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Hybrid theory of P-wave electron-hydrogen elastic scattering
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We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized
orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where
the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by
the modification of the target function by a method similar to the method of polarized orbitals and, except at the
very lowest energies, they are close to the phase shifts calculated earlier by Bhatia [A. K. Bhatia, Phys. Rev. A
69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion
(polarization) in the presence of the incident electron. The important fact is that in the present calculation, to
obtain similar results only a 35-term correlation function is needed in the wave function compared to the 220-term
wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the
present hybrid formalism, are rigorous lower bounds to the exact phase shifts. Accurate values for the effective
range parameters are also calculated.
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I. INTRODUCTION

Scattering of electrons by hydrogenic systems is always of
interest because the target function is known exactly, allowing
us to test the various methods of calculation. At low incident
energies, the distortion of the target produced by the incident
electron is important. One of the methods used to take into
account this distortion is the method of polarized orbitals [1],
which includes the effect of polarization and essential physics
in the ansatz for the scattering wave function. Various other
approximations have been used: Kohn-Feshbach variational
method [2], Kohn variational method [3], R-matrix method [4],
and the finite-element method [5]. In previous papers [6,7], the
P -wave e-H and e-He+ scattering phase shifts were calculated
by using the Feshbach projection operator formalism [8]. The
results obtained are accurate and are variational lower bounds
to the exact phase shifts. However, it has not been possible
to take into account in the Feshbach formalism the distortion
produced by the incident electron which results in a direct
−1/r4 potential in the scattering equation.

In Ref. [9], the S-wave electron-hydrogen scattering phase
shifts were calculated by using a hybrid method in which both
long-range potential proportional to −1/r4 and short-range cor-
relations via an optical potential were included in the scattering
equation at the same time. We did not use any projection
operators in this calculation [9] but the important property,
namely, that the phase shifts are rigorous lower bounds to
the exact phase shifts, is retained [10]. We follow the same
procedure in the present calculation on P -wave scattering as in
Ref. [9]. We use Rydberg units: energy in Rydbergs and length
in Bohr radius a0. The phase shifts, throughout, are in radians.

II. THEORY

The total spatial wave function for the e-H partial wave
(denoted by L) problem is written as

�L(�r1,�r2) = uL(r1)

r1
YL0(

�

r1)φ0(�r2)

±(1 ↔ 2) +
N∑
λ

Cλ�
λ
L(�r1,�r2). (1)

N is the number of terms in the expansion. The target wave
function is given by

φ0(�r2) = (Z3/π )0.5e−Zr2Y00, (2)

where Z is the charge of the nucleus. The (±) above refers
to singlet (upper sign) or triplet (lower sign) scattering,
respectively. Beyond the terms containing uL explicitly (those
are the terms giving rise to the exchange approximation), the
functions �L are the correlation functions. These functions
include all the many-body effects and the resulting scattering
equation is a single-particle equation. For an arbitrary L,
this function is most efficiently written in terms of the Euler
angles [11]:

�λ
L = [

f κ+
L (r1,r2,r12)Dκ+

L (ϑ,φ,ψ)

+ f κ−
L (r1,r2,r12)Dκ−

L (ϑ,φ,ψ)
]
. (3)

The Dκ,ε functions (ε = +1,−1) are called rotational
harmonics [11] and are functions of the Euler angles θ,φ,ψ .
The f ’s above are generalized “radial” functions which depend
on the three residual coordinates that are required (beyond the
Euler angles) to define the two vectors r1 and r2. The distance
between two electrons is given by r12 = |�r1 − �r2|. The radial
functions are defined as follows:

f 1+
1 = cos(θ12/2) [fλ(r1,r2,r12) ± fλ(r2,r1,r12)] , (4)

f 1−
1 = sin(θ12/2) [fλ(r1,r2,r12) ∓ fλ(r2,r1,r12)]. (5)

θ12 is the angle between �r1 and �r2, and

fλ(r1,r2,r12) =
N∑

lmn

Cλ
lmn rl

1r
m
2 rn

12 e−γ r1−δr2 . (6)

The minimum value of l is equal to 1 while that of m and n

is 0. The number of terms in this function is equal to N. The
number of eigenvalues is also equal to N , therefore, λ takes
the values from 1 to N . First, we derive the wave function of
the scattered electron without the long-range correlations and
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it is given implicitly by∫
[Y ∗

10(�1)φ∗
0 (�r2)(H − E)�L]d�r2 = 0. (7)

H is the Hamiltonian and E is the total energy of the e-H
scattering system:

H = −∇2
1 − ∇2

2 − 2Z

r1
− 2Z

r2
+ 2

r12
, (8)

E = k2 − Z2, (9)

where k2 is the kinetic energy of the incident electron and Z is
the nuclear charge which is equal to1 in the present calculation
(electron-hydrogen scattering).

In order to derive Eq. (7) for the scattering function
u(r1) ≡ uL(r1), the coefficients Cλ must be known. Following
the procedure given in Ref. [9], it can be shown that the
resulting equation for the scattering function for u(r) is given
by[

d2

dr2
− L(L + 1)

r2
+ Vd ± Vex − Vop + k2

]
uL(r) = 0,

(10)

where

VopuL = 2r

N∑
λ=1

Vλ(r)〈Vλ(r1)u(r1)〉
E − ελ

, (11)

where

Vλ(r1) = 〈
�

(λ)
L (�r1,�r2)

∣∣H − E|ϕ0(�r2)Y10(�1)〉. (12)

In Refs. [6,7], the optical potential of the type given in
Eq. (11) was derived by using the Feshbach projection operator
formalism [8] based on projection operators P and Q. The
present formalism is independent of the projection operators
P and Q.

In the above formalism [6,7], those terms coming from
the correlation function are such that they take into account
only the short-range correlations and there is no direct long-
range potential proportional to 1/r4 in the scattering equation
satisfied by u(r).

III. OPTICAL POTENTIAL WITH POLARIZATION

This long-range potential is due to the polarization of the
target produced in the presence of the incident electron. This
can be taken into account by the method of polarized orbitals.
Temkin [12] has shown, using the adiabatic approximation
in the first-order theory and using the dipole part of the
resulting perturbed wave function, that in the presence of the
incident electron r1, the effective target wave function can be
written as

�pol(�r1,�r2) = φ0(�r2) − χβ(r1)

r2
1

u1s→p(r2)

r2

cos(θ12)√
Zπ

, (13)

where

u1s→p(r2) = e−Zr2

(
Z

2
r3

2 + r2
2

)
, (14)

and ϑ12 is the angle between �r1 and �r2. We have replaced the
step function ε(r1,r2) used by Temkin [12] by a smooth cutoff
function χβ(r1) which is of the form

χβ(r1) = (1 − e−βr1 )n, (15)

where n � 3. Now the polarization takes place whether the
scattered electron is inside or outside the orbital electron. The
polarization function given in Eq. (13) is valid throughout
the range. This is unlike the step function ε(r1,r2) used
by Temkin [12] which ensures that the polarization takes
place when the incident electron r1 is outside the orbital
electron r2. Furthermore, the function in Eq. (15) gives us
another nonlinear parameter β, which is a function of k, the
incident electron momentum, along with the exponent n. This
term guarantees that χβ(r1)/r2

1 → 0 when r1 → 0 and it also
contributes to the short-range correlations in addition to those
obtained from the correlation function �L, and therefore, is
useful to optimize the results. Now the electron-target wave
function can be written as

�L(�r1,�r2) = uL(r1)

r1
YL0(�1)�pol(�r1,�r2)

± (1 ↔ 2) +
∑

λ

Cλ�
λ
L(�r1,�r2). (16)

We arrive at the same form of the scattering equation as
Eq. (10), when we replace φ0(�r2) by �pol(�r1,�r2) given in
Eq. (13). We further restrict ourselves to L = 1 and we can
write the final scattering equation in the form

[
D(r)

d2

dr2
+ k2 + 2

r2
+ Vd + V

pol
d

±(
Vex + V pol

ex

) − V pol
op

]
u(r) = 0. (17)

We give below various quantities:

D(r) = 1 + 43

8Z6

[
χβ(r)

r2

]2

. (18)

The direct potentials are given by

Vd = 2(Z − 1)

r
+ 2e−2Zr

(
Z + 1

r

)
, (19)

and

V
pol
d = (x1 + x3) + x2

d

dr
. (20)

We give only x1 below to show its dependence on the
polarizability α(r) of the target

x1 = 2
χβ(r)

(Zr)4
α(r), (21)

α(r) = 9

2
− e−2Zr

[
(Zr)4 + 5(Zr)3 + 9(Zr)2 + 9(Zr) + 9

2

]
.

(22)
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The quantities x2 and x3 are fairly complicated and they are
not given here. The exchange terms are given by

Vexu(r) = −8Z3

3
e−Zr

[
1

r

∫ r

0
dxe−Zxx2u(x)

+ r2
∫ ∞

r

dx
e−Zx

x2
u(x)

]
. (23)

The exchange polarization terms are too detailed and are
also not given here. The optical potential is now given by

V pol
op u(r) = r

∑N

s

〈Y ∗
10(�1)�pol(�r1,�r2)|H − E|� ′

0〉
E − εs

, (24)

where � ′
0 is the wave function �0 given in Eq. (16) without the

correlation term �L. This optical potential includes the effects
of polarization. The right-hand side of Eq. (24) has not been
given explicitly because it contains a large number of terms.

IV. CALCULATION AND RESULTS

Equation (17) is solved for the continuum function u(r) by
the noniterative method of Omidvar [13] and the phase shift η

is obtained from the value of the function at a large distance:

lim
r→∞ ul(r) ∝ j1(kr) − tan(η)nl(kr), (25)

where j1 and n1 are the spherical Bessel and Neumann
functions, respectively.

In order to obtain phase shifts which can be compared to
those obtained by the method of polarized orbitals, we exclude
the correlation terms �L in Eq. (1). Also, the present cutoff
function χβ given in Eq. (15), which allows optimization with
respect to β to get the best results, is replaced by the cutoff
function obtained by Shertzer and Temkin [14]:

χST = 1 − e(−2Zr)

[
(Zr)4

3
+ 4(Zr)3

3

+ 2(Zr)2 + 2(Zr) + 1

]
. (26)

Now the calculation should be similar to that carried out
by the method of polarized orbitals. The results obtained
by the use of two cutoffs, Eqs. (15) and (26), are not very
different. The phase shifts obtained, using this cutoff of
Shertzer and Temkin [14], for 1P and 3P are given in Table I
and compared with those obtained by Sloan [15]. These results

TABLE I. Comparison of phase shifts η without correlations with
those obtained in Ref. [15].

1P 3P

k Present η ηPO Present η ηPO

0.1 0.0057 0.0067 0.0094 0.0109
0.2 0.0110 0.0171 0.0384 0.0486
0.3 0.0006 0.0210 0.0867 0.1151
0.4 − 0.0090 0.0163 0.0148 0.2005
0.5 − 0.0295 0.0064 0.2100 0.2867
0.6 − 0.0495 − 0.0039 0.2625 0.3574
0.7 − 0.0646 − 0.0100 0.2999 0.4063
0.8 − 0.0721 − 0.0095 0.3225 0.4351

TABLE II. Convergence of 1P phase shifts η for k = 0.1 with the
number of terms.

N β γ δ η

0 0.47 0.0060892
4 0.27 0.42 0.99 0.0062066
10 0.21 0.30 0.99 0.0063271
20 0.34 0.33 0.84 0.0063444
35 0.34 0.30 0.87 0.0063508

include contributions from the exchange polarization terms.
The present results have variational bounds, i.e., they are
always lower than the exact phase shifts. We see that phase
shifts, obtained using the polarized orbital method which is
not variational, are always higher than the present ones.

In Table II, we give the convergence of 1P phase shifts for
k = 0.1 with increasing number of terms in the correlation
function. We use the cutoff function given in Eq. (15). The
results have been optimized with respect to the nonlinear
parameters β, γ , and δ, with n = 3, the optimum value. The
nonlinear parameters are also given in the table. We see that
we do not need more than 35 terms to get results comparable
in accuracy to those obtained in Ref. [6] without the use of
the polarization term in the target wave function and using
the Feshbach formalism of projection operators, where it is
not possible to modify the formulation in such a way as to
produce a direct polarization potential proportional to 1/r4 in
the scattering equation.

Gailitis [16] has shown that as the number of terms in the
correlation function is increased the optical potential becomes
more attractive. Consequently, phase shifts increase as the
number of terms is increased. We see from the results given in
Table II that this holds true.

In Table III, we give 1P phase shifts for values of the incident
momentum from k = 0.1 to 0.8 for 35 terms and compare
them with those obtained in Ref. [6] with 220 terms in the
correlation function, but without the polarization term. We see
that in most cases the results are comparable in accuracy to
those obtained previously [6] with longer expansions in the
correlation function. This indicates that very long expansions
do give fairly accurate results. We also compare the present
results with the variational results of Ajmera and Chung [17],
R-matrix results of Scholz et al. [4], and the finite-element
results of Botero and Shertzer [5]. Most of the results
are comparable but the results obtained in the calculations
[4,5,17] for k = 0.4 to 0.8 are rather too low compared to
the present results. The phase shifts obtained in the above-
mentioned calculations do not have any variational bounds. It
should be noted that the phase shifts increase up to k = 0.3
and then start decreasing up to k = 0.7 and increase again.

In Table IV, we give the convergence of 3P phase shifts for
k = 0.1 with the number of terms in the correlation function.
Again, we use the cutoff function given in Eq. (15). The results
have been optimized with respect to the nonlinear parameters
β, γ , and δ, with n = 3, the optimum value. We again see that
we do not need more than 35 terms to get results comparable
in accuracy to those obtained in Ref. [6] without the use of
the polarization term in the target wave function and using the
Feshbach formalism of projection operators.
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TABLE III. Singlet P phase shifts η for various k for N = 35.

k Present η ηPQ
a ηAC

b ηRM
c ηFEM

d

0.1 0.00635076 0.0063083 0.005782 0.006 0.006
0.2 0.01506556 0.014988 0.01445 0.015 0.0148
0.3 0.01670634 0.016613 0.01550 0.016 0.0160
0.4 0.01015347 0.0099980 0.00846 0.009 0.0090
0.5 –0.00061223 –0.00084017 –0.00287 –0.002 –0.0020
0.6 –0.01009367 –0.010359 –0.013029 –0.012 –0.0117
0.7 –0.01321557 –0.013483 –0.017225 –0.016 –0.0149
0.8 –0.0046818e –0.0048524 –0.009544 –0.0068

aPhase shifts obtained using the Feshbach formalism [6].
bVariational results of Ajmera and Chung [17].
cR-matrix results of Scholz et al. [4].
dFinite-element method results of Botero and Shertzer [5].
ePhase shift for k = 0.8 is for 56 terms.

In Table V, we give results of 3P phase shifts for values of
the incident momentum from k = 0.1 to 0.8 for 35 terms and
compare them with those obtained in Ref. [6] with 220 terms in
the correlation function, but without the polarization term. We
see that in most cases the results are comparable in accuracy
to those obtained previously [6] with longer expansions. This
indicates that very long expansions do give fairly accurate
results because of completeness in the whole space. We also
compare the present results with the Kohn variational results
of Armstead [18], R-matrix results of Scholz et al. [4], and
the finite-element results of Botero and Shertzer [5]. Most of
the present results are comparable with the results obtained in
Refs. [4,5,18]. It should be noted that the phase shifts for 3P

increase continuously throughout the range from k = 0.1 to
k = 0.8. Although the differences are small, the present 1,3P

are the largest of te lower bound results and therefore are the
best.

The results for the phase shifts given in various tables are
obtained by optimizing the nonlinear parameters β, γ , and δ,
one at a time for N = 35. Fairly accurate results have been
obtained by carrying out the optimization of the nonlinear
parameters only once. However, there is always scope for
further improvements of results by repeated variation of these
nonlinear parameters, requiring a fair amount of computer
time, but then the improvements could be marginal. The whole
purpose of the variation of the nonlinear parameters is to obtain
the largest value of the phase shift.

The uncertainty in the results can be estimated by looking
at the convergence of the results given in Tables II and IV. In
the case of the singlet P results, increasing N from 20 to 35,
the phase shift changes by six units in the fourth significant

TABLE IV. Convergence of triplet P phase shifts η for k = 0.1
with the number of terms.

N β γ δ Phase shift

0 0.45 0.35 0.80 0.0098336
4 0.45 0.35 0.80 0.0099701
10 0.45 0.35 0.85 0.0103265
20 0.45 0.37 0.85 0.0103714
35 0.38 0.30 0.80 0.0103813

figure, while in the triplet case it is by one unit in the fourth
significant figure.

The main aim of this paper has been to show that the
inclusion of the long-range polarization term speeds up the
convergence of the results and very few terms are needed in
the correlation function.

V. LOW-ENERGY SCATTERING

It is known [19] that at low energies L = 1 scattering, the
long-range correlations contribute most to the phase shift:

tan(η)/k2 = πα/15 − Ak, (27)

so that

tan
[
η(k1)/k2

1

] − tan
[
η(k2)/k2

2

] = −A(k1 − k2). (28)

The first term in Eq. (27) is due to the long-range potential
and the second term has contributions from the short-range
correlations of which there are contributions from the cross
of �pol and �L terms. Thus the values of A of the present
calculation do not coincide with values obtained in our
previous calculation [6] which included only the short-range
correlations. Using phase shifts given in Table VI, we find

AT = −1.002 and AS = 2.942. (29)

TABLE V. Triplet P phase shifts η for various k for N = 35.

k Present η ηPQ
a ηKh

b ηRM
c ηFEM

d

0.1 0.01038234e 0.010382 0.0101 0.010 0.0100
0.2 0.04536735 0.045345 0.0448 0.045 0.0452
0.3 0.1069312 0.10679 0.1059 0.107 0.1067
0.4 0.1888873 0.18730 0.1866 0.187 0.1873
0.5 0.2709762 0.27058 0.2700 0.270 0.2708
0.6 0.3416749 0.34128 0.3405 0.341 0.3417
0.7 0.3932100 0.39257 0.3918 0.392 0.3933
0.8 0.4277296e 0.42730 0.425 0.4283

aPhase shifts obtained using the Feshbach formalism [6].
bKohn variational results obtained by Armstead [18].
cR-matrix results of Scholz et al. [4].
dFinite-element method results of Botero and Shertzer [5].
ePhase shifts for k = 0.1 and 0.8 are for 56 terms.
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TABLE VI. Low-energy P -wave phase shifts for N = 35 and
values of A from the effective range theory.

State k1 = 0.04 k2 = 0.05 A

1P 0.001303692 0.001963464 2.942
3P 0.001564346 0.002469346 –1.002

O’Malley et al. [19] obtained A(triplet) ≈ −1.3 and
A(singlet) ≈ 1.6 by fitting the phase shifts of the original po-
larized orbitals calculation (e-H) of Temkin and Lamkin [20].
But the latter calculation, although of historical importance,
did not give precision results. Thus, I believe, the A values
obtained in the present calculation are accurate.

VI. CONCLUSIONS

In conclusion, we have applied the hybrid theory, in the
presence of an optical potential, in which the long-range and
short-range correlations, as in Eq. (16), can be taken into
account at the same time. The close-coupling formalism with
short-range correlations is like the present formalism, in the

sense that the P states give the polarizability of the lower-lying
S state of the target. The P -wave phase shifts are much
more sensitive to polarization and short-range correlations than
S-wave phase shifts [9]. The present results are calculated
variationally and therefore have lower bounds to the exact
phase shifts. The present results are very close to those
obtained in Ref. [6], using the Feshbach projection operator
formalism in which it was not possible to define the projection
operators P and Q to modify the target function to include
the effect of the distortion produced by the incident electron.
Moreover, shorter expansions of the order of only 35 terms are
needed to get results comparable in accuracy to those obtained
in Ref. [6] with 220 terms.
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