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Single and multiple electron removal processes in proton–water-molecule collisions
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Charge-state correlated cross sections for single- and multiple-electron removal processes (capture and
ionization) in proton-H2O collisions are calculated by using the nonperturbative basis generator method adapted
for ion-molecule collisions [Phys. Rev. A 80, 060702(R) (2009)]. The results are compared with experimental data
for a wide range of impact energies spanning from 20 keV to several MeV. Single-electron removal probabilities
in each molecular orbital are evaluated using the inclusive-probability formalism to predict the yields of charged
fragments (H2O+, OH+, H+, O+) according to branching ratios that are valid at high impact energies. At
intermediate and low energies, we calculate improved fragmentation cross sections that include the effects of
multiple-electron removal processes. The resulting fragmentation yields agree with experiments at the 20%–30%
level even below 100 keV impact energy.
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I. INTRODUCTION

Collisions of water molecules with ions represent an
important problem for both practical and fundamental reasons.
Understanding the collision-induced fragmentation of water
molecules is essential in some areas of applied science,
such as atmospheric research, radiation and ion-beam tumor
treatment, collider technology, and nuclear safety (see [1,2]
and references therein). From a basic physics point of
view, ion–water-vapor collisions offer a wealth of interesting
questions concerning many-body theory. In comparison to
atomic targets, the water molecule poses substantial challenges
associated with its multicenter geometry [3–7] and additional
degrees of freedom such as fragmentation and nuclear motion
(rotation and vibration).

Calculations of ion–water-vapor collisions at projectile
energies above 20 keV, for which electronic correlation
during the collision is deemed unimportant, can be based on
relatively simple self-consistent field wave functions. Such
works include a recent molecular-orbital (MO) based method
for energies below about 100 keV [7], Born-type calculations
valid in the high-energy limit [6,8], and the continuum
distorted-wave approach [9]. A recent work by Illescas et al.
[5] applies the three-center classical trajectory Monte Carlo
(CTMC) method to study collisions of protons, He2+, and C6+
with water vapor. Their work addresses an important question
of double-electron removal processes at low impact energies
where transfer ionization (i.e., one electron is captured, and
another is ionized) may affect fragmentation cross sections in
a manner unpredicted by the first-order Born approximation
(see also Refs. [1,10]).

Recently, we reported on a nonperturbative, quantum-
mechanical approach to ion-molecule collisions in an
independent-particle model (IPM) framework using the basis
generator method (BGM) [11]. A mathematical foundation of
the BGM can be found in Ref. [12]. On the practical side, BGM
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calculations have been tested for many instances of ion-atom
collisions with both bare and dressed projectiles (see, e.g.,
Refs. [13–15] and the review article [16]). The adaptation
of the BGM to ion-H2O collisions was accomplished by
(i) a spectral representation of the molecular Hamiltonian,
and (ii) a basis expansion of the molecular wave function in
terms of density-functional-theory–based (DFT-based) atomic
orbitals (AOs). For proton [11] and He+ [17] impact, it
was demonstrated that net cross sections of various electron
transfer processes (capture, ionization, and projectile loss) are
well described by this approach for a wide range of impact
energies between 20 and 5000 keV/amu.

In this work, we present a more comprehensive description
of the ion-molecule BGM approach [11] and extend the
previous study of proton-H2O collisions to calculate the cross
sections of single- and multiple-electron removal processes
leading to fragmentation. The paper is organized as follows:
The BGM formalism for proton-H2O collisions is described
in Sec. II A, with some technical details being relegated to the
Appendix. In Sec. II B, methods of analysis to calculate the
charge-state correlated cross sections and the fragmentation
yields are explained. The results are presented in Sec. III,
followed by conclusions in Sec. IV. Atomic units (h̄ =
me = e = 4πε0 = 1) are used throughout, unless specified
otherwise.

II. THEORY

The collisions considered in this work (for impact energies
of 20 keV up to several MeV) are sufficiently fast to
ensure that the target molecule neither rotates nor vibrates
appreciably while it interacts with the projectile. Furthermore,
the semiclassical approximation can be used in its simplest
form, in which the projectile passes by the (fixed-in-space)
molecule on a straight-line trajectory. We are thus left with
the task of solving the time-dependent Schrödinger equation
(TDSE) for the many-electron system in an IPM framework,
followed by the task to extract measurable information, such as
charge-state correlated and fragmentation cross sections from
its solution. We first describe theoretical and practical aspects
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of our approach to the (approximate) solution of the TDSE in
Sec. II A and then discuss methods to extract the cross sections
of interest in Sec. II B.

A. Collision dynamics

1. Formulation

The full many-electron TDSE under discussion cannot be
solved directly due to the multicenter geometry and the pres-
ence of the electron-electron interaction. Hence, we address
a simplified problem in which the electronic Hamiltonian is
assumed to be of single-particle form such that the TDSE
separates into a set of single-particle equations for the initially
occupied MOs:

i∂t

∣∣ψ�
αβγ (t)

〉 = [
Ĥ T

αβγ + V P (t)
] ∣∣ψ�

αβγ (t)
〉
, (1)∣∣ψ�

αβγ (ti)
〉 = |�αβγ 〉, (2)

Ĥ T
αβγ = −1

2
∇2 + V T

αβγ , (3)

V P (t) = − QP

|�r − �R(t)| . (4)

We use capital Greek letters to label the MOs; namely, �αβγ ∈
{1b1, 3a1, 1b2, 2a1}αβγ denotes the four outer MOs of H2O
for a given molecular orientation specified by the Euler angles
α, β, γ [11]. We exclude the innermost orbital 1a1, since test
calculations show that electrons in this MO do not undergo
appreciable transitions in the collisions investigated in this
work. V T

αβγ is an effective target potential, QP is the charge

of the projectile (QP = 1 for protons), and �R(t) = (b,0,vot)
defines the straight-line trajectory. The impact parameter b

is the perpendicular distance between the projectile and the
oxygen nucleus, and vo is the (constant) projectile speed. For
the general formulation of the theory we choose the oxygen
nucleus as the origin of the coordinate system (see Fig. 1),
while the numerical calculations are performed in a center-of-
mass (c.m.) frame (see Appendix).

We now outline the general ideas of our approach to solving
the single-particle equations (1). More practical and technical
aspects of the actual implementation within the two-center
(TC) version of the BGM are discussed in the next subsection
and in the Appendix.
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FIG. 1. (Color online) Geometries of the proton-H2O collision
system. (a): (0, 0, 0) configuration; (b): (90, 0, 0) configuration.

Let us assume that the solutions of Eq. (1) are expanded in
a time-dependent, nonorthogonal basis∣∣ψ�

αβγ (t)
〉 =

∑
j

a�
j,αβγ (t)|χj (t)〉. (5)

This turns the single-particle equations into a set of coupled-
channel equations for the expansion coefficients:

i
∑
j=1

ȧ�
j,αβγ (t)〈χk(t)|χj (t)〉

=
∑
j=1

a�
j,αβγ (t)〈χk(t)|Ĥ T

αβγ + V P (t) − i∂t |χj (t)〉. (6)

The goal of the present approach is to avoid the explicit
calculation of multicenter integrals. To this end, we introduce
the spectral representation of the molecular target Hamiltonian

Ĥ T
αβγ =

∑
�

ε�|�αβγ 〉〈�αβγ |, (7)

in which ε� denotes the energy eigenvalue of the MO labeled
by quantum number(s) �. If we represent the MOs in an
orthonormal single-center basis {|s〉} (where s in practice is
a multi-index),

|�αβγ 〉 =
∑

s

d�
s,αβγ |s〉, (8)

the multicenter molecular matrix element in Eq. (6) breaks
up into a combination of energy eigenvalues, (real) expansion
coefficients, and simpler overlap matrix elements:

Mkj (t) ≡ 〈χk(t)|Ĥ T
αβγ |χj (t)〉

=
∑
�

∑
su

ε�〈χk(t)|s〉d�
s,αβγ d�

u,αβγ 〈u|χj (t)〉. (9)

Our strategy of bypassing the multicenter terms is completed
by making use of the linearity of the single-particle equa-
tions (1) and propagating the single-center basis states |s〉
rather than the multicenter MOs. Accordingly, the states∣∣ψs

αβγ (t)
〉 =

∑
j

as
j,αβγ (t)|χj (t)〉 (10)

obtained from solving the coupled-channel equations (6) while
using the states |s〉 as initial conditions are combined to
reconstruct the solutions |ψ�

αβγ 〉 of Eq. (1):

∣∣ψ�
αβγ (t)

〉 =
∑

s

d�
s,αβγ

∣∣ψs
αβγ (t)

〉 =
∑
sj

d�
s,αβγ as

j,αβγ (t)|χj (t)〉.

(11)

Essentially, the outlined approach results in a separation of
the collision dynamics and the molecular geometry problem:
except for the matrix element (9) the coupled-channel equa-
tions to be solved are similar to those of an ion-atom collision
problem. The molecular orientation is accounted for at the
end by combining those solutions using the coefficients d�

s,αβγ

according to Eq. (11). Note that, in principle, the approach does
not involve any approximation. It does, however, in practice
since all the expansions need to be finite.
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2. Practical aspects

Three expansions appear in the approach described in the
previous section: (i) for the spectral representation of the
molecular Hamiltonian Ĥ T

αβγ , (ii) for the representation of
the MOs |�αβγ 〉, and (iii) for the propagation of the orbitals
|ψs

αβγ (t)〉.
For the single-centered representation of the (occupied)

MOs we use a set of oxygen AOs obtained from a DFT
calculation based on the exchange-only limit of the optimized
potential method [18]. All orbitals of the KLM shells are
included to re-expand the minimal-basis-set MOs |�̃αβγ 〉 of
Ref. [19]. This yields the total norm integrals

0.9 �
KLM∑

s

|〈s|�̃αβγ 〉|2 < 1, (12)

which is deemed acceptable, but not perfect. Note that we
readjust the normalization of the approximated MOs to allow
for a standard statistical interpretation of the propagated states;
namely, the expansion coefficients in Eq. (8) are calculated as

d�
s,αβγ = 〈s|�̃αβγ 〉∑KLM

s ′ |〈s ′|�̃αβγ 〉|2 . (13)

The spectral representation of the molecular Hamiltonian
(7) is limited to the initially occupied MOs {1b1, 3a1, 1b2, 2a1}
given in the single-center basis detailed above. This means that
contributions from excited and continuum states are neglected.
We have carried out some tests by including these contributions
approximately in terms of a closure approximation

Ĥ T
αβγ =

occ∑
�

ε�|�αβγ 〉〈�αβγ | +
unocc∑

�

ε�|�αβγ 〉〈�αβγ |

≈
occ∑
�

ε�|�αβγ 〉〈�αβγ | + ε̄

unocc∑
�

|�αβγ 〉〈�αβγ |

=
occ∑
�

(ε� − ε̄)|�αβγ 〉〈�αβγ | + ε̄ (14)

and found no significant changes in the net cross sections [11].
For the propagation, we use the same TC-BGM basis as

in our previous work [11]. It consists of AOs placed on
the target center (the oxygen nucleus) and the projectile, as
well as a set of 22 BGM (pseudo) states which represent
the continuum at large separations between projectile and
target. The set of target AOs is identical with the set of
orbitals used for the single-centered representation of the MOs
(8), while on the projectile we include all hydrogen orbitals
of the KLMN shells. We have checked that this TC-BGM
basis produces well-converged results for the proton-oxygen
ion-atom collision system, which was investigated some time
ago with a differently constructed BGM basis [13].

Since the coupled-channel equations at hand are similar to
those of an ion-atom collision problem only a few changes
in the implementation of the TC-BGM were necessary to
carry out the propagation. Some details on the basis and the
calculation of the required matrix elements are given in the
Appendix.

B. Final-state analysis and extraction of measurable
cross sections

1. Single- and multiple-electron transition probabilities

Our analysis of capture and ionization processes is based on
the inclusive-probability formalism of Ref. [20]. This analysis
assumes that the propagated N -electron state and all final states
of interest are represented as single Slater determinants (i.e.,
the Pauli principle is taken into account). One can show that
the transition probabilities for single- and multiple-electron
processes can then be calculated from determinants of the
one-particle density matrix,

〈f |γ̂ 1(tf )|f ′〉 =
N∑

i=1

〈f |ψi(tf )〉〈ψi(tf )|f ′〉

=
N∑

i=1

Aif (tf )A∗
if ′(tf ), (15)

at a sufficiently large final time tf . In practice, we choose tf
such that the projectile’s distance from the oxygen nucleus
equals 40 a.u. for all impact parameters and energies. The
propagated states in Eq. (15) are those of Eq. (11), and as final
states |f 〉 we consider bound projectile states |kP 〉 and bound
target states |�αβγ 〉. The former are part of the (orthogonalized)
TC-BGM basis such that we obtain

AP
if (tf ) = 〈

kP

∣∣ψ�
αβγ (tf )

〉 =
T∑
s

d�
s,αβγ as

k,αβγ (tf ), (16)

with the sum running over all included (atomic) target states.
For the target amplitudes we use the expansion (8) and obtain

AT
if (tf ) = 〈

�αβγ

∣∣ψ�
αβγ (tf )

〉 =
T∑
s,t

d�
t,αβγ d�

s,αβγ as
t,αβγ (tf ).

(17)

Note that all amplitudes and hence all density matrix elements
and probabilities to be extracted from them depend on the
Euler angles (i.e., the orientation of the molecule).

We are interested in two types of probabilities: (i) the
probabilities Pk,l of k-fold capture in coincidence with l-fold
ionization to the continuum, and (ii) the probability for the
production of exactly one vacancy in one of the ground-state
MOs. The latter corresponds to a particle-hole probability and
is calculated according to [20]

P
f̄1
f1...fN−1

= Pf1...fN−1 − Pf1...fN−1,f̄1
, (18)

where Pf1...fN−1 denotes the inclusive probability for finding
N − 1 electrons in the subconfiguration |f1 . . . fN−1〉, and
Pf1...fN−1,f̄1

is the exclusive probability to find N electrons
in the configuration |f1 . . . fN−1f̄1〉. Obviously, the difference
of both probabilities corresponds to the statement that one of
the electrons can be found anywhere except in the state |f̄1〉,
which is vacant.

The calculation of the Pk,l is more involved. One first
needs to define subspaces of the one-particle Hilbert space that
correspond to finding a single electron bound to the projectile
or to the target, respectively. For the projectile subspace we
consider all hydrogen orbitals of the KLMN shells (i.e., the
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same set of states that is used in the TC-BGM calculation).
The target subspace is restricted to the initially populated
MOs. This is consistent with the neglect of excited states in
the spectral representation of the target Hamiltonian, but is
an additional approximation that excludes target excitation.
The unitarity of the problem implies that electrons which are
neither found in one of the projectile AOs, nor in one of the
target MOs are being transferred to the continuum. One can
show that the Pk,l can then be calculated from ordered sums of
inclusive probabilities for occupying bound target and bound
projectile states only [see Eqs. (18) to (20) of Ref. [14]].

The probabilities for net q-fold capture and ionization are
found from the Pk,l as

P cap
q =

N−q∑
l=0

Pq,l, P ion
q =

N−q∑
k=0

Pk,q . (19)

They are related to total net (sometimes also called gross)
electron numbers by

Pcap =
N∑

q=1

qP cap
q , Pion =

N∑
q=1

qP ion
q . (20)

Note that the net electron numbers can also be obtained from
summing up single-particle probabilities according to [21]

Pcap =
N∑

i=1

P∑
f

∣∣AP
if

∣∣2
, Pion = N − Pcap −

N∑
i=1

T∑
f

∣∣AT
if

∣∣2
,

(21)

which serves as a consistency test.
Even though multiple-electron removal (q > 1) is less

likely than single-electron capture or single ionization, sizable
contributions to the net electron numbers arise because of the
factor of q in Eq. (20). For capture this can pose the following
challenge: if we propagate N target electrons, the calculated
average number of captured electrons Pcap can exceed the
number of electrons that can be bound to the projectile proton.
We will show in Sec. III A how to deal with this problem in a
pragmatic way.

2. Orientation-averaged cross sections

As mentioned above, the calculated capture and ionization
probabilities depend on the orientation of the molecule with
respect to the ion beam direction. This information is not
available in the experimental data we wish to compare with;
hence, we have to average our results in an appropriate way.
As discussed in Ref. [11], we found a noticeable orientation
dependence at the lower end of the considered impact-energy
interval, but very similar results for net capture and net
ionization when we calculated partial averages (i) for the water
molecule being rotated within the scattering plane, and (ii) for
the water molecule being rotated about the projectile beam
axis. This is exploited in the present work in the same way as
in Ref. [11]: We approximate the fully angle-averaged cross
section for a given process by

σ =
∫

P (b; α,β = 0,γ = 0)d2b. (22)

The basic orientation (α,β,γ ) = (0,0,0) is chosen such that
the polar angle of the impact parameter vector b coincides
with α if β = γ = 0 [see Fig. 1(a)]. Symmetry requires the
transition probability P to be π periodic in α and to assume
extremum values at α = 0 and α = π/2. These properties are
captured by the sinusoidal ansatz

P (b; α,β = 0,γ = 0) = A(b)[cos(2α) + B(b)], (23)

A = 1

2
[P (b; 0,0,0) − P (b; π/2,0,0)], (24)

B = 1

2A
[P (b; 0,0,0) + P (b; π/2,0,0)]. (25)

Inserting this into Eq. (22) results in

σ = π

∫ ∞

0
b

[
P (b; 0,0,0) + P

(
b;

π

2
,0,0

)]
db (26)

after carrying out the angular integral. Accordingly, we
calculate the angle-average of the two orientations (α,β,γ ) =
(0,0,0) and (α,β,γ ) = (π/2,0,0) (see Fig. 1) to replicate the
effect of randomly oriented water molecules [i.e., all cross
sections reported in Sec. III are obtained from using Eq. (26)].
While this limited angle-averaging is found to be sufficient
for the purpose of obtaining net and charge-state correlated
cross sections for electron removal, it becomes a problem
when evaluating the single-vacancy cross sections for each MO
which form the basis of the fragmentation analysis outlined in
the next subsection.

3. Fragmentation cross sections

Collision-induced electron removal from a water molecule
produces four different singly charged (fragment) ions (H2O+,
OH+, H+, and O+) in measurable amounts in addition to
traces of H2

+ and O2+ [22]. In the high-impact-energy limit,
the fragmentation cross sections of these four ions can be
estimated on the basis of the empirical branching ratios of Tan
et al. [23] as

σH2O+ = 1.00σS
1b1

+ 1.00σS
3a1

+ 0.08σS
1b2

, (27)

σOH+ = 0.70σS
1b2

, (28)

σH+ = 0.22σS
1b2

+ 0.74σS
2a1

, (29)

σO+ = 0.26σS
2a1

, (30)

where σS
�∈{1b1,3a1,1b2,2a1} are the cross sections for single-

electron removal (due to capture or ionization) from each MO.
They are calculated based on the inclusive-probability analysis
using Eq. (18).

III. RESULTS

A. Charge-state correlated cross sections

Figure 2 shows a comparison of cross sections for capture
processes. At the top we compare the BGM-based net capture
cross section (solid line) with the experimental data of Rudd
et al. [24] and Toburen et al. [25]. There is good overall
agreement with these data except at the higher impact energies
(above 200 keV). One can argue that the present calculation for
net capture agrees at the 20%–30% level (or better) for low to
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FIG. 2. (Color online) Cross sections for net electron capture
(net) and for single-electron capture (SC) in proton-H2O collisions.
The theoretical results are obtained from the inclusive-probability
analysis and an average over the (0, 0, 0) and (π/2, 0, 0) molecular
orientations. Also shown is the modified SC (σ̃1,0 + σ̃1,1) [cf. Eqs. (31)
and (32)]. Experimental data are for net electron capture: (×) [24],
(•) [25]. Also shown with the dotted (blue) line is the theoretical cross
section from Ref. [5] for net electron capture.

intermediate energies. The CTMC calculation of Ref. [5] (blue
dotted line) agrees with experiments at intermediate energies,
but overestimates them both at low and at high impact energies.

Also shown as a dashed line in Fig. 2 is the single-electron
capture (SC) cross section obtained from Eq. (19) for q = 1.
The difference between the theoretical net capture and SC
cross sections at low to intermediate energies shows that the
inclusive-probability analysis is problematic for the case of
a proton projectile: the IPM-BGM predicts predominantly
capture into the H(1s) state. The Pauli principle allows two
electrons with antiparallel spins to be captured, whereas in
reality formation of the negative hydrogen ion is a correlated
process with small probability. In the context of proton-atom
collisions, a statistical treatment using a product-of-binomials
analysis was proposed to deal with the double-electron
capture problem [13]; the entire net capture cross section
was associated with SC. The presently employed inclusive-
probability analysis does suppress unphysical higher-order
(q > 2) capture cross sections. A pragmatic way to correct the
problem, therefore, is to sum over the double-electron capture
channels weighted by a multiplicity and to associate the result
with SC. That is, we define the pure SC and transfer ionization
in our calculation as

σ̃1,0 = σ1,0 + 2σ2,0, (31)

σ̃1,1 = σ1,1 + 2σ2,1, (32)

where σk,l are the cross sections for k-fold capture in coinci-
dence with l-fold ionization corresponding to the probabilities
Pk,l discussed in Sec. II B1. Carrying out such a reinterpre-
tation results in the dotted line in Fig. 2, and it accounts for
most of the net capture cross section. The difference indicates
that electron transfer accompanied by multiple ionization
is not negligible at intermediate energies according to the
present IPM-BGM results. Thus, we find that, even for proton
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FIG. 3. (Color online) Cross sections for pure single-electron
capture (σ̃1,0) given by Eq. (31), and for transfer ionization (σ̃1,1)
given by Eq. (32), based on the inclusive-probability analysis and an
average over the (0, 0, 0) and (π/2, 0, 0) molecular orientations. Also
shown with the dash-dotted line is the pure single-electron capture
σ1,0 without the correction to redefine double-electron capture as
single-electron capture [cf. Eq. (31)]. Experimental data are for H2O+

ion production in the capture channel of Refs. [22] (�) and [27]
(�), which serves as a lower bound for σ̃1,0. The theoretical cross
sections from Ref. [5] and those from method I of Ref. [7] for pure
single-electron capture are shown with a blue and a magenta dotted
line, respectively.

projectiles, multiple ionization processes play an important
role due to the availability of six relatively weakly bound
electrons in the H2O target.

Concerning the discrepancy between our results for net
capture with the data of Ref. [25] in the intermediate impact-
energy regime, we note that we do not expect technical
difficulties in our approach at these energies. The CTMC
calculations of Ref. [5] do perform a complete orientation
angle average and also obtain higher results.

In Fig. 3, the charge-state correlated cross section for
pure SC is compared with the experimental production of a
singly ionized water molecule (H2O+) in coincidence with
neutral hydrogen projectile formation, as measured by Gobet
et al. [22,26] and by Luna et al. [27]. In contrast with the
other fragments, the H2O+ ion is associated only with single-
electron removal processes and therefore is a unique indicator
for the pure SC cross section. It is not exclusive, though, since,
for example, the emission of a proton together with neutral
fragments also follows from single-electron removal events,
and therefore the experimental data shown here represent a
lower bound for pure SC.

The pure SC cross section σ̃1,0 given by Eq. (31) (solid
line) is consistent with the bound set by H2O+ measurements,
whereas the direct result from the inclusive-probability anal-
ysis (σ1,0, dash-dotted line) does violate the bound below
40 keV. Our result displays a somewhat different energy
dependence than the CTMC prediction in Ref. [5] (blue
dotted line) and the MO-based coupled-channel calculation
of Ref. [7] (magenta dotted line). We find from our data
between 200 and 400 keV that pure SC and transfer ionization
contribute to the net capture cross section in a 2 : 1 ratio. The
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MURAKAMI, KIRCHNER, HORBATSCH, AND LÜDDE PHYSICAL REVIEW A 85, 052704 (2012)

0

1

2

3

4

5

6

7

8

 10  100  1000

C
ro

ss
 S

ec
tio

n 
[1

0-1
6 cm

2 ]

EP [keV]

net

σ0,1+σ~1,1
2σ0,2

3σ0,3

σ0,1

net [5]

FIG. 4. (Color online) Cross sections for net ionization (net),
single ionization (σ0,1 + σ̃1,1), double ionization (σ0,2), triple ioniza-
tion (σ0,3), and pure single ionization (σ0,1) in proton-H2O collisions
obtained by using the inclusive-probability analysis and an average
over the (0, 0, 0) and (π/2, 0, 0) molecular orientations. Experimental
data are for net ionization: (×) [24], (◦) [28]. The dotted (blue) line
is the theoretical calculation for net ionization from Ref. [5].

cross section for transfer ionization (σ̃1,1) given by Eq. (32)
(dashed line) is also shown in Fig. 3. Transfer ionization is a
double-electron removal process and therefore requires special
attention during the fragmentation analysis (Sec. III B). It
accounts for 20%–30% of the net capture cross section for
all the impact energies shown in Fig. 3.

So far the emphasis has been on the projectile space. We turn
to the electron continuum space in Fig. 4. The experimental
net-ionization cross-section data of Rudd et al. [24] are
shown as crosses. Their measurements were considered to
be very accurate, and Gobet et al. [22] normalized their
fragmentation data using the net ionization cross section of
Ref. [24]. An independent (although less accurate) follow-up
measurement by Bolorizadeh and Rudd [28] resulted in higher
net cross sections (open circles). The present IPM-BGM
result for the net cross section (solid line) shows 20%–30%
agreement for the net ionization over much of the impact-
energy range, but with a different shape. It systematically
overestimates the experimental data below 60–70 keV impact
energy and underestimates them at energies above 100 keV.
The overestimation of net ionization at lower impact energies
may be caused by the lack of dynamical response in the model.
Such response effects were shown to reduce net ionization in
this impact energy range in proton-Ar collisions [29].

According to the present IPM-BGM calculation, multiple-
electron removal makes sizable contributions to the net cross
section below 100 keV impact energy. We display in Fig. 4
cross sections for the single-, double-, and triple-ionization
processes. The amount of transfer ionization is indicated by
the difference between the single-ionization (SI) cross section
according to Eq. (19) (i.e., σ0,1 + σ̃1,1) and pure SI σ0,1

in the plot. These multiple-electron removal processes have
important consequences for the fragmentation cross sections,
as is further discussed in Sec. III B.
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FIG. 5. (Color online) IPM-BGM cross section for pure single
ionization (σ0,1, solid line) compared with experimental data for
H2O+ ion production in the ionization channel of Refs. [27] (�), [22]
(�), and [30] (�), which set a lower bound for σ0,1. The dotted (blue)
line shows the theoretical result from Ref. [5].

The CTMC calculations of Ref. [5] agree well with the data
of Ref. [24] at high energies and display a maximum at 60 keV.
They are dominated more by SI than our results, as is shown
in the next figure.

The cross section for the production of one electron in the
continuum without capture (σ0,1) is shown again in Fig. 5.
This channel represents pure SI and can only lead to singly
charged fragmentation products. Also shown in Fig. 5 are
the experimental cross sections for H2O+ ion production in
the ionization channel of Refs. [22,27,30] (squares). These
data provide a lower bound for the pure SI cross section. The
inclusive-probability result is seen to lie above these data for
impact energies above 40 keV. The CTMC data of Ref. [5]
exceed our cross section by almost a factor of two at the
maximum (near 60 keV). The proximity of our result to the
experimental lower bound suggests that the correct answer
may lie somewhere between the two theoretical results.

In Fig. 6, we turn to the q-fold target electron loss, which
in ion-atom collisions would correspond to recoil charge
state production (note that the symbols used are defined in
Table I). For molecular targets the situation is complicated by
the fact that, for a given charge state q, different ionic species
can be produced. Even the simplest channel (q = 1); that is,
the production of H2O+, results not only in the emission of
this molecular ion, but also in various possible fragmentation
channels. As reviewed most recently by Illescas et al. [31],
there are pathways for H2O+ decay, such as evaporation,

TABLE I. (Color online) Symbols for the experimental data
shown in Figs. 6–8 and their references.

net : Luna [27]

: Gobet [22]

: Werner [30]

H2O+: Luna [27]

: Gobet [22]

: Werner [30]

OH+: Luna [27]
: Gobet [22]

: Werner [30]

H+: Luna [27]
: Gobet [22]

: Werner [30]

O+: Luna [27]
: Gobet [22]

: Werner [30]
σ+: Rudd [24]
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FIG. 6. (Color online) Cross sections for q-fold target electron
loss in proton-H2O collisions found by using the inclusive-probability
analysis and an average over the (0, 0, 0) and (π/2, 0, 0) molecular
orientations. The solid line is the net loss cross section (σ+), which
is equal to the sum of capture and ionization net cross sections (cf.
Figs. 2 and 4). Below are the q = 1-, 2-, and 3-fold loss cross sections
given by Eqs. (33)–(35). The fine solid lines for EP � 1 MeV show
the Bethe-Born cross sections for fragment ion production (from top
to bottom: H2O+, OH+, H+, and O+), evaluated from the net loss cross
section of Ref. [8] and the population ratios of Eq. (36). Experimental
data are shown for net loss [24], and for singly charged fragment
ion production in the combined capture and ionization channels of
Refs. [22,27,30]. The symbols for the experimental data are listed in
Table I.

fission, and breakup, where the emerging singly charged
fragments are OH+, H+, and O+, respectively.

In the top portion of Fig. 6, the IPM-BGM cross section
for net positively-charged-ion production (σ+) obtained from
adding net capture and net ionization is shown as a solid
line. It is compared to the earlier data of Rudd et al. ([24],
crosses), as well as to the more recent data for H2O fragment
production, summed over all positive ions, of Werner et al. [30]
(center-dotted diamonds), Gobet et al. [22] (filled diamonds),
and Luna et al. [27] (open diamonds). The agreement is rather
good for energies up to 200 keV. For higher energies the
shortfall in the prediction of net ionization in the IPM-BGM
calculations becomes apparent (cf. Fig. 4). At the highest
energies the theoretical cross section reaches only about 80%
of the experimental values.

The IPM-BGM production cross sections for H2Oq+ with
q = 1, 2, 3 are shown as dashed, dash-dotted, and dotted lines
respectively in Fig. 6. They are equivalent to the net single-,
double-, and triple-electron removal cross sections given by

σS = σ̃1,0 + σ0,1, (33)

σD = σ̃1,1 + σ0,2, (34)

σT = σ1,2 + σ0,3. (35)

At high projectile energies (EP > 1 MeV), the net cross
section is seen to be dominated by σS . In this energy range, it
has been argued (e.g., Refs. [5,10]) that the singly charged
fragment production cross sections should run in parallel
scaled by the inverse of the ionization potential Ip. This
behavior follows from the classical scattering limit where σS

� ∝
(EP Ip)−1, as well as in the quantum mechanically corrected
Bethe-Born approximation σS

� ∝ (EP Ip)−1(a + b ln EP ) [32],
or alternatively in the binary encounter Bethe model [33].
Thus, we also show the cross sections for the singly charged
products according to the population ratios of

σH2O+ : σH+ : σOH+ : σO+ = 68 : 16 : 13 : 3. (36)

These population ratios are obtained in analogy to Ref. [5];
the branching ratios for fragmentation products are given
according to Tan et al. [23] in Eqs. (27)–(30) and are
combined with the MO ionization potentials Ip taken from
the self-consistent field calculation for the water molecule
of Ref. [19], which enter the energy representation of the
BGM Hamiltonian. Our population ratios are similar to those
of Refs. [5,34] but deviate from the experimental results for
electron scattering at 2 keV by Schutten et al. [35] which favor
the production of H+ over OH+. The Born limit for the net
cross section is taken from Ref. [8]. It lies above the IPM-BGM
result but below the experimental data of Rudd et al. [24].

We find at intermediate and lower energies that the situation
is less clear (i.e., more interesting). From the theoretical
prediction of nontrivial multiple (q-fold) target ionization it
is evident that a simple analysis based on the fixed population
ratios is not sufficient to explain the experimental data for
fragmentation products. Thus, we show only two channels
in Fig. 6; the H2O+ production cross section serves as
an experimental lower bound for σS . At the lowest impact
energies where capture dominates, our calculations do touch
the bound, which indicates that they overestimate multiple-
electron ionization. We also display the experimental data
for positive-oxygen-ion (O+) production in this graph, which
should serve as an upper bound for σT because H2O3+ decays
into two protons and one O+ (assuming that the formation of
O2+ is very unlikely), while a part of σS also contributes to
the O+ production. At the lower energies, σT reaches the level
of the observed O+ production. The compression of the range
of fragmentation cross sections when one goes from higher
to lower impact energies is evidence of the fact that some
of the enhancement in the O+ production must come from
fragmentation following H2Oq+ production with q > 1. A
more detailed look at the fragmentation cross sections follows
in the next section.

B. Fragmentation cross sections

In Fig. 7, we compare the cross sections for the produc-
tion of singly charged fragments with experimental results.
The calculations are based on the exclusive single-vacancy
production cross section for each MO (Sec. II B1) and the
branching ratios as given by Tan et al. [23] (Sec. II B3). The
purpose of this comparison is to highlight the breakdown
of the perturbative single-vacancy production model at low
energies where multiple processes play an important role.
For example, vacancy production in the outermost orbitals
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FIG. 7. (Color online) Fragmentation cross sections for proton-
H2O collisions given by Eqs. (27)–(30), based on the inclusive-
probability analysis and an average over the (0, 0, 0) and (π/2, 0, 0)
molecular orientations. Experimental data are shown for singly
charged fragment ion production in the combined capture and
ionization channels of Refs. [22,27,30]. The fine solid lines for
EP � 1 MeV show the Bethe-Born cross sections for fragment ion
production (cf. Fig. 6). The symbols for the experimental data are
listed in Table I.

(1b1 and 3a1) is associated completely with H2O+ production
according to Eqs. (27)–(30). Obviously, this channel can only
be reached if the vacancy is produced exclusively in one or
the other orbital. The other singly charged ions are produced
by single-vacancy production but can also be produced by
multiple-electron removal processes. It is clear (particularly
from the O+-channel data) that multiple-electron removal
events play a substantial role when impact energies are below
500 keV (cf. Fig. 6).

At high energies, the theoretical fragmentation data in Fig. 7
deviate significantly from the Bethe-Born limit (shown with
fine solid lines above 1 MeV as in Fig. 6). This is caused
most likely by the limited orientation average. The exclusive
single-vacancy production analysis, which is the correct basis
for applying the branching ratios of Tan et al. [23], is based
on MO-specific probabilities which are not averaged properly
over all orientations as we use the two orientations (0,0,0)
and (π/2,0,0) only. Figure 7 shows that averaging just two
orientations is not sufficient for extracting information about
exclusive single-vacancy probabilities, even though it results
in reasonable cross sections for those cases, in which all the
different MO contributions are added.

At lower impact energies, the exclusive single-vacancy
analysis falls short in all channels. Only at intermediate
energies is the production of H2O+ predicted reasonably well,
the other three channels do not show the steep rise toward lower
energies observed in the experimental data. On the one hand,
one can question to what extent the branching ratios of Tan
et al. [23] are applicable outside the perturbative regime. At
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FIG. 8. (Color online) Same as Fig. 7, but theoretical calculations
are based on the fragmentation model given by Eqs. (37)–(40).

energies below 100 keV the exclusive single-vacancy analysis
even fails to predict the H2O+ production cross section;
this points to yet another problem (i.e., misidentification of
unphysical double-electron capture in the inclusive-probability
analysis). It is not straightforward to apply the pragmatic
corrections analogous to Eqs. (31) and (32) in the exclusive
single-vacancy production calculation.

Therefore, we conclude that the fragmentation cross sec-
tions based on Eqs. (27)–(30) are not very useful below
500 keV. In the following we carry out an alternative
calculation of fragmentation based upon q-fold target electron
removal and by the use of Eqs. (31) and (32) to remove the
unphysical double-electron capture.

Figure 8 shows the cross section including the effects of
multiple-electron removal processes without differentiating
between capture and transfer to the continuum. We retain the
H2O+ fragmentation model from Eq. (36) for single-electron
removal and assume for simplicity that only the following
fragmentation reactions are important for double- and triple-
electron removal:

H2O2+ 60%−−→ H+ + OH+,

H2O2+ 20%−−→ H+ + H+ + O0,

H2O2+ 20%−−→ H+ + H0 + O+,

H2O3+ 100%−−→ H+ + H+ + O+.

Then, we have

σH2O+ = 0.68σS, (37)

σOH+ = 0.16σS + 0.6σD, (38)

σH+ = 0.13σS + 1.2σD + 1.0σT , (39)

σO+ = 0.03σS + 0.2σD + 0.5σT , (40)

where σS , σD , and σT are given by Eqs. (33)–(35), respectively,
and the σT contributions have been multiplied by a factor
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of 0.5 to account for the fact that the IPM overestimates
triple processes [36], as seen by comparing our data with the
coincidence measurements of Werner et al. [30].

The fragmentation model of Eqs. (37)–(40) is based upon
the following assumptions: the distribution of singly charged
(q = 1) target production over the singly ionized fragments
is taken from the high-energy limit (as shown in Fig. 6) and
assumed to be applicable at all projectile energies. Double-
electron removal (q = 2) is modelled to reflect the coincidence
measurements of Werner et al. [30] and to produce a balance
between the amounts of H+ and OH+ ions in accord with
observations [36]. Triple-electron removal (q = 3) is assumed
to be predominantly associated with the production of two
protons and a singly charged oxygen atom.

The fragmentation cross sections in Fig. 8 show much better
agreement with the Bethe-Born limit (shown with fine solid
lines above 1 MeV) than those given in Fig. 7, since the
limited orientation average affects the individual-MO cross
sections but not the charge-state correlated cross sections,
on which Eqs. (37)–(40) are built. When moving toward
intermediate energies we notice very good agreement with the
experimental data: the O+ channel is reproduced rather well,
and the crossing of the H+ and OH+ cross sections is predicted
with some accuracy. At the lower energies we find a small
shortfall in the H2O+ fragment production, while the other
channels are described reasonably well. The shortfall of the
H2O+ channel could mean that the assumption of projectile-
energy-independent population ratios for the single-electron
removal is showing its limitations. It could also mean that
the present calculation over-predicts double-electron removal;
transfer ionization in particular may be overestimated in our
IPM. A physical reason for a change in the population ratios
when going from higher to lower impact energies is that slow
collisions will provide time for electronic relaxation, possibly
resulting in less fragmentation (i.e., more H2O+ production).

IV. CONCLUSION

In this work we have presented results and laid out more
details from the IPM-BGM calculation for collisions of protons
with a molecule that has a simple but nontrivial geometry.
First results for net capture and ionization cross sections were
shown previously in Ref. [11] to agree with experimental
data at proton energies between 20 and 5000 keV. The
approach avoids the explicit use of multicenter potential energy
matrix elements in the time-dependent calculation by going
into an energy representation of the target Hamiltonian. The
propagation of single-particle MOs is performed within the
previously developed BGM, and carried out in a representation
in terms of atomic oxygen eigenstates derived from DFT at the
level of the optimized potential method, which includes exact
exchange but no correlation.

The present paper extends the results to compare with
experimental data for charge-state correlated cross sections, as
well as fragmentation data following q-fold electron removal
from the target. The work shows that multiple-ionization
processes should not be ignored, even though they may be
over-predicted within an IPM framework.

We show how a quantum many-electron analysis of the
evolved Slater determinant of single-electron MOs allows us

to use the high-energy-limit branching ratios of Tan et al. [23]
to calculate cross sections for H2O fragmentation products
at intermediate and high energies, where multiple-electron
processes can be neglected. This analysis fails at lower impact
energies due to the importance of multiple-electron removal
processes, particularly transfer ionization. Unfortunately, our
own calculation based on this analysis does not reproduce
the high-energy Bethe-Born limit for technical reasons, since
we do not perform a complete average over molecular
orientations. This causes errors in the calculation of individual
MO-vacancy production, but not in cross sections for which
all the MO contributions are added. A model based on such
cross sections that complements the disintegration model of
H2O+ with populations of OH+, H+, and O+ following two-
and three-electron removal is shown to roughly agree with
experimental fragmentation yields of Refs. [22,27,30], except
for the H2O+ channel at low impact energies where the model
calculation falls short.

Overall one can argue that the calculations are good
to make fragment yield predictions at the 20%–30% level
or better. The prediction of fragmentation following q-fold
electron removal at low to intermediate energies represents
a first theoretical analysis of proton-H2O collisions, but we
note that the modeling of fragmentation events following
multiple-electron removal is not new [1,10].

We also compared our results to another nonperturba-
tive method, namely the three-center CTMC calculations
of Illescas et al. [5]. We find some overall agreement, but
also important discrepancies. In particular, we find that our
single-ionization cross section is below their model prediction,
but note that their net ionization yield is rather high; that is,
that they also predict strong multiple ionization at moderate
energies.

We limited the present study of fragmentation due to q-fold
electron removal without differentiating with respect to capture
and pure ionization, since the normalization of experimental
data at lower energies (10–150 keV) in Refs. [22,27] is
somewhat ambiguous in how transfer ionization is included,
resulting in discrepancies between the experimental data from
the two groups. We have presented a detailed comparison
together with the justification of our fragmentation model in
Ref. [36].

ACKNOWLEDGMENTS

This work was supported by NSERC Canada and by
SHARCNET.

APPENDIX

A two-center basis is most conveniently discussed in an
inertial reference frame whose origin coincides with the c.m.
of both centers (i.e., of the projectile and the oxygen nucleus
in the present case). If we denote the number of (atomic) target
and projectile states by NT and NP , respectively, a Galilean-
invariant two-center AO basis can be written as

φ0
j (�r) =

{
φj (�rT ) exp(i�vT · �r) if j � NT

φj (�rP ) exp(i�vP · �r) if NT < j � NT + NP ,

(A1)
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with �rT , �rP , and �r denoting the position vectors of the
electron with respect to the target, the projectile, and the c.m.,
respectively, and �vT and �vP being the constant velocities of the
atomic target and projectile centers with respect to the c.m. If
the AOs fulfill stationary eigenvalue equations for the (atomic)
target and projectile Hamiltonians

Ĥ T ,P = − 1
2∇2 + V T,P (A2)

in the (moving) target and projectile reference frames, respec-
tively, the states defined by Eq. (A1) satisfy

(Ĥ T ,P − i∂t )
∣∣φ0

j

〉 = gj

∣∣φ0
j

〉
, (A3)

with

gj = εj + v2
T ,P

2
(A4)

and the atomic energy eigenvalues εj . Similarly, the MOs
|�αβγ 〉 which move with the target system satisfy(

Ĥ T
αβγ − i∂t

)|�αβγ 〉 = f�|�αβγ 〉, f� = ε� + 1
2v2

T , (A5)

with the molecular energy eigenvalues ε� [cf. Eqs. (3)
and (7)].

In the following, we use the short-hand notation |j0〉 for
the j th state of Eq. (A1) and

|jJ 〉 = WJ
P |j0〉 (A6)

for the BGM pseudostates, which are constructed by operating
with the regularized projectile potential

WP = 1

rP

(1 − e−rP ), (A7)

on the set of target AOs [12,15]. The solution of the single-
particle equations (1) involves the calculation of the interaction
matrix elements [cf. Eq. (6)]

MKJ
kj (α,β,γ ) = 〈kK|Ĥ T

αβγ + V P (t) − i∂t |jJ 〉 (A8)

for all TC-BGM basis states. We rewrite MKJ
kj by using similar

arguments as in Appendix D of Ref. [37]:

MKJ
kj (α,β,γ ) = 〈kK|1

2
KJ

(∇WP

WP

)2

+ K

K + J
Vj̄

+ J

K + J
Vk̄|jJ 〉 − J

K + J
i∂t 〈kK|jJ 〉

+mKJ
kj (α,β,γ ), (A9)

mKJ
kj (α,β,γ ) = K

K + J
〈k0|WK+J

P

(
Ĥ T

αβγ + V P − Vj̄ − i∂t

) |j0〉 + J

K + J
〈j0|WK+J

P

(
Ĥ T

αβγ + V P − Vk̄ − i∂t

) |k0〉∗, (A10)

where for j � NT we set Vj̄ = V P and Vj = V T , while for j > NT we set Vj̄ = V T and Vj = V P . Inserting
∑

� |�αβγ 〉〈�αβγ | =
1̂ and using Eq. (A5), which is equivalent to introducing the spectral representation (7), turns Eq. (A10) into

mKJ
kj (α,β,γ ) =

∑
�

[
K

K + J
〈k0|WK+J

P

(
Ĥ T

αβγ + V P − Vj̄ − i∂t

) |�αβγ 〉〈�αβγ |j0〉

+ J

K + J
〈j0|WK+J

P

(
Ĥ T

αβγ + V P − Vk̄ − i∂t

) |�αβγ 〉∗〈�αβγ |k0〉∗
]

=
∑
�

{
K

K + J

[〈k0|WK+J
P (V P − Vj̄ + f�)|�αβγ 〉〈�αβγ |j0〉 − 〈k0|WK+J

P |�αβγ 〉i∂t 〈�αβγ |j0〉]

+ J

K + J

[〈k0|�αβγ 〉〈�αβγ |WK+J
P (V P − Vk̄ + f�)|j0〉 + (i∂t 〈k0|�αβγ 〉)〈�αβγ |WK+J

P |j0〉] }
. (A11)

In the next step we rewrite the time derivatives of the overlap matrix elements that occur in the second and fourth terms of
Eq. (A11) by using the single-center expansion (8) of the MOs:

i∂t 〈�αβγ |j0〉 =
∑

s

d�
s,αβγ i∂t 〈s|j0〉 =

∑
s

d�
s,αβγ 〈s|(Vj − V T + gs − gj )|j0〉 =

∑
s

〈�αβγ |s〉〈s|(Vj − V T + gs − gj )|j0〉,

(A12)

and similarly

i∂t 〈k0|�αβγ 〉 =
∑

s

d�
s,αβγ i∂t 〈k0|s〉 =

∑
s

〈�αβγ |k0〉〈k0|(V T − Vk + gk − gs)|s〉. (A13)

This yields

mKJ
kj (α,β,γ ) =

∑
�

{
K

K + J

[
〈k0|WK+J

P (V P − Vj̄ + f�)|�αβγ 〉〈�αβγ |j0〉

−
∑

s

〈k0|WK+J
P |�αβγ 〉〈�αβγ |s〉〈s|(Vj − V T + gs − gj )|j0〉

]
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+ J

K + J

[
〈k0|�αβγ 〉〈�αβγ |WK+J

P (V P − Vk̄ + f�)|j0〉

+
∑

s

〈k0|(V T − Vk + gk − gs)|s〉〈s|�αβγ 〉〈�αβγ |WK+J
P |j0〉

]}
. (A14)

Using completeness relations for both the single-center basis {|s〉} and the MOs {|�αβγ 〉} allows us to cast Eq. (A14) into the
form

mKJ
kj (α,β,γ ) = K

K + J

(∑
�

f�〈k0|WK+J
P |�αβγ 〉〈�αβγ |j0〉 + gj 〈k0|WK+J

P |j0〉 −
∑

s

gs〈k0|WK+J
P |s〉〈s|j0〉

)

+ J

K + J

(∑
�

f�〈k0|�αβγ 〉〈�αβγ |WK+J
P |j0〉 + gk〈k0|WK+J

P |j0〉 −
∑

s

gs〈k0|s〉〈s|WK+J
P |j0〉

)
. (A15)

In the last step we use again the single-center expansion (8) of the MOs and obtain

mKJ
kj (α,β,γ ) = K

K + J

(∑
�

f�

∑
s,t

d�
s,αβγ d�

t,αβγ 〈k0|WK+J
P |s〉〈t |j0〉 + gj 〈k0|WK+J

P |j0〉 −
∑

s

gs〈k0|WK+J
P |s〉〈s|j0〉

)

+ J

K + J

(∑
�

f�

∑
s,t

d�
s,αβγ d�

t,αβγ 〈k0|s〉〈t |WK+J
P |j0〉 + gk〈k0|WK+J

P |j0〉 −
∑

s

gs〈k0|s〉〈s|WK+J
P |j0〉

)
,

(A16)

which involves only energy values, expansion coefficients, and two-center overlap and potential matrix elements. Note that
Eqs. (A9) and (A16) would be equivalent to using the spectral representation of the molecular Hamiltonian directly in Eq. (A8)
as indicated in Eq. (9) if the set of MOs {|�αβγ 〉} and the single-center basis {|s〉} were complete. However, in practice they are
not, and one cannot expect to obtain identical results from both procedures. The main reason why we implemented the seemingly
more cumbersome approach described in this appendix is that Eqs. (A9) and (A16) are completely symmetric with respect to
the projectile and target potentials which define the two-center basis {|j0〉}. This is crucial to ensure that the interaction matrix
elements vanish at large separations between projectile and target and the asymptotic transition probabilities become stable.
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[11] H. J. Lüdde, T. Spranger, M. Horbatsch, and T. Kirchner, Phys.

Rev. A 80, 060702(R) (2009).
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[20] H. J. Lüdde and R. M. Dreizler, J. Phys. B 18, 107 (1985).
[21] T. Kirchner, L. Gulyás, H. J. Lüdde, E. Engel, and R. M. Dreizler,
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M. Lezius, P. Scheier, and T. D. Märk, Phys. Rev. Lett. 86, 3751
(2001).

[27] H. Luna, A. L. F. de Barros, J. A. Wyer, S. W. J. Scully,
J. Lecointre, P. M. Y. Garcia, G. M. Sigaud, A. C. F. Santos,
V. Senthil, M. B. Shah, C. J. Latimer, and E. C. Montenegro,
Phys. Rev. A 75, 042711 (2007).

[28] M. A. Bolorizadeh and M. E. Rudd, Phys. Rev. A 33, 888
(1986).

[29] T. Kirchner, M. Horbatsch, and H. J. Lüdde, Phys. Rev. A 66,
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