to evaluate the matrix elements of the molecule-
field interaction in the BF basis, we transform the Z component
of vector r̂ to the BF frame [46]

cos θr =
(

4π

3

)1/2

Y10(θr ,φr )

=
(

4π

3

)1/2 ∑
q

D1∗
0q (
E)Y1q(θ,φ). (8)

The expression on the right-hand side contains spherical
harmonics of BF angles (θ,φ) and Wigner D functions of
Euler angles (note that θ is the Jacobi angle between R and r).
Making use of standard expressions for the angular integrals
involving three spherical harmonics [46] and neglecting the
r dependence of d (which is a good approximation for low
vibrational states and weak electric fields [48]) we obtain for
the molecule-field interaction matrix element

〈JMk|〈vjk| − Ed cos θr |J ′M ′k′〉|v′j ′k′〉
= −EdδMM ′δvv′ [(2J + 1)(2J ′ + 1)(2j + 1)(2j ′ + 1)]1/2

×(−1)M+k−k′ ∑
q

(−1)q
(

J 1 J ′
M 0 −M

) (
j 1 j ′
0 0 0

)

×
(

J 1 J ′
k −q −k′

) (
j 1 j ′

−k q k′

)
. (9)

This expression shows that the interaction with electric fields
couples basis functions of different J . It is because of this
coupling that the collision problem can no longer be factorized
by symmetry into smaller J subproblems [28]. It follows
from Eq. (9) that (i) the external field couplings vanish unless
J − J ′ = ±1, and (ii) electric fields couple basis functions of

052710-2



TOTAL-ANGULAR-MOMENTUM REPRESENTATION FOR . . . PHYSICAL REVIEW A 85, 052710 (2012)

different k, leading to a field-induced analog of the Coriolis
interaction. Unlike the usual Coriolis interaction, however,
the interaction with external electric fields couples different k

states in different J blocks (for M = 0).
The standard asymptotic analysis of the radial solutions

to CC equations (6) at large R gives the S-matrix elements
and scattering observables. The analysis proceeds in two
steps. First, the BF wave function is transformed to the
SF representation using the eigenvectors of the operator �̂2

[39,49,50]. Next, the wave function is transformed to the
basis in which Ĥas is diagonal using the eigenvectors of
the asymptotic Hamiltonian (2) in the SF representation.
The eigenvalues of Ĥas define the scattering channels |γ �〉
and threshold energies εγ in the presence of an electric
field.

Matching the transformed solutions to the asymptotic
form [39]

FM
γ�(R) → δγ γ ′δ��′e−i(kγ R−�π/2)

−
(

kγ

kγ ′

)1/2

SM
γ�;γ ′�′e

i(kγ ′R−�′π/2) (10)

yields the S-matrix elements describing collision-induced
transitions between the channels γ and γ ′ with wave vec-
tors k2

γ = 2μ(Etot − εγ ) = 2μEC , where EC is the collision
energy. The integral cross sections can be evaluated from the
S-matrix elements as [30,39]

σγ→γ ′ = π

k2
γ

∑
M

∑
�, �′

∣∣δ��′δγ γ ′ − SM
γ�;γ ′�′

∣∣2
. (11)

We now apply our formulation to evaluate the cross sections
for rovibrational relaxation in 3He-CaD collisions in the
presence of an electric field. Elastic, inelastic, and transport
properties of CaH (v = 0, j = 0) molecules in cryogenic 3He
buffer gas have been studied experimentally in a magnetic
trap [18] and theoretically both in the absence [51] and in the
presence [11,12] of external electric fields. He-CaH and He-
CaD may thus be regarded as prototype systems for numerical
studies of atom-molecule collision dynamics at low tempera-
tures. CaD is a 2� molecule, so, in principle, the molecular
Hamiltonian given by Eq. (2) should include the spin-rotation
interaction term γ ĵ · Ŝ (where γ = 0.021 cm−1 for CaD). As
the primary goal of this work is to test the performance of a new
algorithm (rather than to obtain physical insights into collision
dynamics), we neglect the spin-rotation interaction here, which
is equivalent to treating CaD as a 1� molecule. We note that
this approximation is known to be accurate in the regime
EC 	 γ [51].

For the He-CaD interaction, we used a three-dimensional
ab initio PES developed by Balakrishnan et al. [45,51],
which explicitly includes the r dependence of the interac-
tion energy. The rovibrational eigenfunctions χvj (r) were
evaluated by solving the one-dimensional Schrödinger equa-
tion (5) using a discrete variable representation (DVR)
method [52]. The matrix elements of the He-CaD inter-
action in Eq. (6) were obtained by expanding the PES
in Legendre polynomials with λmax = 12 and evaluat-
ing the integrals over spherical harmonics analytically to

yield [28,39]

〈JMk|〈vjk|V (R,r,θ )|J ′Mk′〉|v′j ′k′〉
= δJJ ′δkk′[(2j + 1)(2j ′ + 1)]1/2

×
λmax∑
λ=0

〈χvj (r)|Vλ(R,r)|χv′j ′(r)〉
(

j λ j ′
−k 0 k′

) (
j λ j ′
0 0 0

)
.

(12)

The radial coefficients Vλ(R,r) were evaluated using a 24-
point Gauss-Legendre quadrature in θ . The r integrals were
computed with 30 Gauss-Legendre quadrature points in r ∈
[2.5,5.6] a0.

The CC equations (6) were solved using the log-derivative
method [53] on a grid of R between 2a0 and 100a0 with a
grid step of 0.1a0. The BF basis set used in Stark relaxation
calculations (Sec. III A) included 10 rotational states (jmax =
9); the basis set used in vibrational relaxation calculations
included 10 rotational states in v = 0 and v = 1 vibrational
manifolds of CaD (see Sec. III B). The cross sections for Stark
relaxation were converged to <10%.

For classification purposes, the eigenvalues of the asymp-
totic Hamiltonian are assigned physical quantum numbers
appropriate to a polar diatomic molecule in an electric field:
v, j , and m (the SF projection of j ). In this work, we
are interested in low-to-moderate field strengths, where the
interaction with electric field is small compared to the splitting
between the ground and the first excited rotational levels. We
can therefore keep using j to denote the rotational manifold
and m to distinguish the Stark states within the manifold, even
though j is not a good quantum number in an electric field.
The assignment procedure works as follows. All eigenvalues
of the asymptotic Hamiltonian which are close in energy
to a particular Stark state |vjm〉 (that is, |εγ − εvjm| < �)
are assigned the quantum numbers v,j,m. The eigenvalues
that do not meet this condition (the so-called “unphysical
states”; see Sec. III A) are excluded from consideration. In
this work, we set � = 0.1 cm−1; however, test calculations
for EC = 0.01 cm−1 and E = 150 kV/cm show that the cross
sections for vibrational relaxation do not change by more than
0.1% when � is varied between 0.005 and 0.5 cm−1 as long
as EC < �. If this condition is not met, problems may arise
with distinguishing between elastic and inelastic channels (see
Sec. III B).

A few remarks are in order concerning the choice of the
� parameter. As a consequence of using the total angular
momentum representation with a fixed truncation parameter
Jmax, the channels corresponding to the same internal state
of the molecule (|vjm〉) but different partial waves (|l〉)
have slightly different energies. For instance, the energy gap
between the |v = 1, j = 0, m = 0,l〉 states is 0.0006 cm−1

(between l = 0 and l = 1) and 0.0046 cm−1 (between l = 0
and l = 2) at E = 150 kV/cm and Jmax = 4. As a result, when
� is chosen to be very small (e.g., less than 0.0046 cm−1), the
selection criterion |εγ − εvjm| < � leads to the |v = 1, j =
0, m = 0, l = 2〉 channel being treated as different from the
|v = 1, j = 0, m = 0, l = 0〉 incident channel, even though
these two channels correspond to the same internal state of the
molecule |v = 1, j = 0, m = 0〉. Unless care is taken to avoid
this erroneous assignment, the computer program considers

052710-3



T. V. TSCHERBUL PHYSICAL REVIEW A 85, 052710 (2012)

the |v = 1, j = 0, m = 0, l = 2〉 channel as inelastic and
proceeds to add the corresponding S-matrix element squared
to the inelastic cross section (11), leading to an apparent
(and unphysical) increase of the latter by several orders of
magnitude. This problem can be avoided by choosing � to
be larger than the unphysical splittings between the states
of different l. Note that the problem does not occur at
very low collision energies, where only the l = 0 incident
channel contributes to both the elastic and inelastic cross
sections.

At the same time, it is important to choose � to be
small enough so as to ensure correct assignment of quantum
numbers to all the relevant asymptotic channels. When the
splitting between the different Stark states is large (as is
the case for rovibrational relaxation in He-CaD collisions
at E = 50 − 150 kV/cm), the acceptable range of � can be
very wide, spanning three orders of magnitude from 0.005 to
0.5 cm−1.

III. RESULTS AND DISCUSSION

In this section, we first consider the eigenstates of the
asymptotic Hamiltonian that define the scattering channels
in the presence of an electric field (Sec. III A). In order to
test the performance of our approach, we compare the cross
sections calculated using the BF total angular momentum
representation with benchmark calculations based on the fully
uncoupled SF representation (Secs. III B and III C).

A. Asymptotic states

Figure 1 shows the eigenvalues of the asymptotic Hamilto-
nian (2) for the ground vibrational state of CaD as functions
of the applied electric field. The number of total J states is
given by NJ = Jmax + 1, where Jmax is the largest value of J

included in the basis set. The eigenvalues obtained for Jmax = 2
and 5 are shown in the top and bottom panels, respectively.
The results clearly show that Ĥas expressed in the total angular
momentum basis has eigenvalues that do not correspond to the
physical Stark states of the diatomic molecule. This situation
is similar to that encountered in the case of magnetic fields,
and following the terminology introduced in [39], we refer to
these states as “unphysical.” From Fig. 1, we observe that the
number of unphysical Stark states increases with the number
of J blocks in the basis set. In addition, the energies of the
unphysical states become closer to the true Stark energies as
Jmax increases.

As pointed out before [39], the origin of the unphysical
states shown in Fig. 1 can be attributed to the basis set
truncation procedure. The total J basis is truncated by
restricting the number of J blocks (NJ = Jmax + 1). However,
as follows from Eq. (9), electric fields couple basis states
in block J to those in block J + 1. When the Hamiltonian
matrix is truncated, these couplings are left out, resulting in
the appearance of unphysical eigenvalues and eigenvectors.
In Ref. [39] it was shown that the eigenvectors of unphysical
Zeeman states are dominated by the largest value of J included
in the basis set. As a result, the presence of unphysical states
has no influence on low-temperature collisions in magnetic
fields [39].
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FIG. 1. (Color online) Stark levels of CaD (bold dashed lines) and
eigenvalues of the asymptotic Hamiltonian (solid lines) as functions
of the applied electric field. (Top) Calculation with Jmax = 2, (bottom)
calculation with Jmax = 5. Unphysical states are shown by red lines.
Both calculations are for jmax = 9.

In order to elucidate the properties of unphysical states,
we consider the matrix of the asymptotic Hamiltonian (2) in
the BF basis. In the weak-field limit |Ed|/Be � 1, we can
consider only the coupling between the ground and the first
excited rotational states in the v = 0 manifold (the v index
will be omitted for the rest of this section). Here, Be stands
for the rotational constant of the diatomic molecule. Arranging
the |JMk〉|jk〉 functions in the sequence |000〉|00〉, |100〉|10〉,
|101〉|11〉, |10 − 1〉|1 − 1〉, |000〉|10〉, |100〉|00〉, we obtain the
matrix of the asymptotic Hamiltonian:(

H1 0
0 H2

)
, (13)

with

H1 =

⎛
⎜⎜⎜⎝

0 − 1
3Ed − 1

3Ed − 1
3Ed

− 1
3Ed 2Be 0 0

− 1
3Ed 0 2Be 0

− 1
3Ed 0 0 2Be

⎞
⎟⎟⎟⎠ (14)

and

H2 =
(

2Be − 1
3Ed

− 1
3Ed 0

)
. (15)

Diagonalization of H1 yields

λ1,2 = Be ±
√

B2
e + 1

3 (Ed)2, λ3,4 = 2Be. (16)

052710-4



TOTAL-ANGULAR-MOMENTUM REPRESENTATION FOR . . . PHYSICAL REVIEW A 85, 052710 (2012)

These energies are the same as those of a polar 1� molecule
in a dc electric field [13,54]. The eigenvalues of H2,

λ± = Be ±
√

B2
e + 1

9 (Ed)2, (17)

correspond to unphysical Stark states. The eigenvectors of the
unphysical states are given by

|λ±〉 =
1
3Ed

D±
|000〉|10〉 +

Be ∓
√

B2
e + 1

9 (Ed)2

D±
|100〉|00〉,

(18)

where D2
± = 1

9 (Ed)2 + [Be ∓
√

B2
e + 1

9 (Ed)2]2. Equation (18)
illustrates that the field-induced mixing between different J

states is proportional to the magnitude of the electric field.
Thus, we expect that the coupling between the different J

blocks will become stronger with increasing field, making it
necessary to include more J blocks in the basis set to obtain
converged results even at ultralow collision energies (see
Sec. III). By contrast, the eigenvectors of unphysical Zeeman
states are, to a first approximation, independent of magnetic
field strength [39], and so are the convergence properties of
scattering observables.

Finally, we note that neglecting the electric-field-induced
coupling within the H2 block leads to the disappearance of
unphysical Stark shifts (18). This observation suggests a way
to eliminate the unphysical states from scattering calculations.
Preliminary results obtained with a restricted basis set (jmax =
1, Jmax = 1) indicate that neglecting the off-diagonal elements
of H2 does provide accurate results for both the elastic and
inelastic He-CaD scattering. It remains to be seen whether the
procedure can be generalized to larger rotational basis sets.

B. Stark relaxation in He-CaD (v = 0, j = 1, m j = 0)
collisions

Figure 2 shows the cross sections for Stark relaxation in
3He-CaD (v = 0, j = 1, mj = 0) collisions calculated using
the BF total angular momentum representation. The inelastic
cross sections are summed over all final Stark states of CaD
and displayed as functions of collision energy for M = 0.
At very low collision energies (in the Wigner s-wave limit)
the cross sections scale as 1/

√
EC [1,7]. At higher collision

energies, the cross sections display broad oscillations due to
the presence of scattering resonances [12,15].

At an electric field of 50 kV/cm, the BF results obtained
with Jmax = 5 are in excellent agreement with the benchmark
calculations over the entire range of collision energies from
10−4 to 1 cm−1. The agreement for Jmax = 4 is also good at
EC > 0.1 cm−1. The deviations observed above this collision
energy occur because the number of total angular momentum
states in the basis is not sufficient to adequately describe
scattering resonances in the entrance and/or exit collision
channels. This is analogous to the lack of convergence at high
collision energies observed in our previous calculations of
atom-molecule collisions in magnetic fields [39]. The cross
sections obtained with Jmax = 3 are off by ∼50% even in
the s-wave regime, which indicates that the external field
coupling between the J = 3 and J = 4 blocks can no longer
be neglected.
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FIG. 2. (Color online) Cross sections for Stark relaxation in
He-CaD (v = 0, j = 1, m = 0) collisions as functions of collision
energy. The curves are labeled by the maximum value of J included
in the basis set (Jmax) (see text for details). The electric field is
50 kV/cm (top) and 150 kV/cm (bottom). The calculations are
performed for the total angular momentum projection M = 0. Circles
denote benchmark results obtained using the fully uncoupled SF
representation.

In order to test the performance of our algorithm at higher
electric fields, we display in the bottom panel of Fig. 2 the cross
sections calculated for E = 150 kV/cm for different values of
Jmax. While Jmax = 4 cross sections display a similar energy
dependence as the benchmark results, quantitative agreement
requires extension of the basis set to Jmax = 5. We conclude
that it is necessary to include more J states in the basis set to
achieve convergence at higher electric fields.

As shown in the previous section, the properties of unphys-
ical Stark states depend on the magnitude of the electric field.
At higher electric fields the scattering wave function contains
contributions from higher J blocks, making it necessary to
increase Jmax to obtain converged results even at ultralow
collision energies, as illustrated by the results plotted in
Figs. 2 and 3. By contrast, converged results for ultracold
atom-molecule collisions in magnetic fields can typically be
obtained with just two J blocks [39].

C. Vibrational relaxation: He-CaD (v = 1, j = 0, m j = 0)
collisions

In Fig. 3, we compare the cross sections for vibrational
relaxation in He-CaD(v = 1, j = 0, mj = 0) collisions cal-
culated using the BF approach with benchmark SF cal-
culations. The cross sections are summed over all final
rotational states of CaD as plotted as functions of collision
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FIG. 3. (Color online) Cross sections for vibrational relaxation
in He-CaD (v = 1, j = 0, m = 0) collisions summed over all final
Stark states of CaD as functions of collision energy. The curves are
labeled by the maximum value of J included in the basis set (Jmax).
The electric field is 50 kV/cm (top) and 150 kV/cm (bottom). The
calculations are performed for the total angular momentum projection
M = 0.

energy for different Jmax. Balakrishnan et al. considered
vibrational relaxation in 3He-CaH (v = 1, j = 0) collisions
in the absence of external fields and found it necessary to
include 20 rotational states in the v = 0 and v = 1 vibrational
manifolds to achieve numerical convergence [51]. The first
excited vibrational state of CaD lies 908.3 cm−1 above the
ground state, and the rotational constant of CaD is 2.16
cm−1. In order to properly describe quasiresonant energy
transfer important at low temperatures [55], it would thus be
necessary to include at least 20 rotational states of CaD in
each vibrational manifold. A fully uncoupled SF basis with
vmax = 1, jmax = 20, and lmax = 20 contains 12 362 channels.
In order to avoid solving large numbers of CC equations,
we opted to use a restricted SF basis set with vmax = 1,
jmax = 9, and lmax = 9 to generate benchmark results, which
should be adequate for testing purposes provided the same
convergence parameters vmax and jmax are used in BF and SF
calculations. We emphasize, however, that these benchmark
cross sections are not physically meaningful (e.g., they may
not exhibit the quasiresonance behavior characteristic of
vibrational relaxation at low temperatures [51,55]).

From Fig. 3 we observe that the BF cross sections obtained
for a relatively weak electric field (E = 50 kV/cm) are in good
agreement with benchmark calculations already at Jmax = 3.
Table I demonstrates that a Jmax = 3 calculation includes only
280 scattering channels, while the same calculation performed
using the fully uncoupled SF representation requires as many

TABLE I. The number of channels in BF basis sets with different
Jmax for M = 0. All the basis sets include two vibrational and ten
rotational states of CaD and ten partial waves (for the SF basis). The
ratio (NSF/NBF)3 quantifies the computational efficiency gained by
using the BF approach. The number of channels in the fully uncoupled
SF representation NSF = 1340.

Jmax NBF (NSF/NBF)3

3 280 109.6
4 420 32.5
5 580 12.3
6 756 5.6

as 1380 channels. The use of the BF total angular momentum
representation thus allows us to reduce the number of scattering
channels by a factor of 4. The computational cost of solving CC
equations scales as N3 with the number of scattering channels
[53], so the BF total angular momentum representation can
be more than 100-fold more computationally efficient than the
fully uncoupled SF representation [29,30].

At E = 150 kV/cm, quantitatively accurate results are
obtained with Jmax � 5, while Jmax = 4 calculations overesti-
mate the benchmark result by a factor of ∼3. Comparison of
Figs. 2 and 3 suggests that vibrational relaxation cross sections
converge more slowly with Jmax than those for Stark relaxation.
The gain in computational efficiency (∼10-fold) is therefore
not as dramatic as observed for E = 50 kV/cm. Note that
the BF inelastic cross sections show an unphysical jump at
a collision energy of ∼0.14 cm−1, which occurs due to the
ambiguity of the procedure used to assign quantum numbers
to unphysical states. As pointed out in Sec. II, the eigenvalues
of the asymptotic Hamiltonian with energies |εγ − εvjm| < �

are assigned physical quantum numbers v, j , and m, where
we have chosen � = 0.1 cm−1. While this procedure works
well as long as the collision energy is small compared to �,
collision-induced transitions between unphysical states make
it difficult to distinguish between elastic and inelastic channels
when this condition is not met. This technical difficulty can
be eliminated by increasing � or switching to an unphysical
states-free representation (see Sec. II).

IV. SUMMARY

We have presented an efficient theoretical approach to
solving the atom-molecule collision problem in the presence of
an electric field. Unlike previous theoretical work based on the
fully uncoupled SF representation [11–15,26,29–31,34], our
approach makes explicit use of the total angular momentum
(J ) representation in the BF coordinate frame, in which the
atom-molecule Hamiltonian has a block-diagonal form in
the absence of external fields. The different J blocks are
coupled only by the molecule-field interaction, making it
possible to accelerate convergence of scattering observables
with respect to the maximum number of rotational states
and J blocks included in the basis set. Our method is thus
particularly suitable for quantum scattering calculations on
atom-molecule (and possibly molecule-molecule) collision
systems, where different rotational states are strongly coupled
by the anisotropy of the interaction potential.
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As in the case of molecular collisions in magnetic fields
[39], truncation of the asymptotic Hamiltonian matrix leads to
the appearance of unphysical Stark shifts. We have analyzed
the properties of the unphysical states using a simple six-state
model, which shows that the unphysical states arise due to
the electric field-induced coupling between different rotational
states in adjacent J blocks. The eigenvectors of the unphysical
states are linear combinations of different rotational and
J states with field-dependent mixing coefficients. Because of
the admixture of higher J states, which do not contribute
to low-temperature collision observables due to centrifugal
barriers, the unphysical states are expected to play no role
in cold atom-molecule collisions. Furthermore, our analytical
results suggest that, by neglecting certain coupling matrix
elements, it may be possible to completely eliminate the
unphysical Stark states from scattering calculations.

In order to test the performance of our method, we applied
it to calculate the cross sections for vibrational and Stark
relaxation in He-CaD collisions in the presence of an electric
field. The results obtained using the BF approach are in good

agreement with benchmark calculations based on the fully
uncoupled SF representation. Most notably, the number of
BF channels required to obtain converged results is smaller
by a factor of 1.5 to 4 (depending on Jmax), leading to a 5-
to 100-fold gain in computational efficiency (see Table I).
These improvements open up the possibility of carrying out
highly efficient quantum scattering calculations on strongly
anisotropic atom-molecule collisions in electric fields, which
are of great current interest as potential candidate systems for
sympathetic cooling experiments [24,26,40] or reactants for
electric-field-controlled chemical reactions [8,9].
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