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Ultracold collisions between two light indistinguishable diatomic molecules:
Elastic and rotational energy transfer in HD + HD
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A close coupling quantum-mechanical calculation is performed for rotational energy transfer in a HD + HD
collision at very low energy, down to the ultracold temperatures: T ∼ 10−8 K. A global six-dimensional H2-
H2 potential-energy surface is adopted from a previous work [Boothroyd et al., J. Chem. Phys. 116, 666
(2002)]. State-resolved integral cross sections σij→i′j ′ (εkin) of different quantum-mechanical rotational transitions
ij → i ′j ′ in the HD molecules and corresponding state-resolved thermal rate coefficients kij→i′j ′ (T ) have been
computed. Additionally, for comparison, H2 + H2 calculations for a few selected rotational transitions have also
been performed. The hydrogen and deuterated hydrogen molecules are treated as rigid rotors in this work. A
pronounced isotope effect is identified in the cross sections of these collisions at low and ultracold temperatures.
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I. INTRODUCTION

The recent creation and investigation of a quantum gas of
ultracold diatomic molecules [1] is of great interest in many
areas of atomic, molecular, optical, and chemical physics
[2–6]. Research in these fields may have important future
applications, for example, in quantum information processing
[7–10]. From a scientific point of view the creation of the
molecular quantum gas opens new doors, for instance, in
the experimental and theoretical investigation of the cold and
ultracold molecular scattering and chemical reactions [11–16].
It allows researchers to probe the interaction and collisional
properties of different light and heavy molecules in the cold
and ultracold regime: T ∼ 10−4–10−8 K [5,6,11,17,18]. In
this regime, one can expect many shape resonances in the
cross sections arising from the van der Waals force [5,6].
For example, a resonance with a weakly bound level near
zero collision energy can significantly enhance the tunneling
effect through a reaction barrier. By aligning and orienting
the colliding molecules, the anisotropy of the van der Waals
forces enables substantial tuning of the molecular levels to
create such resonances [5].

In this work, the ultracold collision between two deuterated
hydrogen molecules, that is, rotational energy transfer in
HD + HD, is mainly considered. For comparison similar
collision in H2 + H2 is also considered. From a theoretical
point of view the HD + HD system is interesting because
its potential-energy surface (PES) can be derived from the
much studied H2 + H2 system by adjusting the coordinate
of the HD-molecule center of mass. Once the symmetry
is broken in H2-H2 by replacing the H with a D atom in
each H2 we have the precise HD-HD PES. The HD and H2

molecules are treated as rigid monomer rotors in this work,
so we ignore the vibrational degrees of freedom of these
molecules.
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Because of the small reduced mass and large rotational-
energy spacing in the HD-HD system, the number of states
required in the basis set for an accurate quantum-mechanical
calculation should be relatively small. The HD + HD system
has widely spaced rotational-energy levels and, because of
the strong anisotropy of the intermolecular potential, it has
relatively large rotational-energy transition probabilities. Since
HD is a light molecule it can be manipulated easily by an
external electrical field and also the laser cooling of this
diatomic molecule seems possible, making this system of
current experimental interest.

Surprisingly, such a fundamental and attractive quantum
four-atomic system has not received substantial attention in
previous experimental and theoretical investigations. Several
molecular-beam studies of HD + HD involve the measurement
of a few rotational probabilities [19], integral cross sections
for unresolved internal [20] and rotational energy transfer rates
[21,22]. Nevertheless, there are only a few calculations dealing
with the rotational excitation in the HD + HD collision,
for example, an early modified-wave-number calculation by
Takayanagi [23], semiclassical calculations by Gelb and Alper
[24], and Cacciatore and Billing [25].

Hydrogen isotope effects have often attracted considerable
attention [26]. In this work we carry out such consideration
within the HD + HD and H2 + H2 systems at high, low,
and ultracold temperatures. In the next section we briefly
present the quantum-mechanical approach that is used in this
work and the PES. In Sec. III we present numerical results
for both HD + HD and H2 + H2 collisions. Additionally, we
present a brief discussion of the numerical convergence of
the results. Finally, in Sec. IV we present a summary and
conclusion.

II. METHOD: QUANTUM DYNAMICS

Here we briefly present the close-coupling quantum-
mechanical approach used in this study to calculate the
cross sections and thermal rate coefficients of molecular
hydrogen-hydrogen collision. The Schrödinger equation for
the (12) + (34) collision in the center of a mass frame, where
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FIG. 1. Four-atomic system (12) + (34) or HD + HD, where H is
a hydrogen atom and D is deuterium, represented by few-body Jacobi
coordinates: �r1, �r2, and �R. The vector �R connects the center of masses
of the two HD molecules and is directed over the axis OZ, θ1 is the
angle between �r1 and �R, θ2 is the angle between �r2 and �R, ϕ2 is the
torsional angle, and �j1, �j2, and �L are quantum angular momenta over
the corresponding Jacobi coordinates �r1, �r2, and �R.

(12) and (34) are linear rigid rotors is [27,28]

(
P 2

�R
2M12

+ L2
r̂1

2μ1r
2
1

+ L2
r̂2

2μ2r
2
2

+ V (�r1,�r2, �R) − E

)

×�(r̂1,r̂2, �R) = 0, (1)

where P �R is the relative momentum operator, �R is the relative
position vector, M12 is the reduced mass of the pair M12 =
(m1 + m2)(m3 + m4)/(m1 + m2 + m3 + m4), μ1(2) are re-
duced masses of the targets: μ1(2) = m1(3)m2(4)/(m1(3) +
m2(4)), r̂1(2) are the angles of orientation of rotors (12) and
(34), respectively, E is the total center-of-mass energy, and
V (�r1,�r2, �R) is the potential energy surface for the four atomic
system (12) + (34). The system is shown in Fig. 1. Basically,
the PESs of the H2-H2 and the HD-HD systems are the
same. However, there is a small but important difference.
To obtain the HD-HD PES from the existing H2-H2 surface
[29] one needs to appropriately shift the center of mass in
the hydrogen molecules (H2). The usual rigid rotor model
[27,30–33] has also been applied in astrophysical calcu-
lations of different atom and diatomic-molecule collisions
or two diatomic-molecule collisions at low temperatures:
T < 2000 K.

The eigenfunctions of the operators Lr̂1(2) in Eq. (1) are
simple spherical harmonics Yjimi

(r̂). To solve Eq. (1) the
following expansion is used [27]:

�(r̂1,r̂2, �R) =
∑

JMj1j2j12L

UJM
j1j2j12L

(R)

R
φJM

j1j2j12L
(r̂1,r̂2, �R), (2)

where J is the total angular momentum quantum number, M

is its projection onto the space fixed z axis, and the channel
expansion functions are

φJM
j1j2j12L

(r̂1,r̂2, �R) =
∑

m1m2m12m

C
j12m12
j1m1j2m2

CJM
j12m12Lm

×Yj1m1 (r̂1)Yj2m2 (r̂2)YLm(R̂), (3)

with j1 + j2 = j12, j12 + L = J , and m1, m2, m12, and m the
projections of j1, j2, j12, and L, respectively.

Substitution of Eq. (2) into (1) provides a set of coupled
second order differential equations for the unknown radial

functions UJM
α (R),(
d2

dR2
− L(L + 1)

R2
+ k2

α

)
UJM

α (R)

= 2M12

∑
α′
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φJM

α (r̂1,r̂2, �R)
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× ∣∣φJM
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〉
UJM

α′ (R)dr̂1dr̂2dR̂, (4)

where α ≡ (j1j2j12L). We apply the hybrid modified log-
derivative-Airy propagator in the general purpose scattering
program MOLSCAT [34] to solve the coupled Eq. (4). Addi-
tionally, we have tested other propagator schemes included in
MOLSCAT. Our calculations revealed that other propagators can
also produce quite stable results.

Boothroyd et al. (BMKP) [29] constructed a global six-
dimensional PES for two hydrogen molecules, especially
to represent the whole interaction region of the chemical
reaction dynamics of the four-atomic system and to provide
an accurate estimate of the van der Waals well. The ground
state and a few excited-state energies were calculated. In the
six-dimensional configuration space of the H2-H2 system the
conical intersection forms a complicated three-dimensional
hypersurface. The new potential fits the van der Waals well to
an accuracy of about 5% [29]. In our calculation of the BMKP
PES for H2 + H2 the bond length was fixed at 1.449 a.u. or
r(H2) = 0.7668 Å as in the Diep and Johnson (DJ) PES [35].
In the case of the HD + HD calculation the bond length of HD
was adopted at r(HD) = 0.7631 Å.

The log-derivative matrix of the wave function is prop-
agated to large R-intermolecular distances since all exper-
imentally observable quantum information about the colli-
sion is contained in the asymptotic behavior of functions
UJM

α (R → ∞). The numerical results are matched to the
known asymptotic solution to derive the physical scattering
S-matrix

UJ
α ∼

R→+∞
δαα′e−i[kααR−(Lπ/2)] −

(
kαα

kαα′

)1/2

× SJ
αα′e

−i[kαα′ R−(L′π/2)], (5)

where kαα′ = [2M12(E + Eα − Eα′ )]1/2 is the channel wave
number, Eα(α′) are rotational channel energies, and E is the
total energy in the (1234) system. The method was used for
each partial wave until a converged cross section was obtained.

Cross sections for rotational excitation and relaxation can
be obtained directly from the S matrix. In particular the cross
sections for excitation from j1j2 → j ′

1j
′
2 summed over the

final m′
1m

′
2 and averaged over the initial m1m2 are given by

σ (j ′
1,j

′
2; j1j2,ε)

=
∑

Jj12j
′
12LL′

π (2J + 1)

(2j1 + 1)(2j2 + 1)kαα′

×|δαα′ − SJ (j ′
1,j

′
2,j

′
12L

′; j1,j2,j12,L; E)|2. (6)

The kinetic energy is ε = E − B1j1(j1 + 1) − B2j2(j2 + 1),
where B1(2) are the rotation constants of rigid rotors (12) and
(34), respectively.

The relationship between the rate coefficient kj1j2→j ′
1j

′
2
(T )

and the corresponding cross section σj1j2→j ′
1j

′
2
(ε) can be
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obtained through the following weighted average:

kj1j2→j ′
1j

′
2
(T ) =

√
8kBT

πM12

1

(kBT )2

∫ ∞

εs

σj1j2→j ′
1j

′
2
(ε)e−ε/kBT εdε,

(7)

where kB is Boltzmann constant, M12 is reduced mass of the
molecule-molecule system, and εs is the minimum kinetic
energy for the levels j1 and j2 to become accessible.

III. RESULTS

In this section our numerical results for rotational
transitions in HD + HD collision and para/para-hydrogen
molecules are presented. We carry out state-to-state com-
parison between these two collisions for selected rotational
transitions in the HD and H2 molecules. Specifically the
following rotational energy transfer processes are considered:

HD(j1) + HD(j2) → HD(j ′
1) + HD(j ′

2), (8)

H2(j1) + H2(j2) → H2(j ′
1) + H2(j ′

2). (9)

At first look one might expect that the scattering outputs of
these two collisions (8) and (9) should be close to each other.
This is because the PESs of H2-H2 and HD-HD are almost
the same six-dimensional functions of the H4 four-atomic
system coordinates. This fact follows from the general idea
of the Born-Oppenheimer model [36] and simple theoretical
atom-molecular consideration. Therefore, the two processes
(8) and (9) should lead to similar results. At the same time
the HD and H2 molecules have different rotational constants.

This difference is not dramatic: the rotational constant of H2

is Be(H2) = 60.8 cm−1, but the same parameter for HD is
Be(HD) = 44.7 cm−1.

The HD + HD system has only four electrons. Furthermore,
the HD molecule consists of two nonidentical atoms which
are in a covalent bond. In covalent bonding the spins of
the electrons are antiparallel. The interaction of one of the
nuclei, H+ or D+, with its own electron leads to a quantum
configuration where the spin of its electron is oriented
antiparallel to the spin of the nucleus, that is, H+ or D+. Thus,
the spins of H+ and D+ are antiparallel. Because the spin of
H+ is I1 = −1/2 and the spin of D+ is I2 = 1 the resulting
spin of the HD molecule nucleus is I12 = 1/2. This value has
been adopted in the current calculation, although there may be
other possible values. The processes (8) and (9) are collisions
between two indistinguishable diatomic molecules. This fact
is taken into account in this computation.

A. Comparison between HD + HD and H2 + H2

state-selected integral cross sections

The precise HD-HD PES can be derived from the H2-H2

surface by adjusting (i.e., shifting) the coordinates of the center
of masses of the two H2 molecules to the center of masses of
the HD molecules. Once the symmetry is broken in H2-H2

by replacing the H atoms with the D atoms in the two H2

molecules we obtain the full HD-HD PES. The new potential
will possess all parts of the HD-HD interaction. Therefore, it
will be interesting to consider scattering in two systems, which
are not very different like HD + HD and H2 + H2.

TABLE I. Rotational channel energies in the two hydrogen systems: (a) HD + HD and (b) para-H2 + para-H2.

(a) HD(j1) + HD(j2) (b) para-H2(j1) + para-H2(j2)

j1 j2 j12 νa εHD
j1j2

(νa) (cm−1) j1 j2 j12 νb ε
H2
j1j2

(νb) (cm−1)

0 0 0 1 0.0 0 0 0 1 0.0
0 1 1 2 89.4 0 2 2 2 364.8
0 2 2 3 268.2 0 4 4 3 1216.0

1 1 0 4 178.8 2 2 0 4 729.6
1 1 1 4 178.8 2 2 1 4 729.6
1 1 2 4 178.8 2 2 2 4 729.6

2 2 3 4 729.6
2 2 4 4 729.6

1 2 1 5 357.6 2 4 2 5 1580.8
1 2 2 5 357.6 2 4 3 5 1580.8
1 2 3 5 357.6 2 4 4 5 1580.8

2 4 5 5 1580.8
2 4 6 5 1580.8

2 2 0 6 536.4 4 4 0 6 2432.0
2 2 1 6 536.4 4 4 1 6 2432.0
2 2 2 6 536.4 4 4 2 6 2432.0
2 2 3 6 536.4 4 4 3 6 2432.0
2 2 4 6 536.4 4 4 4 6 2432.0

4 4 5 6 2432.0
4 4 6 6 2432.0
4 4 7 6 2432.0
4 4 8 6 2432.0
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In this work a large number of test calculations have been
done to secure the convergence of the results with respect to all
parameters that enter into the propagation of the Schrödinger
equation (1). This includes the intermolecular distance R, the
total angular momentum J of the four atomic system, the
number of rotational levels Nlvl to be included in the close
coupling expansion, and some others, see the MOLSCAT manual
[34]. We reached convergence for the integral cross sections
σ (Ekin) in all cases. However, it was particularly difficult to
achieve convergence on the parameter R in both cases. For
the applied BMKP PES we used Rmin = 2 Å to Rmax = 50 Å.
We also applied a few different propagators included in the
MOLSCAT program.

In a previous paper we presented a detailed description
of a convergence test for the H2 + H2 collision [32]. The
same numerical convergence has been achieved in this work.
Namely, stable total cross sections have been obtained with
respect to the number Nlvl of the rotational levels to be included
in the basis set (2) of HD + HD, that is, in each HD molecule
the discrete integer quantum numbers j1 and j2 run from 0
to 4. As a result a maximum number Nlvl(=55) of rotational
levels in HD + HD has been generated. With regard to the
total quantum angular momentum J in the HD + HD system
at T ∼ 10−8–10−6 K we needed to adopt just a few discrete
values of this parameter, that is Jmax = 3 or 4 was quite enough.
However, at larger collision energies Ekin, such as the ones we
considered at T ∼ 4000 K, one needs up to Jmax ≈ 60. In the
case of Ekin ∼ 14 000 K: Jmax ≈ 120.

We present in Table I the rotational channel energies in the
HD-HD and para-H2-para-H2 systems. This is a comparative
table of the rotational spectra of these two systems. The first
five columns from the left present HD-HD and the other five
columns present the para-H2-para-H2 system; j1 and j2 are
the quantum orbital momenta of the HD and H2 molecules,
�j12 = �j1 + �j2, with |j1 − j2| � j12 � j1 + j2, the index νa(b)

is the current number of the degenerate rotational levels in HD
and H2, respectively. The rotational energy levels are shown
in cm−1. The goal of this work is to investigate the ultracold
regime in HD + HD, calculate its rotational energy transfer
cross sections and thermal rate coefficients, and to carry

FIG. 2. (Color online) Integral cross sections for the HD + HD
elastic scattering computed with the modified BMKP PES [29]
together with the experimental and theoretical data from work [20].

out comparison with the corresponding (when νa = νb, see
Table I) rotational transitions in para-H2-para-H2 collision.

There are two slightly different definitions [37] of the
rotational cross sections in collisions between two identical
diatomic molecules, for example, in HD(j1) + HD(j2) →
HD(j ′

1) + HD(j ′
2). The cross section for the rotational tran-

sition j1j2 → j ′
1j

′
2 is [27,34] σ ∼ (1 + δj1j2 )(1 + δj ′

1j
′
2
). How-

ever, in Ref. [38] the same cross section has been defined
as σ ∼ (1 + δj1j2δj ′

1j
′
2
). It is seen that the two cross sections

coincide when j1 	= j2 and j ′
1 	= j ′

2. However, for other
combinations of the rotational quantum numbers, namely,
when j1 = j2 and/or j ′

1 = j ′
2, the cross section calculated

in accord with Refs. [27,34] is two times larger than the
cross section from Ref. [38]. This has been taken into
account in calculation with the MOLSCAT program [34], that is,
for the integral cross sections σ (j ′

1j
′
2; j1j2,ε) from Eq. (6)

the following prefactor [(1 + δj1j2 )(1 + δj ′
1j

′
2
)]−1 has been

adopted.
First, let us turn to HD + HD elastic scattering. In Fig. 2 we

show results of this work computed with the modified BMKP

TABLE II. Comparison between different but “corresponding” (νa = νb) state-resolved cross sections (Å2) in the HD + HD and para-
H2 + para-H2 collisions at ultracold T = 1.439 × 10−8 K and very high T = 14 390.0 K temperatures.

HD(j1) + HD(j2) → HD(j ′
1) + HD(j ′

2) H2(j1) + H2(j2) → H2(j ′
1) + H2(j ′

2)

Ekin, K εHD
j1j2

(ν) j1 j2 j ′
1 j ′

2 σ HD
j1j2→j ′

1j ′
2

ε
H2
j1j2

(ν) j1 j2 j ′
1 j ′

2 σ
H2
j1j2→j ′

1j ′
2

1.439 × 10−8 89.4 0 1 0 0 1.00 × 105 364.8 0 2 0 0 0.65 × 102

0 0 0 1 3.34 × 10−5 0 0 0 2 0.89 × 10−8

178.8 1 1 0 1 1.94 × 104 729.6 2 2 0 2 2.06 × 102

1 1 0 0 0.50 × 104 2 2 0 0 17.8
536.4 2 2 1 1 0.52 × 104 2432.0 4 4 2 2 2.31

2 2 0 2 0.55 × 103 4 4 0 4 1.12
2 2 0 1 0.94 × 103 4 4 0 2 0.50 × 10−1

2 2 0 0 1.28 × 102 4 4 0 0 1.94 × 10−3

1.439 × 104 89.4 0 1 0 0 0.60 364.8 0 2 0 0 0.25
0 0 0 1 1.78 0 0 0 2 1.18

357.6 1 2 1 1 1.07 1580.8 2 4 2 2 0.44
1 2 0 2 0.57 2 4 0 4 0.374
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PES [29] together with the corresponding data (experiment
and theory) from relatively old papers [20]. As can be seen
all these cross sections are in a satisfactory agreement with
each other. This test calculation reveals the reliability of
the modified BMKP PES, the computer program, and the
numerical convergence. One can see that at low and very low
energies the general forms of the cross sections are rather close
to each other with the exception of a shape resonance and small
oscillations in the cross sections in Fig. 2.

In Table II few selected state-to-state cross sections for
the HD + HD and H2 + H2 collisions are presented. Here
we compare results for few specific rotational excitation and
de-excitation integral cross sections at only two values of
kinetic energy, namely at T1 ∼ 10−8 K, and at very high
collision energy, that is, T2 ∼ 14 000 K. At low temperature
the HD + HD cross section could be larger by three to four
orders of magnitude, whereas at high temperature the two
cross sections are of the same order.

In Figs. 3, 4, and 5 we present a few state-selected
rotational transition cross sections in collisions (8) and (9).
It is useful to see the corresponding cross sections together
on a single plot, that is when νa = νb. For example, in
Fig. 3(a) we show rotational transition de-excitation cross

(a)

(b)

FIG. 3. (Color online) (a) Inelastic scattering integral cross sec-
tions for HD(0) + HD(1) → HD(0) + HD(0) and H2(0) + H2(2) →
H2(0) + H2(0). (b) The same for HD(1) + HD(2) → HD(1) + HD(1)
and H2(2) + H2(4) → H2(2) + H2(2).

sections from the first excited states of HD and H2 molecules,
that is, we consider HD(0) + HD(1) → HD(0) + HD(0) and
H2(0) + H2(2) → H2(0) + H2(0) for a wide range of kinetic
energies: from 1 to up to 4000 K. In the case of H2 + H2 we
carry out computations with two different PESs, for example,
with the BMKP PES [29] and with the Diep-Johnson (DJ)
H2-H2 PES from Ref. [35]. The last one was formulated for
fixed equilibrium distances between the hydrogen atoms in
each H2 molecule. In Fig. 3(b) we show cross sections for
some other de-excitation processes in the HD-HD system.

Further results for the integral cross section are shown in
Figs. 4 and 5. The cross sections for following processes are
presented in Fig. 4(a): HD(1) + HD(2) → HD(0) + HD(1)
and H2(2) + H2(4) → H2(0) + H2(2). The cross sections
of HD(2) + HD(2) → HD(1) + HD(2) and H2(4) + H2(4) →
H2(2) + H2(4) are shown in Fig. 4(b). It is seen in Fig. 4(a)
that the HD + HD de-excitation cross sections could be larger
than the H2 + H2 de-excitation cross sections by four orders of
magnitudes. For the cross sections in Fig. 4(b) the difference is
about a factor of 103. In Fig. 5(a) we show results for rotational
transitions: HD(2) + HD(2) → HD(1) + HD(1) and H2(4) +
H2(4) → H2(2) + H2(2). In Fig. 5(b) we show the same for
the following transitions: HD(2) + HD(2) → HD(0) + HD(2)

(a)

(b)

FIG. 4. (Color online) (a) Inelastic scattering integral cross sec-
tions for HD(1) + HD(2) → HD(0) + HD(1) and H2(2) + H2(4) →
H2(0) + H2(2). (b) The same for HD(2) + HD(2) → HD(1) + HD(2)
and H2(4) + H2(4) → H2(2) + H2(4).
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(a)

(b)

FIG. 5. (Color online) (a) Inelastic scattering integral cross sec-
tions for HD(2) + HD(2) → HD(1) + HD(1) and H2(4) + H2(4) →
H2(2) + H2(2). (b) The same for HD(2) + HD(2) → HD(0) + HD(2)
and H2(4) + H2(4) → H2(0) + H2(4).

and H2(4) + H2(4) → H2(0) + H2(4). Again, in both cases the
HD + HD cross sections could be larger than the H2 + H2 at
1 K by four orders of magnitude. We see in Figs. 3, 4, and 5
that for the de-excitation processes for H2 + H2, the BMKP
and the DJ PESs provide similar results with the exceptions
shown in Fig. 2.

In Ref. [39] it was shown that for a specific excitation
rotational transition in the H2 + H2 inelastic scattering, for
example, in H2(0) + H2(0) → H2(0) + H2(2), the BMKP PES
provides an incorrect cross section when compared to the DJ
potential. The comparison was also carried out with available
experimental data [40]. Nevertheless, the BMKP PES has
been applied to the important (astrophysical) o-/p-H2 + HD
inelastic scattering problem [41,42]. This is why we applied
the BMKP PES to the HD + HD scattering problem.

In conclusion, based on the Born-Oppenheimer model
treatment, the HD + HD and H2 + H2 have similar PESs.
However, in the case of the HD-HD system the original H2-H2

PES is adopted and the two center of masses of both H2

molecules is just slightly shifted to the appropriate positions
of the HD molecule center of masses. After this procedure
we obtain the full space, that is, global HD-HD PES. Our
computations with this modified PES revealed a very strong

FIG. 6. (Color online) Thermal rate coefficients for the
inelastic scattering processes HD(0) + HD(1) → HD(0) + HD(0),
HD(1) + HD(1) → HD(0) + HD(1), and HD(1) + HD(1) →
HD(0) + HD(0), at ultracold temperatures.

isotopic effect in the HD + HD and H2 + H2 collisions at low
energies.

B. HD + HD rotational state-selected thermal
rate coefficients at ultracold temperatures

We show in Figs. 6, 7, 8, and 9 the thermal rate coefficients
in the inelastic HD + HD collision at very low temperatures
from ∼5 × 10−7 to ∼2 × 10−5 K. These results were obtained
from corresponding state-resolved integral cross sections
σj1j2→j ′

1j2 (ε) with the use of expression (7). Only de-excitation
thermal rates have been computed, because at such a low
temperature the excitation thermal rates are extremely small.
The rates have been computed for different initial rotational
states of the HD molecules. The figure captions include
the information about the specific state-selected rotational
transitions in both HD molecules before and after collision.

In Fig. 6 we show results for the rates kj1j2→j ′
1j2 (T ) for

the inelastic scattering processes from the first three rotational

FIG. 7. (Color online) The same as in Fig. 6 for following
processes: HD(0) + HD(2) → HD(0) + HD(1), HD(0) + HD(2) →
HD(1) + HD(1), and HD(0) + HD(2) → HD(0) + HD(0).
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FIG. 8. (Color online) The same as in Fig. 6 for following
processes: HD(1) + HD(2) → HD(1) + HD(1), HD(1) + HD(2) →
HD(0) + HD(2), HD(1) + HD(2) → HD(0) + HD(1), and HD(1) +
HD(2) → HD(0) + HD(0).

states. In Fig. 7 we show the rates for transition from the excited
states. These transitions correspond to different de-excitations
from lower initial rotational states in the HD-HD system.
In Fig. 6 the initial state for the solid line corresponds to
the first excited rotational state in HD + HD. From Table I
one can see that for this state of the system: νa = 2. The
two other lines in Fig. 6 correspond to the initial state with
νa = 4, that is Ein = 178.8 cm−1. The rates for the initial state
HD(1) + HD(1) in Fig. 6 are smaller than those for the initial
state HD(0) + HD(1), although all three rates have similar
dependence on temperature.

In Fig. 7 we show the rates for some de-excitation
transitions from the initial state HD(0) + HD(2), which is the
third rotational excited state in HD + HD: νa = 3. Although
we again observe that the behavior of the thermal rates
kj1j2→j ′

1j2 (T ) is quite identical, their values significantly differ
from each other, specifically up to two orders of magni-

FIG. 9. (Color online) The same as in Fig. 6 for following
processes: HD(2) + HD(2) → HD(1) + HD(2), HD(2) + HD(2) →
HD(1) + HD(1), HD(2) + HD(2) → HD(0) + HD(2), HD(2) +
HD(2) → HD(0) + HD(1), and HD(2) + HD(2) → HD(0) +
HD(0).

tude. Furthermore, the thermal rate coefficients kj1j2→j ′
1j2 (T )

from the higher excited rotational states HD(1) + HD(2) and
HD(2) + HD(2) are presented in Figs. 8 and 9, respectively.
Specifically, these rates are from the energy levels 357.6 and
536.4 cm−1 corresponding to the following two indices: νa = 5
and νa = 6, respectively (see Table I). In these calculations
we needed a fairly extended number of basis functions in
the expansion (2) for convergence. However, this is quite
understandable because of the large energy of the initial state.
For example, in the calculation of rotational transitions from
that level with the following rotational indices j1 = 2,j2 = 2,
that is, νa = 6 and εHD

j1j2
= 536.4 cm−1 (Table I) all lower lying

rotational levels have to be included in the computation.
It is known that a quantum-mechanical transition proba-

bility Pα→β between any two quantum states, for example,
the initial α = (j1j2) and final β = (j ′

1j
′
2), is inversely pro-

portional to the energy gap �εαβ between these two states. In
turn, the cross sections σαβ(E) and corresponding thermal rate
coefficients kαβ(T ) are directly proportional to the quantum
probabilities. Thus

kα→β(T ) ∼ 1/�εαβ. (10)

However, a quite unexpected result relating the rates in the
following reactions is seen in the present study:

HD(0) + HD(2) → HD(0) + HD(1), (11)

HD(0) + HD(2) → HD(1) + HD(1). (12)

It is seen from Fig. 7 that process (11) has much larger
thermal rate coefficients than process (12). The difference
between these rates is about an order of magnitude. At the
same time the energy difference between the HD molecule
rotational states in Eq. (11) is �ε02−01 = 178.8 cm−1, which
is larger than in Eq. (12), for which �ε02−11 = 89.4 cm−1. In
accord with relationship (10) one could expect that process
(11) would have lower values of the thermal rates than process
(12), but it does not. This happens because in Eq. (12) both
HD molecules simultaneously change their internal states,
that is, rotational quantum numbers. Probably this is the
reason that process (12) is much slower than (11). This
result is somewhat similar to older computational data on the
H2 + H2 collision [32,43], where the authors found that the
excitation process H2(0) + H2(0) → H2(4) + H2(2) has larger
cross sections at larger collision energies than the process
H2(0) + H2(0) → H2(4) + H2(0).

IV. CONCLUSIONS AND FUTURE WORK

Currently theoretical and experimental research in the
field of the molecular Bose-Einstein condensates at ultracold
temperatures is increasingly gaining momentum [1,44,45].
For example, in recent work [45] the authors develop a
promising approach for laser cooling of diatomic polar
molecules. The method should allow the production of large
samples of molecules at ultracold temperatures. Only a
few of the possible practical and technological applications
where new results of this research could be used have been
briefly outlined in the Introduction. Researchers in this new
field of atomic, molecular, and optical physics have had
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tremendous success within last two decades. It is useful
to have exact, high quality full space PESs for such polar
molecule interactions. In turn the HD + HD system could
be a prototype collision between two polar molecules with
a high quality full space four-atomic PES. In this work
we performed a detailed quantum-mechanical study of the
state-resolved rotational excitation and de-excitation collisions
between hydrogen molecules. The HD + HD → HD + HD
and H2 + H2 → H2 + H2 collisions have been considered and
their rotational state-selected integral cross sections have been
computed for a wide range of temperatures, that is, from
ultracold T ∼ 10−8 K to up to T ∼ 14 000 K. We have
demonstrated that a small change in the H2-H2 PES to adjust
for HD-HD can lead to substantial differences in the scattering
outputs, that is, in the integral state resolved cross sections.
This calculation was carried out within a single H4 PES from
Ref. [29].

Furthermore, in connection with the problems of coherent
control of the atomic and molecular interactions, the authors of
Ref. [46] performed a numerical investigation of the quantum
entanglement for the case of a nonreactive ultracold collision
between two indistinguishable (H2 + H2) molecules. Simi-
larly, the initial state quantum entanglement coupling has been
considered for the case of ultracold collision between identical

two-atomic polar molecules [47]. It would also be useful to
mention here that universal relations for strongly correlated
fermions have been derived recently [48,49]. Because the
HD molecules are fermions with a well known interaction
potential, they could be useful, for example, in direct numerical
verification of these universal relations.

The authors of Ref. [50] formulated a time-independent
quantum-mechanical formalism to describe the dynamics of
molecules with permanent electric dipole moments in a two-
dimensional confined geometry such as in a one-dimensional
optical lattice. It would be useful in future investigation to
adopt these techniques and apply them to a fermionic molecule
system such as HD + HD with a well-known potential [29,51].
It would be interesting to see differences in the quantum
dynamics between the state-resolved HD + HD rotational
thermal rate coefficients of the current work and possible new
thermal rates for the same system but when embedded in a
one-dimensional optical lattice or a microwave trap.
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