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Electromagnetic vacuum of complex media. II. Lamb shift and total vacuum energy
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We study the relation between the electromagnetic vacuum energy of a random medium and its optical response.
The medium is modeled by a collection of molecular electric dipoles. First, we evaluate the contribution of
statistical fluctuations to the average total vacuum energy, which is made out of the integration of the variations
of the Lamb shift of the individual dipoles with respect to the coupling constant. While the Lamb shift is a
function of the electrical susceptibility only, the vacuum energy is generally not. Second, we compare several
approximations to the computation of the vacuum energy. In particular, we make clear why the bulk energy of an
effective medium does not account for the total vacuum energy of a molecular dielectric. Consequently, the Lamb
shift does not derive from the effective medium bulk energy except at leading order in the molecular density.
The local field factors provide natural cutoffs for the spectrum of the total vacuum energy at a wavelength of
the order of the correlation length. Third, we investigate to what extent the shift of the resonant frequency of the
dielectric constant may be attributed to the binding energy of a dielectric. In particular, in the effective medium
approximation we have found an equivalence between the energy of longitudinal long-wavelength modes and
the Lorentz-Lorenz shift. Nonetheless, we conclude that the dielectric constant resonance shift is insufficient to
estimate the binding energy of molecular clusters.
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I. INTRODUCTION

It has long since been recognized that the Casimir effects,
the van der Waals (vdW) forces, and the Lamb shifts share
a common origin [1–3]. It is customary to ascribe the vdW
forces and the Lamb shifts to the short-range interactions
between the microscopic constituents of dielectric media. In
contrast, the Casimir effects are attributed to the long-range
interactions between macroscopic objects. Also, some authors
refer to the energy of discrete modes as Casimir energy while
they term bulk energy that of the continuous spectrum [4–6].
In this paper we deal with a translation-invariant molecular
dielectric made of atomic electric dipoles. Therefore, aside
from possible geometrical resonances in clusters, the spectrum
of electromagnetic (EM) fluctuations is continuous and the
above distinctions are unnecessary.

We aim to compute the EM energy of the ground state of
both the individual dipole constituents and the dielectric as a
whole. Due to the mutual interactions among the dipoles, both
ground-state energy levels happen to be shifted with respect
to certain values considered as “bare.” In the case of the self-
energy of the individual dipoles that shift is referred to as
the van der Waals shift [7–9], single-molecule Lamb shift,
or Lamb shift in short [10,11]. In the case of the energy of
the dielectric as a whole, that shift is referred to as binding
energy [12–14]. It has been also recognized that the latter can
be interpreted, when computed out of the vacuum fluctuations
of the EM field with respect to the zero-point EM energy, as
the EM vacuum energy [15–18]. Throughout this paper we
refer to it both ways.

On the other hand, both the Lamb shift and the binding
energy of the dielectric manifest themselves in the shifts of
the resonant frequencies of the individual dipole polarizabil-
ities and of the dielectric constant, respectively. While the
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correspondence is well understood in the case of individual
dipoles [8,19], the relation is not that obvious in the case of
the dielectric constant. In particular, the dielectric constant
is defined in the long-wavelength limit of the effective
medium theory. For that reason, the energy associated with
the resonance shift of the dielectric constant is not expected
to be the actual binding energy. It is referred to as collective
Lamb shift after Friedberg et al. [11,20–22]. It is one of the
purposes of this article to investigate the relation between the
binding energy and the dielectric constant.

The energy shifts we are interested in are those due to
the EM dipole-dipole interactions and to the interactions of
each dipole alone with bare radiation. In order to identify
these shifts we must first identify the bare bound-state levels
prior to the coupling of the dipoles to each other and
to bare radiation. These are the single-atom bound states
which are obtained formally by solving the corresponding
nonrelativistic Schrödinger equation with an electron-nucleus
electrostatic interaction potential in the Born-Oppenheimer
(BO) approximation, and the molecular clusters which are
bounded by short-ranged forces other than the long-ranged
dipole ones. Examples of the latter forces are those derived
from the short-ranged part of the Lennard-Jones potential and
the steric forces of the molecules in liquid crystals [23]. The
addition of the energies of these bare bound states together
with the energy of the bare radiative field in free space amount
to a (divergent) zero-point constant value to be regularized.

The energies of the bare atomic levels are parameterized by
the bare resonant frequencies of the atomic transitions, which
account for the electrostatic interactions of the electrons and
the nucleus of each atom alone in the BO approximation [24].
The renormalization of the bare resonance of each dipole is
due to both its interaction with the bare radiative field and to
its interaction with the rest of the dipoles. The former gives
rise to the free-space Lamb shift [7,16,25]. It is common to
all the dipoles and additive. The latter interaction is mediated
by the multiple scattering of virtual photons and gives rise to
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an additional self-energy that we term scattering Lamb shift.
In the literature the energy shift which experiences a foreign
dipole due to its interaction with a host medium is often
referred to as vdW shift (cf. [7–9]). Throughout this paper
we stick to the term Lamb shift as used by Fleischhauer [10]
to refer to the total self-energy gained by host single dipoles
since the free-space and the scattering Lamb shifts enter the
renormalized polarizability on the same footing. Physically,
the scattering Lamb shift is the energy supplied (or released)
in the removal of one of the dipoles out of the dielectric.
The vdW forces and torques acting upon each dipole derive
from it [19,26]. Its integration is a nonadditive binding energy
which involves a number of dipoles and collective degrees of
freedom (d.o.f.). The nonadditive character of the scattering
Lamb shift can be better explained in terms of the decay of
excited atoms. When one of the dipoles is in an excited state,
its resonant frequency is shifted as a result of a “resonant”
Lamb shift which contains a scattering contribution [7,8,19].
Therefore, part of the energy released through single dipole
emission corresponds to the resonant scattering Lamb shift
which involves multiple dipole interactions. The calculations
in Refs. [8,19,27] have shown that the resonant Lamb shift of
individual dipoles and the shifts in their resonant frequencies
are equivalent at second-order quantum perturbation theory.
On the contrary, when several neighboring dipoles are excited
and decay over a time, the excess of energy released is not the
sum of the individual Lamb shifts of every atom. That sum
is corrected by an amount related to the collective Lamb shift
[20], which accounts, at least partially, for some mutual dipole-
dipole interactions. It is worth noting that Friedberg et al.
have identified the collective Lamb shift with the shift on the
resonant frequency of the dielectric constant in a homogeneous
dielectric. However, we show later that this identification does
not apply to the actual binding energy of the dielectric but in
the electrostatic effective medium approximation.

When performing ensemble averages, two approximations
are taken in this article as considering dipole-dipole interac-
tions. First, we assume quenched disorder, which is the analog
to the BO approximation in molecular dynamics. Further
comments on this approximation are made in the next section.
Second, we assume that the spatial correlation functions do
not depend on the dipole-dipole long-ranged interactions but
only on short-ranged ones. This is a common approximation in
the literature (see, e.g., Refs. [12,28–30]). However, it becomes
inadequate in situations in which short- and long-ranged forces
compete in the molecular structure. For instance, this is the
case of the coagulation process in colloids [31].

On the other hand, according to Schwinger’s source theory,
the vacuum energy can be computed out of the integration
of the variations of an effective action for the EM field with
respect to some effective coupling to the dielectric medium
[17,18,32]. Since the variations are taken to be adiabatic, the
vacuum energy depends on only the initial and final properties
of the dielectric. However, the result depends on both the action
varied and the parameter of the variations. In this respect, it
is our purpose to explain why computations of the vacuum
energy based on the variations of the effective medium action
with respect to the effective dielectric constant are not suitable
to compute either the total binding energy or the scattering
Lamb shift.

On the other hand, it is conjectured that there must exist
some relation between the spectrum of optical modes and
the Lamb shift of individual dipoles and the binding energy
of a molecular dielectric [4,16,17,33–35]. To this respect,
Feynman [33], Power [16], and Milonni [34] have proved that
the free-space Lamb shift can be computed from the variation
of the vacuum energy due to the presence of a single atomic
dipole. That result has been extended by Schaden, Spruch, and
Zhou [35] to the case of a uniform distribution of nonmutually
interacting dipoles. In Ref. [4] Milonni, Schaden, and Spruch
extrapolated those approaches to the computation of the Lamb
shift from variations on the effective medium bulk energy
of a molecular dielectric due to a change in the refractive
index. However, that result was not totally conclusive since
near-field effects and local field factors (LFFs) were neglected
in the calculation. In fact, the findings in [27] suggest that that
result does not hold when proper account of LFFs and inherent
correlations is taken.

The paper is organized as follows. In Sec. II we define
fundamental concepts and review the basic formulas obtained
in Ref. [27]. In Sec. III we explain the role of statistical
fluctuations in the computation of the vacuum energy of a
random medium. In Sec. IV we analyze the expressions for
the vacuum energy in the quasicrystalline and bulk effective
medium approximations. In the latter case, we explain why that
approximation is not suitable to study the Lamb shift. In Sec. V
we compute the Lamb shift and the vacuum energy density up
to order two in the molecular density for a hard-sphere model.
The results are compared in Sec. VI with those of the bulk
effective medium approximation. Section VII deals with the
EM binding energy of a molecular dielectric in the effective
medium approximation. We analyze previous approaches
[13,27] and comment on the possibility of finding signatures of
the vacuum energy on the spectrum of the dielectric constant.
The conclusions are summarized in Sec. VIII.

Regarding notation, we label three-spatial-component vec-
tors with arrows and three-by-three tensors with overlines.
We denote the Fourier-transform of functionals with �q,ω-
dependent arguments instead of the �r,t-dependent arguments
of their space-time representation. Quantum operators are
denoted with bold letters and hats on top.

II. GROUND STATES, POLARIZABILITIES,
AND PROPAGATORS

A generic statistically homogeneous molecular dielectric
is made of N equivalent point electric dipoles in a volume
V , with a typical correlation length ξ , such that, in the
limit V � V � ξ 3, the average numerical density is uni-
form, V −1

∫
V

d3rρ(�r) = ρ = N/V . For the sake of simplic-
ity we consider the canonical ensemble at temperature T

with ZN (T ) = ∫ ∏N
i=1 d3Ri exp [−U ( �R1, . . . , �RN )/kBT ] the

N -body canonical partition function. U is the microscopical
energy density, which is considered a function of the external
d.o.f. of the dipoles only. That is, of the center-of-mass
positions and velocities, �Ri,�vi , i = 1, . . . ,N . Eventually, in
the limit kBT � miv

2
i ,U

max, mi being the scatterer mass and
Umax the potential barrier from which steric forces derive, we
can neglect the scatterer kinetic energy and assume that U

is a short-ranged potential. This is the BO-quenched disorder
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approximation. In addition, this way we can ignore Doppler
effects and guarantee that the correlation functions do not
depend on the long-ranged dipole-dipole interaction in good
approximation [12,29]. The dielectric constant and the rest of
the effective optical parameters are stochastic functions which
admit cluster expansions. These are series of n-scattering
terms computed out of the convolution of n-body spatial
correlation functions with single-particle polarizabilities and
electric field propagators (see below and [30]). Further, we
work for simplicity in the zero-temperature limit, T = 0.
In addition to the aforementioned inequalities, it demands
kBT � h̄ωAB , with h̄ωAB the typical excitation energy of
the atomic dipoles, so that all the dipoles remain in their
ground state.

The EM radiation is intended as a reservoir of an infinite
number of d.o.f. while the internal d.o.f. of the dipoles
constitute small systems. The coupling between the radiation
reservoir and the dipoles is weak so that ordinary time-
dependent perturbative calculations can be carried out. In the
following we give some definitions and explain the notation.

A. EM vacuum and atomic ground states

Let us consider an ensemble of N indistinguishable two-
level atomic dipoles. Prior to coupling each atom to the bare
radiative field and to the rest of the dipoles, we denote the
translation-invariant bare EM vacuum at T = 0 by |�0〉 and
the bare ground and excited atomic states, common to all the
dipoles, by |Ai

b〉 and |Bi
b〉, i = 1, . . . ,N , respectively. Dipoles

and EM fluctuations are uncoupled and uncorrelated. The
divergent zero-point energy of |�0〉 is that of the fluctuations
of the bare radiative field. The energy of the bare atomic levels
accounts for the bare Coulomb interaction between the nucleus
(static in the BO approximation) and the electrons [24], in
which case two stationary atomic states are assumed to arise
with an energy difference h̄ωb

AB .
Next, consider the dipoles infinitely separated from each

other or otherwise a unique dipole in free space, say the one
with position vector �Ri , and turn on the free-space interaction
Hamiltonian,

Ĥ i
int,0(t) = −e�̂ri(t) · �̂E⊥( �Ri,t). (1)

Here, e is the electronic charge, e�̂ri(t) is the dipole moment

operator, and �̂E⊥( �Ri,t) is the transverse electric field operator
upon the ith dipole in the Heissenberg representation. Because
the Coulombian interaction has been considered integrated out
in the bare atomic bound state, only the transverse component

of �̂E enters Ĥ i
int,0. In this case the EM vacuum gets polarized

locally only due to the dipole fluctuations. Reciprocally, the
atomic states get renormalized by the bare transverse EM
fluctuations and radiation reaction. They are denoted by |Ai

0〉,|Bi
0〉, and are common to all the dipoles. As a result, the free

electrons’ masses get renormalized and the resonant frequency
is shifted to some value ω0

AB [2,36] to be computed later.
Further, when the N dipoles are brought together to form

a specific fixed configuration, say m, with position vectors
{ �Ri

m}, i = 1, . . . ,N , and dipole moment density operator
−e�̂r(�r,t) = ∑N

i=1 −e�̂ri(t)δ(3)(�r − �Ri), the EM vacuum gets
polarized by the local and nonlocal dipole fluctuations and the

atomic states get renormalized by both the local interaction of
each dipole with the bare EM fluctuations and the nonlocal
mutual interactions between the fluctuating dipoles. While the
former interactions include only bare transverse EM modes,
the latter involve both longitudinal and transverse “dressed”
EM modes. Alternatively, it can be interpreted that each
atomic state gets renormalized by the local coupling of the
corresponding dipole moment to the polarized fluctuations of
the EM field, that is, polaritons. For this reason, in contrast
to the case of a single dipole in free space, the interaction
Hamiltonian in the dipole approximation must contain both
the transverse and the longitudinal components of the electric
field,

Ĥint(t) = −
∫

d3r e�̂r(�r,t) · �̂E(�r,t). (2)

However, one must bear in mind that divergences coming
from considering bare longitudinal modes are regularized in
the definition of ωb

AB (cf. [37]). In this case the polarized
vacuum is denoted by |�m〉, which is not translation invariant,
and the renormalized atomic states are denoted by |Ai

m〉,
|Bi

m〉, i = 1, . . . ,N , being all different in general. The states
|�m〉,|Ai

m〉,|Bi
m〉 will be defined later on by their physical

content in a way analogous to that in Refs. [27,38]. That is, by
the fluctuations on them of the EM field and dipole moment
operators, respectively.

Finally, consider a dielectric as a random medium described
by a statistical ensemble of dipole configurations. In our
approximation, those configurations depend only on external
d.o.f. and are independent of the atomic states. Now, on top of
the quantum fluctuations that the dipoles and the EM field
induce on each other, there are the stochastic fluctuations
induced by the random distribution of scatterers. However,
generally stochastic fluctuations do not enter the problem in the
same fashion as quantum fluctuations. While the correlation
time of the latter, τ , satisfies τ � ω−1

AB , where h̄ωAB is the
typical energy transferred in the internal processes, so that
quantum fluctuations drive the dynamics of the atoms, the
correlation time of the ensemble of configurations is much
longer. The latter is also necessary to assume quenched
disorder. Thus, stochastic fluctuations enter only as performing
ensemble averages and the average energies are thermody-
namical potentials (see also note 3). Let P T

m be the probability
density of the mth dipole configuration at temperature T ,

P T
m

N∏
i=1

d3Ri
m = Z−1

N (T )
N∏

i=1

d3Ri
m

× exp
[−U

( �R1
m, . . . , �RN

m

)/
kBT

]
, (3)

and P T
m | �Ri

m=�r the conditional probability density with a dipole
fixed at �r , say the ith,

P T
m

∣∣ �Ri
m=�r

N∏
j=1

d3Rj
m = ZN (T )

ZN−1| �Ri=�r (T )
δ(3)
(�r − �Ri

m

)
P T

m

N∏
j=1

d3Rj
m,

(4)
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with ZN−1| �Ri=�r (T ) the conditional (N − 1)-body partition
function,

ZN−1| �Ri=�r (T ) =
∫

P T
m

N∏
j=1

d3Rj
mδ(3)

(�r − �Ri
m

)
. (5)

The statistical average of the expectation value of any
local operator Ô in the zero-temperature limit, Oi

m =
〈Ai

m,�m|Ô|�m,Ai
m〉, reads

〈O〉T =0
avg (�r) =

∫
P T =0

m

∣∣ �Ri
m=�r

N∏
j=1

d3Rj
mOi

m. (6)

The choice of i is actually irrelevant since the dipoles are
statistically equivalent and so must be any average observable.
Alternatively, we can express symbolically 〈O〉T =0

avg as the

expectation value of Ô in the stochastic polarized EM vacuum
and renormalized atomic ground state, |�avg,Aavg〉. Formally,
this can be written in terms of the stationary reduced local (i.e.,
at each dipole location) density matrix of the system,

ρ̂T =0(�r) =
∫

P T =0
m

∣∣ �Ri
m=�r

N∏
j=1

d3Rj
m|�m〉〈�m| ⊗ ∣∣Ai

m

〉〈
Ai

m

∣∣
= |�avg〉〈�avg| ⊗ |Aavg〉〈Aavg|

∣∣
�r , (7)

in which the integration amounts to taking the partial trace
over the statistical mixture of dipole configuration states. The
averaged expectation value of Ô at T = 0 is

〈O〉T =0
avg (�r) =

∫
P T =0

m

∣∣ �Ri=�r

N∏
j=1

d3Rj
m

〈
�m,Ai

m

∣∣Ô∣∣Ai
m,�m

〉

= 〈�avg,Aavg|Ô|Aavg,�avg〉|�r = Tr{ρ̂T =0(�r) · Ô},

where |Ai
m,�m〉 above depends implicitly on { �Rj

m},j = 1,

. . . ,N . If Ô is a time-dependent interaction which couples
weakly the dipoles to the EM field, by writing ρ̂ as a direct
product of EM and atomic states we assume that the EM field
behaves as a stationary reservoir with respect to the weak
interaction and that the time correlation between the reservoir
and the dipoles is negligible considering the dynamics of each
dipole (cf. Chapter IV of Ref. [39]). Also, in a statistically
homogeneous dielectric the spatial correlations functions
are translation invariant and so are the stochastic states and
average expectation values. Hence, it suffices to compute
them at a single point.

B. Response functions and fluctuations

Our goal is in the first place to give an expression for
the Lamb shift of the atomic ground states, ELSh. Second,
we use that expression to compute the total binding energy
of the ground state of the dielectric at zero temperature.
Because the latter can be equally intended as a variation of
the zero-point energy of the EM vacuum due to the presence
of the dielectric—in the same spirit as the interpretation of
Power [16], Feynman [33], and Milonni [34] for the case of
a single atom in free space—we refer to it as total vacuum
energy density,FV . We will reinforce this interpretation giving
an expression for FV in terms of the source field propagator,
in accordance to Schwinger’s formalism.

In order to compute the Lamb shifts and the total vacuum
energy it is necessary to know the expressions for the
two-time quadratic correlation functions of the EM field
and dipole operators in their renormalized vacuum and
ground states, respectively (cf. Chapter IV of Ref. [39] and
Ref. [40]). Generically, once the interaction Hamiltonian is
turned on, ordinary second-order time-dependent perturbation
theory [41] yields an energy shift in the ground state of
each dipole, say the ith one with position vector �Ri , which
corresponds to the generalized Lamb shift,

ELSh
κ,i = h̄−1Tr

{∑
γ

∣∣〈γ,Bi
κ

∣∣e�̂rS
i · �̂ES( �Ri)

∣∣Ai
κ,�κ

〉∣∣2}

× P

[
1

ωγ + ω
κ,i
AB

]

= h̄−1Tr

{∑
γ

|〈γ | �̂ES( �Ri)|�κ〉|2 · ∣∣〈Ai
κ

∣∣e�̂rS
i

∣∣Bi
κ

〉∣∣2}

× P

[
1

ωγ + ω
κ,i
AB

]
. (8)

In this formula P stands for principal value, {|γ 〉} is the set
of intermediate excited EM states of energy h̄ωγ , ω

κ,i
AB is the

transition frequency of the ith atom, the script S stands for the
time-independent operators in the Schrödinger representation,
and the script κ can take the values 0,m,avg, corresponding
to a single dipole in free space, the mth configuration of fixed
dipoles, and a statistical ensemble of dipole configurations,
respectively. Using an appropriate identity for P[ 1

ωγ +ω
κ,i
AB

], it is

shown in Chapter IV of Ref. [39] and Ref. [40] that the above
expression can be written in terms of quadratic correlators as

ELSh
κ,i = −(4h̄)−1Tr

( ∫ ∞

−∞
dωRe

{
〈�κ | �̂E( �Ri ; ω) ⊗ �̂E†( �Ri ; ω)|�κ〉

∫
dt exp [iωt]i
(t)

〈
Ai

κ

∣∣[e�̂ri(0),e�̂ri(−t)]
∣∣Ai

κ

〉})
(9)

− (4h̄)−1Tr
( ∫ ∞

−∞
dωRe

{〈
Ai

κ

∣∣e�̂ri(ω) ⊗ e�̂r†i (ω)
∣∣Ai

κ

〉 ∫
dt exp [iωt]i
(t)〈�κ |[ �̂E( �Ri,0), �̂E( �Ri,−t)]|�κ〉

})
, (10)

where Eq. (9) is the energy shift associated to the polarization
of the dipole due to the vacuum field fluctuations while
Eq. (10) is the energy shift due to the back-reaction of the

polarized EM vacuum on the dipole. Therefore, the problem of
computing ELSh

κ,i reduces to calculate the equal point two-time
quadratic correlation functions of the EM field and dipole
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operators in the corresponding EM vacuum and atomic ground
state, respectively [42]. In turn, the symmetric correlation
function relates to the imaginary part of the linear response
function via the fluctuation-dissipation theorem (FDT),

〈�κ | �̂E( �Ri ; ω) ⊗ �̂E†( �Ri ; ω)|�κ〉

= −π−1Im

{∫
dt exp [iωt]i
(t)

×〈�κ |[ �̂E( �Ri,0), �̂E( �Ri, − t)]|�κ〉
}
, (11)〈

Ai
κ

∣∣e�̂ri(ω) ⊗ e�̂r†i (ω)
∣∣Ai

κ

〉
= −π−1Im

{∫
dt exp [iωt]i
(t)

× 〈Ai
κ

∣∣[e�̂ri(0),e�̂ri(−t)]
∣∣Ai

κ

〉}
, (12)

and the whole problem reduces to computing the local
linear response functions, that is, the polarizability of the
dipole in its ground state and the Green’s function of the
electric field, which can be calculated classically. In the fol-
lowing we elaborate on the physical meaning of the response
functions.

1. Bare polarizability and field propagator

It is implicit in our above reasoning that only the bare
electrostatic interaction between the electrons and the nucleus
in each atom and the electrostatic electron self-interaction are
treated nonperturbatively, whereas the rest of interactions are
treated perturbatively in the dipole approximation. Therefore,
all the functions, energies, and states defined as bare have a
nonperturbative origin; while all those termed renormalized in
subsequent sections are computed perturbatively. Because the
nonperturbative calculations assume the bare radiative field
and the intermolecular couplings to be turned off, the response
functions and states from them derived are formally correct
but do not posses any physical realization.

The equal-point two-time commutator of the dipole op-
erator for an isolated two-level atom, say the ith one, in its
bare ground state, |Ai

b〉, prior to the coupling to the radiation
reservoir and at zero temperature reads

i(ε0h̄)−1
(t)
〈
Ai

b

∣∣[e�̂ri(0),e�̂ri(−t)]
∣∣Ai

b

〉
= i(ε0h̄)−1
(t)

〈
Ai

b

∣∣e�̂rS
i

∣∣Bi
b

〉〈
Bi

b

∣∣e�̂rS
i

∣∣Ai
b

〉
× [ exp

(
iω

b,i
ABt
)− exp

(−iω
b,i
ABt
)]

. (13)

The time-variable Fourier transform of the above equation is
termed the bare dipole polarizability, ᾱb(ω); for brevity we
have omitted the location dependence,

ᾱb(ω)

≡ 2(ε0h̄)−1
〈
Ai

b

∣∣e�̂rS
i

∣∣Bi
b

〉〈
Bi

b

∣∣e�̂rS
i

∣∣Ai
b

〉
ω

b,i
AB

[(
ω

b,i
AB

)2 − ω2
]−1

= 2(ε0h̄)−1ω
b,i
AB

[(
ω

b,i
AB

)2 − ω2
]−1 �μ ⊗ �μ, any i, (14)

where �μ = 〈Ai
b|e�̂rS

i |Bi
b〉 is the unique dipole-transition matrix

element. ᾱb(ω) is the response function of the dipole to a total

monochromatic field acting upon �Ri ,1

�pω( �Ri) = ε0ᾱb(ω) · �Eω
tot( �Ri). (15)

For isotropic dipoles with a single oscillator (we omit the
dipole index),

ᾱb(ω) ≡ αbĪ = 2

3
(ε0h̄)−1ωb

ABμ2
[(

ωb
AB

)2 − ω2
]−1

= e2

3ε0mb
e

[(
ωb

AB

)2 − ω2
]−1

, (16)

where mb
e is the free-electron mass formally renormalized by

its electrostatic self-interaction in free space [36]. However,
since the effects of the EM vacuum fluctuations and self-
polarization have not yet been incorporated, it does not satisfy
the optical theorem.

On the other hand, the time-variable Fourier transform
of the electric field commutator in the EM vacuum of free
space, iε0h̄

−1
(t)〈�0|[ �̂E(�r,0), �̂E(�r ′,−t)]|�0〉, is (ω/c)2 times
the Green’s function of Maxwell’s equation in free space,
Ḡ(0)(�r − �r ′; ω),[

ω2

c2
Ī − �∇ × �∇ ×

]
Ḡ(0)(�r − �r ′; ω) = δ(3)(�r − �r ′)Ī. (17)

Ḡ(0)(�r − �r ′; ω) is made of two contributions. These are an
electrostatic one,

Ḡ
(0)
stat.(�r; ω) = P

[
1

k2
�∇ ⊗ �∇

]( −1

4π r

)
+ k−2 L̄δ(3)(�r), (18)

k = ω/c, and a radiative field,

Ḡ
(0)
rad.(�r; ω) = ei kr

−4πr
Ī + P

[
1

k2
�∇ ⊗ �∇

]
ei kr − 1

−4πr
, (19)

where the δ function in Eq. (18) must be intended in the sense
of a distribution. The source tensor L̄ takes account of the
geometry of the exclusion volume around each dipole source.
It satisfies Tr{ L̄} = 1 and, for a spherical volume, L̄ = 1/3Ī
[43]. Ḡ(0)(�r − �r ′; ω) is the response function of the EM field
to a unique point dipole oscillating at frequency ω at �r ′ in
free space, �pω(�r ′), �Eω(�r) = k2ε−1

0 Ḡ(0)(�r − �r ′; ω) · �pω(�r ′). In
momentum space the radiative component is totally transverse
with respect to the propagation direction while the electrostatic
one is fully longitudinal,

Ḡ(0)(�q; ω) = G
(0)
⊥ (q)P̄⊥(q̂) + G

(0)
‖ (q)P̄‖(q̂), (20)

with

G
(0)
⊥ (q) = 1

k2 − q2
, G

(0)
‖ (q) = 1

k2
, (21)

and P̄⊥(q̂) = Ī − q̂ ⊗ q̂, P̄‖(q̂) = q̂ ⊗ q̂ being the transverse
and longitudinal projectors respectively, with q̂ the unitary
vector in the direction of propagation. Hereafter and for the
sake of brevity we drop the explicit ω and/or q dependence
from the functional arguments unless necessary.

1The nomenclature used in this article varies slightly with respect to
that in Ref. [27]. In particular, αb was denoted there as α′. Also, what
was referred to as polarization propagator in Ref. [27] is referred to
here as EM field propagator in order to avoid confusion.
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2. A single dipole in free space: Bare radiative corrections

Next, we incorporate the coupling to bare radiation
perturbatively following the renormalization scheme of
[27,37,44,45]. When the ith dipole, isolated, couples to
radiation via the Hamiltonian of Eq. (1), the radiation reaction
renormalizes the atomic states to |Ai

0〉,|Bi
0〉 and, correspond-

ingly, the single-particle polarizability,

ᾱ(ω) ≡ ᾱ0(1 + ik2Tr{ᾱ0 · Im[Ḡ(0)(�r,�r; ω)]})−1. (22)

In the above expression, the real part of Ḡ(0)(�r,�r; ω) is
absorbed in the 0 polarizability, α0 ≡ e2

3ε0me
[(ω0

AB)2 − ω2]−1.

In doing so, the divergent real part of Ḡ
(0)
stat.(�r,�r; ω) is implicitly

regularized in αb [36,37], while the real part of Ḡ
(0)
rad.(�r,�r; ω)

renormalizes the free-electron mass up to me and the free-
space resonant frequency up to ω0

AB [2]. The computation
of these shifts is outlined later. Hereafter we denote ω0

AB

simply by ω0. ᾱ(ω) does satisfy the optical theorem with
Tr{Im[Ḡ(0)(�r,�r; ω)]} = −k/2π . It is the response function of
a unique dipole in free space to an incident monochromatic
probe field acting, say, upon �Ri ,

�pω( �Ri) = ε0ᾱ(ω) · �Eω
inc( �Ri). (23)

3. A specific dipole configuration

Next, when all the dipoles are brought together, it was
shown in Ref. [27] how a classical diagrammatic renormal-
ization procedure leads to renormalized values for the single
particle polarizability and the EM field propagator. In the first
place, let us consider a fixed configuration of dipoles with label
m. The polarization propagator reads

�̄ω
m(�r,�r ′

) =
N∑

i,j=0

π̄ω
m

( �Ri
m, �Rj

m

)
δ(3)
(�r − �Ri

m

)
δ(3)
(�r ′ − �Rj

m

)
,

(24)

where π̄ω
m( �Ri

m, �Rj
m) is

π̄ω
m

( �Ri
m, �Rj

m

)
=
∫

dteiωt i(ε0h̄)−1
(t)
〈
Ai

m

∣∣[e�̂ri(0),e�̂rj (−t)]
∣∣Aj

m

〉
= [

α−1
0 Īδij + k2Ḡ(0)′( �Ri

m, �Rj
m

)]−1
. (25)

Ḡ(0)′( �Ri
m, �Rj

m) ≡ Ḡ(0)( �Ri
m, �Rj

m) − Re{Ḡ(0)( �Ri
m, �Rj

m)}δij is de-
fined to take account of the regularization of the real divergence
in Ḡ(0)( �Ri

m, �Ri
m). The inversion in Eq. (25) must be intended

with respect to the particle indices i,j . In particular, the local
term proportional to δij is defined as the ith renormalized
polarizability, ¯̆αi

m(ω). It is made of an infinite series of
multiple-scattering diagrams which start and end at the ith
dipole. π̄ω

m( �Ri
m, �Rj

m) is the (nonlocal) response function of
the dielectric to a generic monochromatic external electric

field,

�pω
( �Ri

m

) = ε0

N∑
j

π̄ω
m

( �Ri
m, �Rj

m

) · �Eω
ext

( �Rj
m

)
. (26)

The relation of π̄ω
m with the t matrix defined in the so-called

coupled dipole method (CDM) [46] is π̄ω
m = −k−2 t̄ωm.

Next, let us compute the EM field propagator which yields
the self-polarization corrections on ¯̆αi

m(ω), ḡm(�r, �Ri
m; ω). It

is given by an equation similar to that of Maxwell’s in free
space,[

ω2

c2
eω
m,i(�r)Ī − �∇ × �∇ ×

]
ḡm

(�r, �Ri
m; ω

) = δ(3)
(�r − �Ri

m

)
Ī,

(27)

with ẽω
m(�r) = 1 + α0

∑
j=1,N δ(3)(�r − �Rj

m) and eω
m,i(�r) =

ẽω
m(�r) − α0δ

(3)(�r − �Ri
m). The source fixed at the position vector

of the ith scatterer is removed from the permittivity function
on the left-hand side of the equation. The self-polarization
propagator is computed out of ḡm, making the source and the
emitter coincide. It was calculated in Ref. [27] in function of
the polarization propagator,

ḡm

( �Ri
m, �Ri

m; ω
) =

N∑
j=0

Ḡ(0)
( �Ri

m − �Rj
m

) · π̄ω
m

( �Rj
m, �Ri

m

)[
¯̆αi
m

]−1
,

(28)

and by consistency,

¯̆αi
m = ᾱ0

[
1 + k2Tr

{
ḡ

′
m

( �Ri
m, �Ri

m; ω
) · ᾱ0

}]−1
, (29)

where again ḡ
′
m( �Ri

m, �Ri
m; ω) ≡ ḡm( �Ri

m, �Ri
m; ω) −

Re{Ḡ(0)( �Ri
m, �Ri

m; ω)}.
Applying reciprocity, ḡm( �Ri

m,�r ′; ω) yields the incident field
which reaches a host dipole at �Ri

m, whose source is a
nonpolarizable external monochromatic dipole at any point
�r ′, �μω

ext,

�Eω
inc

( �Ri
m

) = k2ε−1
0 ḡm

( �Ri
m,�r ′; ω

) · �μω
ext. (30)

Note that since the host dipole at �Ri
m is polarizable, the total

field at �Ri
m contains an additional contribution from the self-

polarization (sp) field. As a result, we have

�Eω
tot

( �Ri
m

) ≡ �Eω
inc

( �Ri
m

)+ �Eω
sp

( �Ri
m

)
= k2ε−1

0 ᾱ−1
0 · ¯̆αi

m · ḡm

( �Ri
m,�r ′; ω

) · �μω
ext. (31)

From the above equation we can identify a new propagator
which accounts for both the two-point, two-time commutator
of the EM field in vacuum and the self-polarization field
fluctuations which dress up the renormalized polarizability
of the emitter or source dipole,

¯̃gm

( �Ri
m,�r ′; ω

) ≡ [
Ī + k2ḡ

′
m

( �Ri
m, �Ri

m

) · ᾱ0
]−1 · ḡm

( �Ri
m,�r ′),

(32)

such that

�Eω
tot

( �Ri
m

) = k2ε−1
0

¯̃gm

( �Ri
m,�r ′; ω

) · �μω
ext. (33)

¯̃gm is the Green’s function of an equation like Eq. (27) but
replacing eω

m,i(�r) there with the total dielectric function ẽω
m(�r).
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4. Random medium

Finally, let us consider a statistical ensemble of configu-
rations of statistically equivalent isotropic dipoles. By simply
taking the statistical average on the precedent equations,

Ḡ(�r,�r ′; ω) =
∫

P T =0
m

∣∣ �Ri
m=�r

N∏
j=1

d3Rj
mḡm

( �Ri
m,�r ′; ω

)
, (34)

or using diagrammatical techniques otherwise in momentum
space (cf. [27]), we end up with

i
ε0

k2h̄

∫
dtd3r exp [i(ωt + �q · �r)]
(t)

×〈�avg|[ �̂E(�0,0), �̂E(�r,−t)]|�avg〉
= G⊥(q; ω)(Ī − q̂ ⊗ q̂) + G‖(q; ω) q̂ ⊗ q̂,

where

G⊥(q; ω) = χ⊥(q; ω)

ρα̃
G⊥(q; ω) = χ⊥(q; ω)/(ρα̃)

k2[1 + χ⊥(q; ω)] − q2
,

(35)

G‖(q; ω) = χ‖(q; ω)

ρα̃
G‖(q; ω) = 1

ρα̃

χ‖(q; ω)

k2[1 + χ‖(q; ω)]
,

and G⊥,‖(q; ω) are the transverse and longitudinal components
of the Dyson (bulk) propagators readily identifiable from
the second equalities. The stochastic renormalized polar-
izability, α̃, is defined later. χ⊥,‖(q; ω) are the transverse
and longitudinal components of the electrical susceptibility.
Diagrammatically, χ̄ is made of a series of one-particle-
irreducible (1PI) scattering processes like those in Figs. 1(b)
and 1(c). The relationship of proportionality between the
self-polarization and Dyson’s propagator in q space allows
us to define the local field factors, L⊥,‖(q) = χ⊥,‖(q)

ρα̃
, such that

G⊥,‖ = L⊥,‖G⊥,‖. Alternatively, Eq. (35) can be written also
as

G⊥,‖(q) = 1

k2ρα̃

[
1 − G⊥,‖

G
(0)
⊥,‖

]
. (36)

Equivalently, in terms of the stochastic polarization propaga-
tor,

�̄ω(�r,�r ′
) =

∫
ZN (0)

ZN−2

∣∣ �Rj =�r ′
�Ri=�r (0)

P T =0
m

N∏
l=1

d3Rl
mπ̄ω

m

( �Ri
m, �Rj

m

)
× δ(3)

(�r − �Ri
m

)
δ(3)
(�r ′ − �Rj

m

)
, (37)

with

ZN−2

∣∣ �Rj =�r ′
�Ri=�r (T ) =

∫
P T

m

N∏
l=1

d3Rl
mδ(3)

(�r − �Ri
m

)
δ(3)
(�r ′ − �Rj

m

)
,

(38)

we may write

G⊥,‖(q; ω) = (ρα̃)−1G
(0)
⊥,‖(q; ω)�ω

⊥,‖(q). (39)

For convenience we define a scalar potential in terms of the
trace of the self-polarization propagator, φ(ω) = φ(0)(ω) +

(a)

(b)

(c)

(d)

(e)

FIG. 1. (a) Diagrammatic representation of Feynman’s rules.
Only two-point correlation functions are considered for simplicity.
The self-correlation function, hself (�r) = ρ−1δ(3)(�r), appears separated
from the rest. (b), (c) Examples of 1PI diagrams which amount to χ (2)

and χ (3), respectively. The lowest-order recurrent scattering diagram,
χ (2,2), is included in the series of χ (2). (d), (e) Examples of order ρ and
order ρ2 multiple-scattering diagrams which amount to G(1) and G(2),
respectively. The third and fourth diagrams in (d), which amount
to G(1,2), are entangled recurrent scattering diagrams. In them, the
self-correlation functions which affect the first and second scatterers
cannot be factored out.

φsc(ω), where,

φ(0)(ω) ≡ ω2

c2
iIm

{
2
∫

d3q

(2π )3
G

(0)
⊥

}
= −ω3

2πc3
i, (40)

φsc(ω) ≡ ω2

c2

∫
d3q

(2π )3
[2(G⊥ − G

(0)
⊥ ) + (G‖ − G

(0)
‖ )]

≡ 2φsc
⊥ + φsc

‖ . (41)

For further convenience, we have distinguished the contribu-
tion of transverse from that of longitudinal modes in φsc. The
superscript sc stands for scattering since φsc(ω) is the part of
φ which involves multiple scattering processes. In function of
φ, α and the renormalized stochastic polarizability appearing
in Eqs. (35) and (39) read

α = α0(1 + α0φ
(0))−1, (42)

α̃ = α0(1 + α0φ)−1 = α(1 + αφsc)−1, (43)

all being isotropic, ᾱ0 = α0Ī, ᾱ = αĪ, ¯̃α = α̃Ī. When a single
dipole is excited by a monochromatic external field, the emitted
power is given by Wω = ωε0

2 | �Eω
ext|2Im{α̃}, in agreement with
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the optical theorem. By parameterizing α and α̃ as Lorentzian
polarizabilities, formulas were found in Ref. [27] for the decay
rate, �, and frequency shifts. In particular, in free space,

�0 = k3
0μ2

3πε0h̄
.

As for the case of a specific dipole configuration it is
possible to define a propagator which accounts for both
the two-point, two-time commutator of the EM field in the
stochastic vacuum and the self-polarization field fluctuations
which dress up the renormalized stochastic polarizability,

¯̃G(�r,�r ′; ω) ≡ Ḡ(�r,�r ′; ω)(1 + α0φ)−1. (44)

The total averaged electric field which acts upon a host dipole
at �r and whose source is an external monochromatic dipole
sited at �r ′ reads〈 �Eω

tot(�r)
〉
avg = k2ε−1

0
¯̃G(�r,�r ′; ω) · �μω

ext. (45)

For the specific computations in a random medium we
use a renormalization scheme similar to that of Felderhof
and Cichocki [45]. It consists of two complementary steps
which reflect the mutual polarization of the dipoles and the EM
reservoir. In the first one, the polarizabilities are renormalized
by an infinite number of self-polarization cycles as outlined
above. Diagrammatically, those processes amount to recurrent
scattering terms in which the initial and final scatterers
coincide. Note that those diagrams [cf. Fig. 1(d)] may contain
entangled intermediate recurrent scattering processes signaled
by self-correlation functions. In the second step, the rest of 1PI
diagrams which are not accounted for in the renormalization of
the polarizability are added up in the electrical susceptibility.
Again, these diagrams may contain also entangled interme-
diate recurrent scattering processes [cf. Figs. 1(b) and 1(c)].
Consistency between both steps is guaranteed by demanding
that the scatterers in all those diagrams be renormalized. Bear-
ing in mind that unentangled recurrent scattering process are all
accounted for in the definition of α̃, the electrical susceptibility
components, χ⊥,‖(q; ω), adjust to cluster expansions of the
form

χ⊥,‖(q; ω) =
∑
n=1

χ
(n)
⊥,‖(q; ω) =

∞∑
n=1,m=0

X
(n,m)
⊥,‖ (q; ω)ρnα̃n+m.

(46)

The functions X
(n,m)
⊥,‖ (q; ω) incorporate the spatial dispersion

due to the 1PI spatial correlations within clusters of n scatterers
in which all the self-correlation functions appear entangled.
The index m stands for the total multiplicity of entangled
intermediate recurrent scattering events. The same kind of
decomposition is applicable to G⊥,‖ and φsc (cf. Fig. 1).

III. THE LAMB SHIFT AND THE TOTAL
VACUUM ENERGY

A. Lamb shift and Lamb energy in free space

Equipped with the formulas for the response functions, we
are now able to compute all the physical quantities. We start
with the Lamb shift in free space. Applying the FDT on Eqs. (9)
and (10) with κ = 0 and substituting there Eqs. (40) and (42)

we obtain the free-space Lamb shift2 [7],

ELSh
0 = h̄

2π

∫ ∞

0
dω Im{α0(1 + α0φ

(0))−1φ(0)}. (47)

From Eq. (47) we define the density of states contributing to
the free-space shift, N LSh

0 (ω) = Im{ ρ

2π
α0φ

(0)(1 + α0φ
(0))−1}.

Next, using the Feynman-Pauli theorem (cf. pp. 295–297
of [47]), the free-space vacuum energy is the energy gained
by the system atoms-reservoir as the interaction Hamiltonian
is turned on adiabatically neglecting dipole mutual couplings.
This is parameterized by varying the coupling constant squared
from zero to its actual value e2. Since α0 is quadratic in e, we
can write

FV
0 =

∫ ∞

0
h̄dω

∫ α0

0

δα
′
0

α
′
0

N LSh
0 = ρh̄

2π

∫ ∞

0
dωIm{ln [1 + α0φ]}

= − ρh̄

2π

∫ ∞

0
dω Im{ln [α/α0]}, (48)

a result that was first obtained by Agarwal [48]. The free-space
energies are additive and so we refer to FV

0 also as free-space
Lamb energy density, FL

0 .

B. Lamb shift and total vacuum energy of a fixed configuration

Let us consider the mth configuration of dipoles. Following
analogous steps to those for ELSh

0 and FV
0 , we obtain instead,

ELSh,i
m = h̄

2π

∫ ∞

0
dω Im

{
Tr
[

¯̆αi
m · ḡ

′
m

( �Ri
m, �Ri

m

)]}

= h̄

2π

∫ ∞

0
dω

N∑
j=1

Im
{
Tr
[
Ḡ(0)′( �Ri

m, �Rj
m

)·π̄ω
m

( �Rj
m, �Ri

m

)]}
,

(49)

where the trace operation applies over spatial tensor indices
only. The first expression after the equality symbol was
obtained by Buhmann et al. [8,19] using a fully quantum-
mechanical formalism. Making the identification

N LSh,i
m = V−1

N∑
j=1

Im
{
Tr
[
Ḡ(0)′( �Ri

m, �Rj
m

) · π̄ω
m

( �Rj
m, �Ri

m

)]}
,

(50)

with the trace again intended over spatial indices only, the total
vacuum energy density is

FV
m =

N∑
i=1

∫ ∞

0
h̄dω

∫ α0

0

δα
′
0

α
′
0

N LSh,i
m

= h̄

2πV

∫ ∞

0
dωIm

(
Tr
{
ln
[
Īδij + k2ᾱ0 · Ḡ(0)′( �Ri

m, �Rj
m

)]})
,

(51)

2We emphasize that in the computation of any local physical
observable which is a combination of dipole and EM field operators
the inherent divergence in Re{Ḡ(0)( �Ri

m, �Ri
m; ω)} must be intended as

regularized in both the free-electron mass and the free-space resonant
frequency of the oscillator. Hence, the use of regularized “primed”
field propagators.
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where the trace operation applies both over dipole indices (i,j ) and spatial tensor components. This result was first obtained
by Renne [49] making the sum over normal modes and then by Agarwal [48] using the FDT in an approach very similar to
ours and more recently by Emig et al. [50] using a variant of the Schwinger’s source theory. Its expansion in multiple-scattering
interactions is

FV
m = FL

0 + h̄

2πV

∫ ∞

0
dωIm

( ∞∑
n=1

(−1)n+1

n
Tr
{[

k2ᾱ · Ḡ(0)′′( �Ri
m, �Rj

m

)]n})

= FL
0 + h̄

2πV

∫ ∞

0
dωIm

⎧⎨
⎩−1

2
Tr

⎡
⎣(k2ᾱ)2

∑
i �=j

Ḡ(0)( �Rj
m, �Ri

m) · Ḡ(0)( �Ri
m, �Rj

m)

⎤
⎦

+ 1

3
Tr

⎡
⎣(k2ᾱ)3

∑
i �=j �=l �=i

Ḡ(0)
( �Ri

m, �Rj
m

) · Ḡ(0)
( �Rj

m, �Rl
m

) · Ḡ(0)
( �Rl

m, �Ri
m

)⎤⎦+ · · ·
⎫⎬
⎭ ,

where

Ḡ(0)′′( �Ri
m, �Rj

m

) = Ḡ(0)
( �Ri

m, �Rj
m

)− Ḡ(0)
( �Ri

m, �Rj
m

)
δij . (52)

In order to get a deeper insight into the physical interpretation of the above formula, we can write it in three equivalent manners,

FV
m = − h̄

2πV

∫ ∞

0
dωIm

(
Tr
{
ln
[
π̄ω

m

( �Rj
m, �Ri

m

)/
α0
]})

(53)

= − h̄

2πV

∫ ∞

0
dωIm

[
Tr

(
ln
{

¯̃gm

( �Ri
m, �Rj

m

) · [Ḡ(0)]−1( �Ri
m, �Rj

m

)})]
(54)

= − h̄

2πV

∫ ∞

0
dωIm

[
Tr

(
ln
{

¯̆αi
m · ḡm

( �Ri
m, �Rj

m

) · ᾱ−1
0 · [Ḡ(0)]−1

( �Ri
m, �Rj

m

)})]
, (55)

which shows that FV
m can be expressed as a function of

atomic d.o.f. only Eq. (53), EM d.o.f. only Eq. (54), or as
a combination of both Eq. (55). In particular, the expression in
Eq. (54) in terms of the source EM field propagator resembles
Schwinger’s approach [32]. In either case, the normalization
by the energy of free-space fluctuations amounts to the
substraction of the zero-point EM energy and bare atomic
bonding energy.

C. Average Lamb shift and total vacuum energy
of a random medium

Finally, let us compute the average Lamb shift and the
average vacuum energy in a random medium, ELSh

avg , FV
avg.

The Lamb shift and vacuum energy so computed must
be intended, generally, as thermodynamic quantities. As a
matter of fact, stochastic or thermodynamic quantities may
be computed in application of the ergodic theorem, which
states that statistical ensemble averages are equivalent to time
averages.3 In principle, since some stochastic observables can

3In principle, in some situations it could be possible to include
the randomness of the dipole configurations in the microscopical
(not averaged) internal dynamics of the dipoles as considering the
computation of the microscopical (not averaged nor thermodynamic)
total vacuum energy. For this to be the case the correlation time of the
density fluctuations should be much less than the internal dynamical
scale, ∼2π/ω0. However, under these circumstances the quenched
disorder approximation would not be valid anymore and Doppler and
nonadiabatic effects should be considered.

be calculated out of the optical response functions of the
dielectric—χ̄ω, α̃(ω), �̄ω, Ḡω, Ḡω, it may seem possible to
give a closed formula for FV

avg which depends only on the
electrical susceptibility and the renormalized polarizability.
The computation is, however, far more complicated since the
ensemble average over FV

m involves highly nonlinear terms in
those functions. This can be expressed as

〈Tr(ln { ¯̃g · [Ḡ(0)]−1})〉avg �= Tr(ln {〈 ¯̃g · [Ḡ(0)]−1〉avg}). (56)

In the first place, the ensemble average of Eq. (49) is the
average Lamb shift,

ELSh
avg = h̄

2πρ

∫ ∞

0
dωk2Im

{∫
d3q

(2π )3
[2G

(0)
⊥ �⊥ + G

(0)
‖ �‖]

}

= h̄

2π

∫ ∞

0
dωk2Im

{∫
d3q

(2π )3
α̃[2G ′

⊥ + G ′
‖]

}
(57)

= h̄

2π

∫ ∞

0
dω Im{α̃φ}, (58)

where we can identify the average density of states, N LSh
avg =

ρIm{ α̃
2π

φ}. As noted by Bullough in Ref. [29], the integration
of the equation analogous to that of Eq. (51) for FV

avg,

FV
avg =

∫ ∞

0
h̄dω

∫ α0

0

δα
′
0

α
′
0

N LSh
avg , (59)

needs of the knowledge of the functional dependence of χ̄ on
the polarizability α0. Thus, ELSh

avg can be expressed in closed
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form as function of χ̄ using Eq. (35),

ELSh
avg = h̄

2πρ

∫ ∞

0
dωk2Im

( ∫
d3q

(2π )3
{2χ⊥G

(0)
⊥

× [1 + k2G
(0)
⊥ χ⊥]−1 + χ‖G

(0)
‖ [1 + k2G

(0)
‖ χ‖]−1}

)
.

(60)

It is worth stressing that although the computations of ELSh,i
m

in Eq. (49) and ELSh
avg in Eq. (60) are based on the second-order

perturbative formula of Eq. (8), the fact that the response
functions of dipoles and EM fields there are the renormalized
ones makes the results nonperturbative. Hence, for a fixed con-
figuration of dipoles ELSh,i

m was first obtained by Agarwal [48]
by nonperturbative means and it can be verified that the appli-
cation of the nonpertubative treatment of Buhmann et al. [19]
to a random medium would yield Eq. (60).

From Eq. (60) we define transverse and longitudinal density
of states per unit of momentum volume, N LSh

avg |⊥,‖,

N LSh
avg |⊥,‖ = Im{(2)⊥k2χω

⊥,‖(q)G(0)
⊥,‖[1 + k2G

(0)
⊥,‖χ

ω
⊥,‖]−1},

(61)

where the prefactor (2)⊥ applies only to transverse modes, so
that

ELSh
avg =

∫ ∞

0
h̄dω

∫
d3q

(2π )3

[
N LSh

avg

∣∣
⊥ + N LSh

avg

∣∣
‖
]/

ρ. (62)

However, except for some specific models, FV
avg cannot be

given in closed form. A way to go around this problem is
to explode the cluster decomposition outlined previously for
χ̄ , Ḡ, and φ. First, by taking the ensemble average over the
many-body expansion of Eq. (52) we can obtain a series for
FV

avg in multiple scattering terms. Note that this is not yet a
series in ρ since, at a given order n of Eq. (52), there are
processes with 2,3, . . . ,n different indices. When performing
upon them the ensemble average, they contribute with terms of
order ραφ(1), . . . ,ραφ(n−1) respectively. Equal index terms in
Eq. (52) involve self-correlation functions δ(3)( �Ra − �Rb) when
performing the ensemble average.

Further, some realistic approximations can be carried out
in order to obtain an expansion in powers of ρ. In the first
place, self-polarization corrections in the renormalized polar-
izabilities which enter any diagram in φ(n) can be disregarded
in good approximation. Upon integration in ω both in Eq. (58)
and in the average of Eq. (52), they yield terms of order
∼k0re ∼ �0/ω0 � 1 smaller than the computations involving
bare polarizabilities, re being the electron radius and �0 being
the free-space decay rate of an oscillator. Second, entangled
intermediate recurrent scattering events can be ignored since
they provide terms of orders [(k0ξ )−3�0/ω0]sm � 1, m � 2,
s = 1,2,3, . . . ,n, smaller than the nonrecurrent, nonretarded
near-field terms and terms of orders [(k0ξ )−1�0/ω0]sm � 1,
m � 2, s = 1,2,3, . . . ,n, smaller than the nonrecurrent, re-
tarded radiative term at any given order n in ρ, with ξ

being the typical spatial correlation length, s the number
of scatterers repeated, and m the recurrent multiplicity (cf.
computation of φ(1) in Sec. V and Appendix A). With these
conditions provided, we can simplify Eq. (58) and the average

of Eq. (52), respectively, as

ELSh
avg = ELSh

0 + ELSh
sc

� ELSh
0 + h̄

2π

∫ ∞

0
dω Im

{∫
d3q

(2π )3
α0

∞∑
m=1

φ(m,0)
α0

}

≡ ELSh
avg

∣∣
α0

, (63)

FV
avg � FL

0 + h̄

2π

∫ ∞

0
dωIm

{ ∞∑
m=1

1

m + 1
ρα0φ

(m,0)
α0

}

≡ FV
avg

∣∣
α0

, (64)

where the scattering Lamb shift, ELSh
sc , has been isolated

explicitly and φ(m,0)
α0

(ω) stands for the m-body term of the
expansion of φ in which no entangled intermediate recurrent
scattering events appear (norec.) and polarizabilites are taken
as bare.

Last, we can write Eqs. (63) and (64) as functions of the
cluster expansion for χ̄ . This way we obtain a formula for
FV

avg|α0 which depends explicitly on (the cluster expansion of)
χ̄ , order by order in ρ. As for Eq. (60), we use Eq. (35) and
the precedent approximation to write

ρα0φ
(norec.)
α0

= k2
∫

d3q

(2π )3

{
2χnorec.

⊥,α0
G

(0)
⊥
[
1 + k2G

(0)
⊥ χnorec.

⊥,α0

]−1

+χnorec.
‖,α0

G
(0)
‖
[
1 + k2G

(0)
‖ χnorec.

‖,α0

]−1}
(65)

=
∫

d3q

(2π )3

∑
m=1

(−1)m+1
{
2
[
k2χnorec.

⊥,α0
G

(0)
⊥
]m

+ [k2χnorec.
‖,α0

G
(0)
‖
]m}

, (66)

where χnorec.
⊥,‖,α0

are the transverse and longitudinal components
of the susceptibility with bare polarizabilities and no entangled
recurrent scattering processes. Using the cluster expansion of
Eq. (46) we obtain

ELSh
avg

∣∣
α0

= ELSh
0 + h̄

2πρ

∫ ∞

0
dωIm

{∫
d3q

(2π )3
2
[
k2χ

(2,0)
⊥,α0

G
(0)
⊥

− (k2χ
(1,0)
⊥,α0

G
(0)
⊥
)2 + (

k2χ
(1,0)
⊥,α0

G
(0)
⊥
)3

+ k2G
(0)
⊥ χ

(3,0)
⊥,α0

− 2χ
(1,0)
⊥,α0

χ
(2,0)
⊥,α0

(k2G
(0)
⊥ )2 + · · · ]

+ [k2χ
(2,0)
‖,α0

G
(0)
‖ − (k2χ

(1,0)
‖,α0

G
(0)
‖
)2 + (k2χ

(1,0)
‖,α0

G
(0)
‖
)3

+ k2G
(0)
‖ χ

(3,0)
‖,α0

− 2χ
(1,0)
‖,α0

χ
(2,0)
‖,α0

(k2G
(0)
‖ )2 + · · · ]},

(67)

FV
avg

∣∣
α0

= FL
0 + h̄

2π

∫ ∞

0
dωIm

( ∫
d3q

(2π )3
2

{
1

2

[
k2χ

(2,0)
⊥,α0

G
(0)
⊥

− (k2χ
(1,0)
⊥,α0

G
(0)
⊥
)2]+ 1

3

[(
k2χ

(1,0)
⊥,α0

G
(0)
⊥
)3

+ k2G
(0)
⊥ χ

(3,0)
⊥,α0

− 2χ
(1,0)
⊥,α0

χ
(2,0)
⊥,α0

(k2G
(0)
⊥ )2

]+ · · ·
}

+
{

1

2

[
k2χ

(2,0)
‖,α0

G
(0)
‖ − (

k2χ
(1,0)
‖,α0

G
(0)
‖
)2]
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FIG. 2. Diagrammatic representation of Eq. (70).

+ 1

3

[(
k2χ

(1,0)
‖,α0

G
(0)
‖
)3 + k2G

(0)
‖ χ

(3,0)
‖,α0

− 2χ
(1,0)
‖,α0

χ
(2,0)
‖,α0

(k2G
(0)
‖ )2

]+ · · ·
})

, (68)

which, in turn, yields an expansion in powers of ρe2 like that
of Mclachlan [51]. It is plain that the problem in integrating
Eq. (59) has been shifted to that of knowing χ⊥,‖(q; ω) as
a power series of ρ or, otherwise, knowing all order spatial
correlation functions.

IV. APPROXIMATIONS TO THE TOTAL VACUUM
ENERGY OF A RANDOM MEDIUM

A. The quasicrystalline approximation

Previous works (cf. [13,27,29]) have reported closed for-
mulas for FV

avg as functions of χ⊥,‖. However, they are model
dependent. Nonetheless, they are useful for estimating orders
of magnitude. In particular, that in Ref. [27] corresponds to
the so-called quasicrystalline (qc) approximation. According
to this approximation the only relevant correlation function is
the two-body one, h(r), and self-correlations are ignored. In
this approximation, the series of χ̄(q) becomes geometrical
and the only quantity to be computed is χ̄ (2,0)(q),

χ (2,0)
p,α0

(q) = −k2α2
0ρ

2

(1 + δ
p

⊥)

∫
d3rei �q·�rh(r)Tr{Ḡ(0)(�r) · P̄p(q̂)}, (69)

with p =⊥ , ‖. The geometrical series in Fig. 2 is

χ
qc
⊥,‖(q; ω) = ρα0

1 − χ
(2,0)
⊥,‖,α0

(q; ω)/ρα0

, (70)

and so

Gqc
⊥,‖(q,ω) = G

(0)
⊥,‖
[
1 + ρα0

(
k2G

(0)
⊥,‖ − χ

(2,0)
⊥,‖,α0

/
ρ2α2

0

)]−1
,

(71)

and

FV
qc = −h̄

2π

∫ ∞

0
dωIm

( ∫
d3q

(2π )3

× ln
{[
Gqc

⊥,α0

]2Gqc
‖,α0

[G(0)
⊥ ]−2[G(0)

⊥ ]−1
})

(72)

= h̄

2π

∫ ∞

0
dωIm

( ∫
d3q

(2π )3

× {2 ln
[
1 + ρα0

(
k2G

(0)
⊥ − χ

(2,0)
⊥,α0

/
ρ2α2

0

)]
+ ln

[
1 + ρα0

(
k2G

(0)
‖ − χ

(2,0)
‖,α0

/
ρ2α2

0

)]})
, (73)

where by ignoring self-polarization it holds that G̃qc
⊥,‖ = Gqc

⊥,‖.
It is because of the aforementioned analogy between the
formulas for a specific configuration of dipoles (cf. a cubic
lattice [13]) and those of the qc approximation that the
inequality expressed in Eq. (56) turns into an equality in this
case. It is also possible to write Eq. (73) as

FV
qc = −h̄Im

{∫ ∞

0

dω

2π

∫
d3q

(2π )3
2 ln [χqc

⊥ G
qc
⊥ ]+ ln [χqc

‖ G
qc
‖ ]

}
(74)

+ h̄Im
(∫ ∞

0

dω

2π

∫
d3q

(2π )3
2 ln {[G(0)

⊥ ]}+ ln {[G(0)
‖ ]}

)
(75)

+ 3h̄Im

{∫ ∞

0

dω

2π

∫
d3q

(2π )3
ln [α0]

}
. (76)

Making the identification
∫

d3q

(2π)3 = ρ in Eq. (76)4 we read that
the bare atomic bonding energy and the EM zero-point energy
enter as substraction terms. This justifies the interpretation of
FV

qc in Ref. [13]. That is, FV
qc takes account of the zero-point

energy of bare EM modes in Eq. (75) and the atomic bonding
energy of Eq. (76) and substitutes them with the binding energy
of the coupled system of Eq. (74).

Further, by considering the continuum limit of the effective
medium approximation, qξ � 1, we will see thatFV

qc(qξ � 1)
can be written as a function of the refractive index. We will
discuss the accuracy of this approximation.

Although the expression obtained in Ref. [27] forFV
avg coin-

cides with that of Eq. (72), the derivation there was erroneous
and hence its validity restricts to the qc approximation. The
reasoning followed in Ref. [27] was that the average energy
could be obtained by extending appropriately Schwinger’s
approach on a bulk effective medium [18] to a molecular
dielectric. Thus, the steps followed by Schwinger et al. [52]
and Schwinger in Refs. [17,18] were mimicked in Ref. [27] but
for the fact that the effective bulk propagator was replaced by
the averaged source field propagator of a molecular dielectric.
The reason for doing this was the constatation in Ref. [27] that
the effective bulk propagator used in Refs. [17,18,52] is not the
one which enters the formula for the Lamb shift in Eq. (57).
Accidentally, the approach in Ref. [27] turns the inequality of
Eq. (56) into an equality, which is generally incorrect.

B. The Schwinger bulk energy of an effective medium

In Ref. [52], Schwinger, de Raad, and Milton applied
Schwinger’s (Sch.) source theory [32] to the computation of the
vacuum energy of a piecewise homogeneous effective medium
suitable for the further computation of the Casimir forces
between macroscopic effective dielectrics. To this aim they
postulated an effective EM action with an effective interaction
Hamiltonian,

H eff
int = −

∫
d3r �Peff(�r,t) · �E⊥

eff(�r,t). (77)

4This equivalence can be proved passing to the continuum from a
lattice of dipoles whose cell volume is ρ−1. It acts as a regulator.
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In this Hamiltonian the effective electric field �E⊥
eff is the

transverse macroscopic “bulk” field which relates to the
effective polarization density, �Peff , through the transverse
effective Dyson propagator, Geff

⊥ (q; ω) = (εω
effk

2 − q2)−1,

�E⊥
eff(�r; ω) = k2ε−1

0

∫
d3r ′Ḡeff

⊥ (�r,�r ′; ω) · �P ω
eff(�r ′). (78)

In Geff
⊥ , εω

eff = 1 + χω
eff is the effective dielectric constant

and, adapting our nomenclature, Geff
⊥ characterizes the EM

field fluctuations of the “Schwinger vacuum,” |�Sch.〉. The
corresponding energy shift reads

ESch. = −Re

{∫
d3r 〈�Sch.| �̂Peff(�r,t) · �̂E⊥

eff(�r,t)|�Sch.〉
}
, (79)

and varying the action of the effective medium, Schwinger
et al. [52] inferred the identification of the effective polariza-
tion source quadratic fluctuations,∫

dt exp [iωt]i(ε0h̄)−1
(t)〈�Sch.| �̂Peff(�r,0) ⊗ �̂Peff(�r ′,t)|�Sch.〉

= δχ̄ω
effδ

(3)(�r − �r ′).

Inserting the above expression together with Eq. (78) into
Eq. (79) we get [17]

δχ ′ESch. = h̄

2πρ

∫ ∞

0
dωk2Im

{∫
d3q

(2π )3
2δχ

′ω
effG

eff
⊥

}

= h̄

2πρ

∫ ∞

0
dωk2Im

{∫
d3q

(2π )3
2δχ

′ω
effG

(0)
⊥

× [1 + k2G
(0)
⊥ χ

′ω
eff

]−1
}
. (80)

The functional integration immediately yields

FV
Sch. = −h̄

2π

∫ ∞

0
dωIm

( ∫
d3q

(2π )3
ln
{
[Geff

⊥ ]2[G(0)
⊥ ]−2

})
,

(81)

which is a function of the transverse effective Dyson propaga-
tor only. Direct comparison of Eq. (81) and Eqs. (74)–(76),
with χ

qc
⊥,‖ considered χeff in the continuous limit, reveals

that FV
qc includes contributions disregarded in the computation

of [52]. In particular, no longitudinal modes and no LFFs are
present in Eq. (81). Nonetheless, the equations of [52] are suffi-
cient for the treatment of problems in which the internal proper-
ties of the objects are integrated in the definition of their effec-
tive permittivities and remain unaffected during the dynamical
phenomena under study. This is the case of the Casimir forces
between macroscopic dielectrics separated by macroscopic
distances in which the relevant variations in energy are those
with respect to that of the macroscopic objects infinitely far
apart. To this situation corresponds the Lifshitz problem [1,12]
that the authors address in Ref. [52], in which only retarded
modes matter. A similar reasoning leads to the derivation of
the retarded vdW forces from radiative modes only [6].

1. Relation with the microscopic approach

In order to understand the link with the microscopic
computation we first notice the similarity between Eqs. (60)

and (81) for the microscopic computation of ELSh
avg . Ignoring the

fact that Schwinger neglected the contribution of longitudinal
modes, Eq. (81) can be written also as

FV
Sch. =

∫
h̄dω

∫
d3q

(2π )3

∫ χω
eff

0

δχ
′ω
eff

χ
′ω
eff

N LSh
avg

∣∣eff
⊥ , (82)

where N LSh
avg |eff

⊥ is the average density of states restricted
to transverse modes in the continuum. This implies that,
effectively, in the approach of Schwinger et al. the mi-
croscopical interaction Hamiltonian of Eq. (2) with dipole
moment operator e�̂r and coupling constant e is substituted
with the effective Hamiltonian of Eq. (77), which couples
the transverse effective EM field to an effective polarization

density operator �̂Peff with some effective coupling constant

proportional to χ
1/2
eff . Because χeff is made of the integration of

dipole-dipole interactions, the energy of those interactions is
disregarded in the approach of Schwinger et al.5 This means
that the Schwinger et al. approach is not appropriate to study
phenomena driven by the variation of the energies of internal
d.o.f.. This is the case of Lamb shifts in cold atomic clusters,
atomic vapors [21], and artificial solids [53]; and vdW forces
and phase transitions in liquid crystals [54] and colloidal
suspensions [31] in which the relevant variations in energy
are those with respect to that of the molecular constituents
infinitely far apart (see also [55]).6 Nonetheless, the reason
why ELSh

0 can be computed out of FV
Sch. [35] is that, at leading

order in ρ, χ̄ (�r) � ρα0Īδ(3)(�r) and so FV
0 = FV

Sch. at O(ρ).
The original suggestion of Schwinger to explain sonolu-

minescence represents a sort of intermediate problem [17].
Basically, when a bubble embedded in water collapses,
molecules of water fill in the void and he conjectured that
the light emitted in this process carries the excess of EM
vacuum energy stored in the void with respect to the energy
of the homogenous aqueous medium. Evidently the molecules
of water which fill the void form part of the initial aqueous
medium surrounding the bubble. Therefore, leaving aside the
validity of further dynamical approximations (cf. [56]), the
total volume filled by the water is greater after the collapse,
the density of water is less and so the dielectric constant
must vary, at least locally, in the region within and around
the primordial bubble. As a consequence, it is reasonable
to think that, if the time scale of light emission is less than
the typical homogenization time, the molecules of water
within the volume originally occupied by the bubble will
have different spatial disposition to that of the homogenous
surrounding medium. Therefore, their internal energy will be
different to that of the homogeneous phase and the problem
involves not only a variation of energy between macroscopic
objects (aqueous media with and without a bubble) but also

5Analogously, in assuming the bare resonant frequency ωb
AB as

a constant value, the variations of the electrostatic binding energy
between the electrons and the nucleus of each atom is also disregarded
in our approach.

6Note that this does not imply by any means that the generic
Schwinger’s source theory be inapplicable to these problems as shown
explicitly for the case of a specific configuration of dipoles Eq. (54)
(cf. Ref. [50]).
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a difference in the internal energy of the molecules which
were initially in a homogenous disposition and fill in the
void afterward in a different arrangement. On the contrary, if
the homogenization is reached prior to emission and, in good
approximation, the permittivity of the filled bubble is identical
to that of the surrounding medium, Schwinger’s approach
might be a good approximation.

2. Beyond the bulk effective medium approximation

The result of Schwinger in Ref. [17] yields only the energy
associated to radiative modes which depends solely on the
effective refractive index, n(ω) = √

1 + χω
eff , as

FV
Sch. � h̄

6π2c3
Re

{∫ ∞

0
dω ω3[1 − n3]

}
, (83)

and the Schwinger energy shift is

ESch. � −h̄

4π2c3ρ
Re

{∫ ∞

0
dω ω3nχω

eff

}
. (84)

In Sec. V B we compare in detail the above results with
the actual microscopical calculation. Schwinger argued [17]
that these results in the effective medium approximation
could be extended to incorporate spatial dispersion in the
electrical susceptibility. In doing so we obtain an extended
(ext) Schwinger transverse bulk energy, FV

Sch.|ext. However,
even in this case the discrepancy between the actual FV

avg and
FV

Sch.|ext appears already at order ρ2. For the sake of simplicity
we restrict ourselves to the approximations used in Eq. (68)
and find

FV
avg

∣∣
α0

� FV
avg

∣∣‖
α0

+ FV
Sch.

∣∣ext
α0

+ h̄

2π

∫ ∞

0
dω

× Im

{∫
d3q

(2π )3
2

[
− 1

2
k2χ

(2,0)
⊥,α0

G
(0)
⊥

− 2

3
k2G

(0)
⊥ χ

(3,0)
⊥,α0

− 2

3
χ

(1,0)
⊥,α0

χ
(2,0)
⊥,α0

(k2G
(0)
⊥ )2

− (k2χ
(1,0)
⊥,α0

G
(0)
⊥
)3 + · · ·

]}
, (85)

where FV
avg|‖α0

contains the longitudinal modes whose contri-
bution includes radiative energy (cf. computation of FV

O(ρ2) in
Sec. V A).

For the sake of completeness we mention that the approach
of Abrikosov, Dzyaloshinskii, Gorkov, Lifshitz, and Piaevskii
(ADGLP) [1,12] is based on a semiphenomenological pre-
scription for the vacuum energy which accounts for the
restriction of the EM fluctuations to those which contain a
strictly local polarization operator, ∼χeff Īδ(3)(�r − �r ′). Hence,
its content is similar to that of Schwinger’s in the effective
medium approximation but for the fact that it includes the
contribution of long-wavelength bulk longitudinal modes,

FADGLP

= −h̄Im

{∫ ∞

0

dω

2π

∫
d3q

(2π )3
ln

[
(k2 − q2)2

εeff(εeffk2 − q2)2

]}
,

(86)

where εeff is the effective dielectric constant. A critical analysis
of it has been carried out by Bullough in Ref. [57].

V. THE LEADING-ORDER LAMB SHIFT AND VACUUM
ENERGY IN A RANDOM MEDIUM

At leading order, the free-space Lamb shift and Lamb
energy are additive. Also, at leading order in ρ, FL

0 � ρELSh
0 .

The actual computation of FL
0 ,ELSh

0 has been carried out by a
number of authors [16,29,34,58],

FL
0 = h̄ρIm

{∫ ∞

0

dω

2π
ln

[
1 − i

ω3

2πc3
α0

]}
(87)

� ρELSh
0,α0

= −h̄ρIm

{∫ ∞

0

dω

(2π )2
i
ω3

c3
α

}
(88)

� −h̄ρRe

{∫ ∞

0

dω

(2π )2

ω3

c3
α0

}
. (89)

Upon subtraction of the divergent free-electron radiative
self-energy [34], Ee = e2h̄

πmec3

∫
dω ω, the above integral pres-

ents a UV divergence which needs to be regularized. In the
nonrelativistic approximation, the “natural choice” for the UV
cutoff � is that of the Compton wavelength of the electron
such that �e

C = 2πcλe
C = mec

2/h̄. For a single oscillator with
μ2 = e2h̄

2meω0
,

FL
0 � ρ

3π
αf

h̄ω0

mec2
ln

[
mec

2

h̄ω0

]
h̄ω0 (90)

� ρ

2π
ln

[
mec

2

h̄ω0

]
h̄�0, (91)

where re = e2

4πε0mec2 is the electron radius and αf = e2

4πε0h̄c
is

the fine-structure constant. Equation (90) equals Bethe’s result
when expressing the atomic energy in terms of the velocity of
a bounded electron [29,59].7 Had we computed Eq. (87) and
set the wavelength cutoff at the electron radius, �e

r = c/re, we
would have obtained the classical result of Dowling [60] by
considering the singularity around this value. However, this is
inconsistent with the nonrelativistic approximation. The need
of a cutoff just reflects our lack of knowledge of both the
internal structure of the dipoles and the manner the EM field
couples to the internal d.o.f..

At higher orders the Lamb shift is nonadditive. At O(ρ) we
have,

ELSh
O(ρ) = h̄ρIm

{∫ ∞

0

dω

2π
αφ(1)

α (ω)

}
, (92)

where the subscript α means that the renromalized porlariz-
abilities in φ(1)(ω) must be replaced with free-space ones in
order to keep the order ρ of ELSh

O(ρ). At this order, the corres-
ponding φ factors read from Fig. 1(d),

φ
(1)
α⊥,‖ =

∫
d3q

(2π )3

{−ρα[G(0)
⊥,‖]2 + χ

(2)
α⊥,‖G

(0)
⊥,‖/(ρα)

}
. (93)

7Also, a similar expression to that in Eq. (90) was obtained
by Welton [25] from the variation of the nonrelativistic Compton
scattering cross section due to the position fluctuations of the electron.
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From the above equation we can write, in function of LFFs,

ELSh
O(ρ) = h̄ρIm

( ∫ ∞

0

dω

2π
α2
∫

d3q

(2π )3

{
χ

(2)
α‖ (q)/(ρα)2 − 1

+ 2k2G
(0)
⊥ (q)

[
χ

(2)
α⊥(q)/(ρα)2 − k2G

(0)
⊥ (q)

]})
. (94)

This is to show how the LFFs enter the Lamb shift at order
ρ. Related to this fact, the authors of [61] have computed the
effect of LFFs on the vdW forces on a single dipole in an
Onsager (real) cavity using Eq. (92).

At leading order in α0, it is plain from Eqs. (63) and (64)
that FV

O(ρ2)|α0 = ρELSh
O(ρ)|α0/2. From those equations the

same simple relation holds at higher orders, FV
O(ρm)|α0 =

ρELSh
O(ρm−1)|α0/m. This allows for an expansion of both FV

avg|α0

andELSh
avg |α0 in m-body terms of order (e2ρ)m. However, beyond

the approximations used there, no simple relation exists since
any given order ρm contains higher powers of e2 due to
entangled recurrent scattering and additional self-polarization
corrections.

A. Computation in the hard-sphere model

Except in free space, the actual computation of ELSh
avg and

FV
avg is model dependent. Nonetheless, generic results can be

obtained within the simplest analytical model. Let h(r − ξ )
be the two-point correlation function, ξ being the correlation
length. Generally, h(r − ξ ) can be modeled by the addition of
three terms,

h(r − ξ ) � hex.(r − ξ ) + ρ−1δ(3)(�r) + hovd(r − ξ ). (95)

In this equation, hex.(r − ξ ) accounts for the exclusion volume
around each dipole and its precise form depends on the
interaction potential between pairs of scatterers. It tends to
−1 for r � ξ and to zero for r � ξ . Usual forms are those
of a Lennard-Jones potential and a hard-sphere potential.
hovd(r − ξ ) takes account of the overdensity of first neighbors
around a given dipole. It might be relevant for high-ordered
media. The three-dimensional δ function stands for the self-
correlation. hex. and the self-correlation functions are inherent
in any molecular dielectric.

In order to make contact with previous approaches we
further demand the existence of an effective medium for
the frequency range of interest. That implies ζ ≡ kξ � 1
for ω � ω0. For the sake of simplicity we neglect in first
approximation both the overdensity and the self-correlation
terms in h(r − ξ ). We show a posteriori that the latter is
plainly justified while the former implies slight modifications
in numerical prefactors.

Without much loss of generality we take a hard-sphere
(hs) exclusion volume correlation function, hex.(r − ξ ) =
hhs(r − ξ ) = −
(r − ξ ), which derives from the potential
U ( �R1, . . . , �RN ) → ∞ if | �Ri − �Rj | � ξ , i �= j , and 0 other-
wise. The numerical factors of the calculations which involve
near-field modes depend on the precise profile of hex.(r − ξ ).
On the contrary, radiative propagating modes are model
independent.

The computation of φ(1,0) in spatial coordinates is easier
than that of Eq. (93) in Fourier space,

φ
(1,0)
α,hs = Tr

{∫
d3r Ḡ(0)(�r)(−k4ρα)Ḡ(0)(�r)[1 − 
(r − ξ )]

}

= −k3

2π
ραe2iζ

[
1

ζ 3
− 2

ζ 2
i − 1

ζ
+ 1

2
i

]
(96)

� −k3

2π
ρα

[
1

ζ 3
+ 1

ζ
+ 7

6
i − ζ

]
, ζ < 1. (97)

The decomposition into transverse and longitudinal compo-
nents is given in Appendix A. Inserting Eq. (96) into Eq. (92)
and integrating in ω we obtain,

ELSh
O(ρ)

∣∣norec.
hs � −ρμ2

12ε0

�0

ω0

{(
ζ−3

0 − ζ−1
0

)
+ 14

3π
(5/6 − γE − ln [2ζ0])

}
, (98)

where γE is the Euler constant and, as for the computation of
FL

0 , the cut of the integrand at �e
r has been neglected. For

simplicity, the integral has been expanded in powers of ζ0 =
k0ξ � 1 up to order zero, the leading-order term being that
of London’s potential [62]. In contrast to FL

0 , the oscillating
factor e2iζ serves as a natural UV cutoff at � � c/2ξ .8

In the last equations the superscripts (1,0) signal that
recurrent scattering terms have not been included. As advanced
in Sec. III C, the condition ζ 3

0 � �0/ω0 ∼ k0re, implicit also in
Eq. (98), suffices to guarantee that recurrent scattering can be
neglected in good approximation. In Eq. (B3) of Appendix B
we give the expression for the complete series of recurrent scat-
tering diagrams which amount to φ(1)

α . Its expansion in powers
of α and further integration in ω yields a series of the form

ELSh
O(ρ)

∣∣
hs = ρε−1

0 μ2 �0

ω0

∑
m=0

f LSh
m (ζ0)(�0/ω0)2m. (99)

The functions f LSh
m (ζ0) contain both negative and

positive powers of ζ0 together with terms proportional
to ln [(2(m + 1)ζ0]. Each order m presents a wavelength
cutoff at 4π (m + 1)ξ . For m = 0, f LSh

0 (ζ0) is readily
identifiable from Eq. (98). The leading order term of a generic
function f LSh

m (ζ0) is of the order of ζ
−3(2m+1)
0 . Therefore,

[f LSh
m+1(�0/ω0)2(m+1)]/[f LSh

m (�0/ω0)2m] ∼ (�0/ω0

ζ 3
0

)2 and the

convergence of the series is guaranteed by the aforementioned
inequality, ζ 3

0 � �0/ω0. At the same time, this makes the
neglect of recurrent scattering terms a good approximation.

Because each order in recurrent scattering carries an
additional factor α2

0 , the integration of ELSh
O(ρ)|hs yields for

8Making use of the property
∫∞

0 dωIm{φ(ω)} = ∫∞
0 dωφ(iω)

[7,48], all the integrals in ω are performed with the change of variables
u = −iω. Since our computation refers to the ground state, resonant
terms are absent.
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nonrecurrent and recurrent terms, respectively,

FV
O(ρ2)

∣∣norec.
hs � −ρ2μ2

24ε0

�0

ω0

{(
ζ−3

0 − ζ−1
0

)+ 14

3π
(5/6 − γE

− ln [2ζ0])

}
, (100)

FV
O(ρ2)

∣∣
hs = ρ2ε−1

0 μ2 �0

ω0

∑
m=0

1

m + 2
f LSh

m (ζ0)(�0/ω0)2m.

(101)

The numerical constants in Eq. (98) depend on the specific
profile of hex.. Nonetheless, the order and the sign of the terms
are generic. Hence, the script hs can be dropped from Eqs. (99)
and (101) since those expansions are not constrained to any
particular model. As a matter of fact, the addition to Eq. (96)
of the terms in Eq. (A9) which account for the overdensity
two-point correlation function, hovd(r) = Cξδ(1)(r − ξ ), just
modifies slightly the numerical prefactors of the terms in
Eqs. (98) and (100), but neither their order nor their sign.

It is worth mentioning that, although at a given order ρn

the leading contribution comes from nonrecurrent terms, there
are recurrent terms in orders ρs , 0 < s < n, which are of order
(ρξ 3)−(n−s) � 1 greater than the leading order nonrecurrent
term of the order ρn.

B. Discrepancy between F V
avg|rad and F V

Sch.

We investigate to which extent the Schwinger vacuum
energy of a bulk effective medium is a good approximation
to the actual vacuum energy of radiative modes. We compare
their relation up to order ρ3. For the reasons given in
the previous section recurrent scattering is negligible and
the effective susceptibility is well approximated by that of
a Maxwell-Garnett (MG) dielectric. An MG dielectric is
characterized by the fact that the only relevant correlation
function is that of an exclusion volume, hex.(r − ξ ). In the
electrostatic-long-wavelength limit it is proven that the qc
approximation is exact [63] [see Fig. 3] and the effective
susceptibility is independent of the precise form of hex.(r − ξ ).
In particular, we can use the results of the hs model without loss
of generality. According to this, the electrical susceptibility is
the sum of a geometrical series of ratio χ

(2)
MG/ρα = ρα/3, in

which only the bare longitudinal propagator and free-space
polarizabilities enter. It yields

χMG = ρα

1 − χ
(2)
MG/ρα

= ρα

1 − ρα/3
, (102)

and from here and neglecting further renormalization on α

for the reasons given above, the effective refractive index
is n � 1 + ρα/2 + (ρα)2/24 + · · · . It has been already seen
that FV

Sch. contains the free-space Lamb energy. At O(ρ2), by
inserting the series of n in Eq. (83) we get

FV
Sch.

∣∣O(ρ2) � − 7h̄

48π2
Re

{∫ ∞

0
dω k3(ρα)2

}
. (103)

Next we turn to the hs model for the microscopical
computation. The ζ -independent terms of φ

(1,0)
α,hs in Eq. (97)

amount to the energy of radiative propagating modes
(rad) within FV

O(ρ2)|rad upon integration in ω. We show in

FIG. 3. Diagrammatic representation of the 1PI processes which
amount to the MG susceptibility. Only the exclusion volume
two-point correlation function, hex.(r − ξ ), is relevant and self-
correlations are disregarded. In the electrostatic-long-wavelength
limit, kξ,qξ → 0, the qc approximation is exact.

Appendix A that, out of them, −i k3

2π
5
6ρα comes from the

bulk transverse propagator in 2φ
(1,0)
⊥

9 [Eqs. (A1), (A3), and
(A7)]. The remaining −i k3

2π

ρα

3 comes from the bare transverse

propagator in the susceptibility function of φ
(1,0)
‖ [Eqs. (A3)

and (A8)]. Hence, we can write

FV
O(ρ2)

∣∣
rad � − 7h̄

48π2
Re

{∫ ∞

0
dω k3(ρα)2

}
, (104)

and so FV
Sch.|O(ρ2) � FV

O(ρ2)|rad. However, this equality is

accidental. To see this, it is necessary to express FV
avg and

FV
Sch. in comparable terms. To this aim we use the expression

of Eq. (64) for FV
avg but with α instead of α0 there, and

the extended version of FV
Sch. which incorporates spatial

dispersion [17], FV
Sch.|ext. Inserting Eq. (36) into Eq. (81) for

FV
Sch. but with spatial dispersion we have

FV
Sch.|ext = −2h̄Im

{∫ ∞

0

dω

2π

∫
d3q

(2π )3

× ln

[
1−ρα̃

∑
m= 0

k2G(m)
⊥ (q)

]}
, (105)

Further, we expand the latter equation up to order ρ3,10

FV
Sch.

∣∣ext � F (1)
V + h̄Im

( ∫ ∞

0

dω

2π

{
ρ2

(
2αφ

(1)
α⊥
/
ρ

+ α2k4
∫

d3q

(2π )3
[G(0)

⊥ ]2 + iα2 k3

2π
φ(1)

α

/
ρ

)
(106)

9A comment is in order here to amend some erroneous inter-
pretations in Ref. [27]. In the first place, the distinction between
coherent and incoherent radiation carried out in Sec. IV of Ref. [27]
is erroneous. While Eq. (54) of Ref. [27] is correct, its equivalence
with Eqs. (46), (48) and (50) of Ref. [27], and with the addition of
Eqs. (42) and (44) of Ref. [27] is not. Consequently, the conclusion
that only one LFF appears in the expression of the coherent radiation
is incorrect. The correct calculations will be published somewhere
else [64].

10The expansion of the logarithms in Eq. (105) yields a series of
q integrals whose integrands are products of powers of polarization
propagators of the form [G(m)

⊥,‖]s . Each factor G(m)
⊥,‖ is an m-scattering

loop and the sum of the exponents, s, is the loop order; for example,
G

(0)
⊥,‖[G(2)

⊥,‖]2G(1)
⊥,‖ is a four-loop term made of one free-space, one

single-scattering, and two double-scattering loops.
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+ ρ3

[
2αφ

(2,0)
α⊥

/
ρ2 + 2

3
α3k6

∫
d3q

(2π )3
[G(0)

⊥ ]3

+ 2α2k4
∫

d3q

(2π )3
G

(0)
⊥ G(1,0)

α⊥
/
ρ + O(α4)

]})
. (107)

On the other hand, for the evaluation of the radiative modes
of FV

avg we use the expressions for the MG φ factors and
effective transverse propagator restricted to radiative
modes [27],

GMG
⊥ (q) = LLLGeff

MG⊥(q), φMG = −i
k3

2π
L2

LLn, (108)

2φMG⊥ = −i
k3

2π
L2

LLn, φMG‖ = φMG − 2φMG⊥, (109)

with LLL = χMG+3
3 and Geff

MG⊥(q) = [(χMG + 1)k2 − q2]−1.
From Eq. (106) we have that the first term there con-

tains only the transverse modes in FV
O(ρ2). Its restriction to

radiative modes amounts to − 5h̄
24π2 Re{∫∞

0 dω k3(ρα)2}. On
the other hand, the second term of Eq. (106) amounts to

h̄
16π2 Re{∫∞

0 dω k3(ρα)2}. Adding up the last two quantities
we obtain Eq. (103), which equals FV

O(ρ2)|rad, even though no
longitudinal terms enter the Schwinger result. The reason for
this equivalence is accidental, since the O(ρ2) radiative term
of the difference FV

avg|⊥ − FV
Sch.|ext in Eq. (85) is equivalent,

by reciprocity [27], to the longitudinal term in FV
O(ρ2)|rad but

with opposite sign. This relation is not model dependent. Note
also that by incorporating spatial dispersion in FV

Sch.|ext, the
term 2φ

(1,0)
⊥ contains only one half of the nonpropagating term

in Eq. (97) proportional to ζ−1
0 . The rest of the near-field terms

in FV
O(ρ2) are disregarded in FV

Sch.|ext
O(ρ2).

Next we show that the accidental coincidence of FV
Sch.|ext

O(ρ2)

and FV
O(ρ2)|rad breaks down at O(ρ3). Either by expanding the

integrand of Eq. (83) or by direct integration of the O(ρ3)
terms in Eq. (107) we get

FV
Sch.

∣∣ext
O(ρ3) � − 17h̄

288π2
Re

{∫ ∞

0
dω k3(ρα)3

}
, (110)

while the insertion of Eq. (108) into Eq. (64) yields

FV
O(ρ3)

∣∣
rad � − 17h̄

144π2
Re

{∫ ∞

0
dω k3(ρα)3

}
= 2FV

Sch.

∣∣ext
O(ρ3).

(111)

VI. THE LAMB SHIFT FROM SCHWINGER’S BULK
EFFECTIVE MEDIUM VACUUM ENERGY

During the last decade studies on the effects of a dielectric
environment on the enhancement and inhibition of decay rates
and on the frequency shifts have revealed the relevance of LFFs
and near-field contributions [27,44,65–67]. In these phenom-
ena the microscopic structure matters, even as considering at
the lowest order the effect of a dilute medium. The reason why
the bulk effective medium approximation does not yield the
correct result for the decay rate has been already discussed
in Ref. [27]. In that approximation, unphysical divergences

appear as considering dispersive media. It is our aim in this
section to discuss why that approximation is not suitable either
to study the Lamb shift.

To this respect, Schaden, Spruch, and Zhou (SSZ) [35]
have computed the Lamb shift at leading order in ρ from
Eq. (83) of Schwinger’s vacuum energy of a bulk effective
medium. In turn, this is the free-space Lamb shift. For the
reasons explained in Sec. IV B Schwinger’s approach yields
the correct result at leading order for χeff � ρα0. Nonetheless,
the authors of [35] have applied a more general procedure
consisting of computing the Lamb shift out of the variation
of FV

Sch. with respect to “small” variations of a background
refractive index. That is, adopting our nomenclature, they
have used the variation of Eq. (80) together with the result
of Eq. (84) and δχeff = 2n�n,

ELSh
SSZ = ρ−1�nFV

Sch. = −h̄

4π2c3ρ
Re

{∫ ∞

0
dω ω3n�χeff

}
.

(112)

For a dilute medium, n � 1, �χeff = ρα0, and

ELSh
SSZ = −h̄

4π2c3ρ
Re

{∫ ∞

0
dω ω3ρα0

}
, (113)

which is nothing but the free-space Lamb shift. This is
analogous to the computation carried out by Feynman, Power,
and Milonni [16,33,34] in the limit ρV → 1 in which the
medium consists of a single dipole in free space, V being the
sample volume. More specifically, the authors of [35] have
computed the difference of the free-space Lamb shift between
two dielectric states, I and II , with �χeff = ρ(αII

0 − αI
0 ).

The computation of Milonni, Schaden, and Spruch (MSS)
in Ref. [4] combines elements of [16,33–35]. That is, while in
Ref. [4] the variation of the bulk energy density is calculated
between two different states of molecular dielectrics as in
Ref. [35], the difference between the states is given by the
difference on the polarizability of only one of the dipoles as
in Refs. [16,33,34]. Under the assumption that the dipole in
question is randomly placed and the medium behaves as a
continuum of refractive index n � ρα

I,II
0 /2, the authors take

�χeff = ρ(αII
0 − αI

0 ) and, using Eq. (112), they get

ELSh
MSS = −h̄

4π2c3ρ
Re

{∫ ∞

0
dω ω3nρ

(
αII

0 − αI
0

)}
. (114)

Likewise, for the Lamb shift due to the presence
of the background medium (BGM), ELSh

MSS|I−II
BGM = − h̄

4π2

Re{∫ dω(ω3/c3)(n − 1)(αII
0 − αI

0 )}.
The authors of [4] had already warned that the derivation

of the Lamb shift this way might need to be corrected by LFFs
in highly ordered systems. We have proved in Sec. V B that
this is indeed the case under any circumstance, no matter the
degree of order. As was mentioned there, spatial dispersion and
longitudinal modes are to be added to Schwinger’s formula in
order to obtain the correct result. Even if the host medium can
be treated as a continuum, the microscopical calculation of the
Lamb shift on the simplest geometries for the embedding of a
dipole contains LFFs. At leading order, near-field electrostatic
and other radiative factors enter the Lamb shift through the
terms of φ(1) in ELSh

O(ρ). For instance, for a small Onsager cavity
(Ons.), those terms are the ones in Eq. (97) with ξ being the
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radius of the cavity and kξ < 1 [10,61,66,67]. Thus, instead
of ELSh

MSS|I−II
BGM , we obtain at leading order in (n − 1)11

ELSh
O(n−1)

∣∣I−II

Ons. � 7

3
ELSh

MSS

∣∣I−II

BGM − h̄

2π2
Im

{∫
dω(n − 1)

× (αII
0 − αI

0

)[ 1

ξ 3
+ ω2

c2ξ

]}
. (115)

Note that the Lamb shifts of Eqs. (114) and (115) are those
referred to as vdW shifts in the literature [7–9] since they
account for the interaction of a foreign dipole with a host
background medium.

VII. CONTINUUM APPROACH TO THE BINDING
ENERGY OF AN EFFECTIVE MEDIUM

In this section we investigate the possibility of quanti-
fying, at least partially, the binding energy through optical
observations. This is motivated by the conjecture raised in
the Introduction on the correspondence between the shift in
the spectrum of the dielectric constant and the EM binding
energy. Against this conjecture we have that there does not
exist a priori a simple relation between the density of states
for emission [27], N emiss = −2Im{φ}/(πω), and that for the
vacuum energy, N V

avg = −2
ω

∫ α0

0 δα
′
0

φ

1+α
′
0φ

. In favor, we have

already found that ELSh
avg can be expressed as a function of the

electrical susceptibility only Eq. (60). Moreover, in the qc
approximation FV

qc is a function of χ⊥,‖(q) [Eqs. (72)–(76)].
Further, the qc approximation becomes exact in the long-
wavelength limit of the effective medium theory of an MG
dielectric. For this reason we concentrate on the MG model.
Nonetheless, we must bear in mind that the MG model neglects
recurrent scattering in χMG, which might be relevant, even in
the long-wavelength limit, in highly dense media for which
ξ 3 ∼ ρ−1 (cf. [45,68] and Appendix B).

A. The Lorentz-Lorenz shift

The problem of the binding energy of an effective medium
has been addressed by Bullough and Obada [13] in a molecular
crystal and by ourselves in Ref. [27]. In the latter reference it
has been found that in the long-wavelength limit FV

qc can be
split into the energy of transverse bulk modes and that of LFFs
and longitudinal bulk modes according to

FV
MG = FV

Sch. + �FV
MG. (116)

Here, FV
Sch. is given in Eq. (83) and

�FV
MG = −h̄

∫ ∞

0

dω

2π

∫
d3q

(2π )3
Im

{
ln

[
χ3

MG[α0]

(ρα0)3εMG[α0]

]}
,

(117)

11The approximate expression of φ
(1,0)
α,hs for ζ < 1 in Eq. (97)

has been used for simplicity since the exponential factor in the
integrand of Eq. (96) suppresses frequencies greater than c/(2ξ ) and
the singularities of the integrand locate around ω0 � c/(2ξ ). The
ξ -dependent terms may be more relevant than the radiative ones if
the host medium is highly dissipative within the frequency range of
integration.

where χMG are functions of α0 in the qc approximation.
An identical expression has been reported by Bullough and
Obada [13], who have interpreted �FV

MG as the electrostatic
binding energy. However, the decomposition in Eq. (116),
the identification of FV

Sch. with the radiative energy, and the
identification of �FV

MG with the electrostatic energy are all
questionable.

Regarding the radiative energy, it was found in Sec. V B
that not all the radiative energy is given by FV

Sch.. In the
first place, it was shown in Ref. [27] that L⊥(q) induces
radiation on the surrounding dipoles around an emitter, acting
as a mediator of nonradiative energy transfer. For this to
be the case, L⊥(q) must appear coupled to G⊥(q) prior to
integration in q. Clearly, the decomposition of Eq. (116)
precludes this. On top of that, there is also energy in FV

‖,avg

carried by indirect radiation modes which are missing in
FV

Sch.. It comes from the transverse modes within χ‖(q)
which are neglected in the long-wavelength limit [e.g., the
term −i k3

2π

ρα

3 mentioned before Eq. (104) belongs to indirect
radiation].

Regarding the electrostatic energy, it is the EM vacuum
energy obtained in the electrostatic limit, c → ∞. Following
[13], such a limit must be taken prior to the long-wavelength
approximation, making radiative modes vanish. On the other
hand, for qξ → 0 the transverse susceptibility equals the
longitudinal one because only electrostatic modes enter
χ⊥(qξ = 0). However, as argued in the previous paragraph,
L⊥(qξ = 0) has a physical meaning when coupled to G⊥
acting as an inductor of radiation. Therefore, if radiation
is precluded for c → ∞, Gc→∞

⊥ does not contribute to the
electrostatic energy and neither do the transverse LFFs. As a
result, transverse LFFs should not enter the vacuum energy
in the electrostatic-long-wavelength approximation despite
their presence in Eq. (117) for qξ → 0. Thus, we find that
the energy of electrostatic modes in the long-wavelength
limit is

FV
eff

∣∣
stat = −h̄

∫ ∞

0

dω

2π

∫
d3q

(2π )3
Im

{
ln

[
χMG[α0]

εMG[α0]ρα0

]}
,

(118)

which equals �FV
MG but for the absence of the two transverse

LFFs.
Next, let us make explicit calculations in the MG model

with bare polarizabilities. According to that model, the
electrical susceptibility is the sum of a geometrical series of
ratio χ

(2)
MG/ρα0 = ρα0/3, in which only the bare longitudinal

propagator enters. Neglecting self-polarization corrections in
Eq. (102) we get,

χMG[α0] =
ρ

2μ2ω0

3h̄ε0

ω2
0 − ω2 − ρ

2μ2ω0

9h̄ε0

. (119)

The question we aim to address is whether the shift of the
resonant frequency of χMG with respect to that of α0 has any
counterpart in the binding energy of a molecular dielectric. In
the particular case of an infinite MG dielectric that frequency
shift is known as the Lorentz-Lorenz (LL) shift, which is
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observable in optics experiments [21,69],12

�ωLL = ω0

[√
1 − ρ

2μ2

9h̄ε0ω0
− 1

]
= −ρ

μ2

9h̄ε0
+ O(ρ2).

(120)

The associated energy shift is referred to as collective Lamb
shift for obvious reasons [11,22]. The LL shift is clearly the
result of the renormalization of χMG in Eq. (119) by the elec-
trostatic modes within χ

(2)
MG and with all the dipoles in the

ground state. Therefore, its energetic counterpart must find in
the formula for FV

eff|stat. Since no self-polarization corrections
enter the integrand of Eq. (118) at all, it does not contain
imaginary terms and we can write it as a sum over modes. That
is, upon using the regularization

∫
d3q

(2π)3 = ρ, the ω integral
reduces to the sum of the poles minus the sum of the zeros of
the factors within the logarithm. Using the formulas of an MG
dielectric we obtain

FV
eff

∣∣
stat = ρ

−h̄ω0

2

[√
1 + ρ

4μ2

9h̄ε0ω0
− 1

]
. (121)

At leading order in ρ, FV
eff|stat � ρh̄�ωLL holds. Because, by

assumption, no electrostatic-long-wavelength modes renor-
malize the single-particle polarizability alone, we infer that
FV

eff|stat is the binding energy of collective d.o.f. due to pairwise
long-ranged electrostatic interactions, and so is the Lorentz-
Lorenz shift. Had we started with the renormalized single-
particle polarizabilities in Eq. (119), the resonant frequency
ω0 would have been replaced by its renormalized value,
which derives from the Lamb shift of the individual dipoles.
Therefore, the collective Lamb shift of an effective medium
shows up in addition to the Lamb shift of the individual dipoles
although the former derives from the integration of the latter
upon taking the long-wavelength limit. When sample finite
size effects are considered, it has been computed by Friedberg
et al. [20] and verified experimentally in Ref. [21] that the
collective Lamb shift incorporates a surface term referred to
as the cooperative Lamb shift, which accounts for the mutual
dipole interactions mediated by the radiative modes reflected
at the boundaries. The cooperative Lamb shift is of the same
order as the LL shift, although it is not associated to the
poles of the dielectric constant but to the transmition and
reflection coefficients of the medium. To this respect, it seems
more closely related to FV

Sch.. However, by inserting Eq. (119)
into that of FV

Sch. in Eq. (83) and cutting off the frequency
integral at ωmax = cρ1/3 for consistency with the regularization
of the momentum divergency in FV

eff|stat, one obtains for the
Schwinger bulk energy of an MG dielectric,

FMG
Sch. � 9

2π2

ω0ρ
2/3

c
h̄�ωLL. (122)

12Despite of the fact that there is experimental evidence for �ωLL,
it is also known that the MG model fails to provide accurate results
close the resonance. The reason being that it does not incorporate the
dominant recurrent scattering [45].

This quantity is of the order of ρ−1/3ω0/c times that ofFV
eff|stat,

which makes it negligible for dilute media where cρ1/3/

ω0 � 1.

B. Discussion on the effective medium approximation

Our microscopical approach together with the calculations
of the previous section allow us to answer two of the questions
posed by Bullough in Ref. [57]. The first one was whether
the knowledge of the refractive index spectrum is sufficient to
estimate the vacuum energy of long-wavelength fluctuations.
Our results mean that neither the radiative nor the electrostatic
energy can be correctly accounted for this way. The second
question was concerned with the role of the Lorentz field in the
continuum approach to the binding energy. We have proved,
by strict isolation of the vacuum energy of long-wavelength
longitudinal modes, that the Lorentz field gives rise to the LL
shift and hence to FV

eff|stat.
Regarding the radiative energy, we conclude from the

previous sections that the knowledge of the spectrum of the
refractive index is insufficient for the quantification of the total
radiative energy. In the first place, part of the radiation is not
accounted for in the (bulk) spectrum of FV

Sch.. Second, the
microscopical approach of Sec. V and Appendix A shows that
the transverse propagators within the LFF terms amount to
radiative modes which are disregarded in the long-wavelength
limit of Eqs. (74)–(76).

Regarding the electrostatic energy, we first observe that
the relation FV

eff|stat � ρh̄�ωLL must not be interpreted as a
quantitative estimate of the binding energy but as a result
of consistency. That is, this equation means that if only
the longitudinal long-wavelength modes which enter the
renormalization of χMG are considered in the computation of
the binding energy of clusters, the equivalence must hold. On
the contrary, it must not be interpreted as a reliable estimation
of the electrostatic binding energy. To see this it suffices to
verify from Eq. (100) that FV

O(ρ2)|norec.
hs does not contain terms

of the order of Eq. (121). In particular, all the ζ0-independent
terms in Eq. (100) have a radiative origin and are of the
order of �0/ω0 less than that of FV

eff|stat. Moreover, since
generally ζ 3

0 � �0/ω0, we have FV
O(ρ2)|norec.

hs � FV
eff|stat. We

conclude that, contrarily to that suggested in Refs. [13,57],
the continuum approximation is not even sufficient to estimate
the orders of magnitude of electrostatic binding energies.13

Therefore, while the Lamb shift of the individual dipole
polarizabilities can be attributed to shifts in the internal energy
levels, the same interpretation is not applicable to the collective
Lamb shift with respect to the binding energy of the dielectric.

It is also remarkable that while the free-space Lamb shift
can be computed out of FV

Sch. [16,33–35] and so involves
the energy of long-wavelength transverse modes only, the
collective Lamb shift of a homogeneous effective medium

13The sum over modes of Eq. (117) yields −ρh̄ω0[3 −
2
√

3/(n2
0 + 2) − n0

√
3/(n2

0 + 2)]/2 [13] upon use of the regular-

ization
∫

d3q

(2π )3 = ρ and n0 = √
1 + χMG(ω = 0). Equivalently, for a

generic Lorentzian dielectric constant with field strength factor f , it
yields ρf 2h̄ω0/24 [27].
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accounts for the energy of long-wavelength longitudinal modes
instead.

VIII. SUMMARY

We have carried out a microscopical study of the EM
vacuum energy of an isotropic and homogeneous molecular
dielectric made of a random distribution of two-level atomic
dipoles.

Before considering statistical averages, we have shown that
for a specific configuration m, FV

m can be expressed either as
a function of the dipole fluctuations Eq. (53), as a function of
the source EM field fluctuations Eq. (54), or as a combination
of both Eq. (55).

When statistical averages are taken, the Lamb shift is a
function of the electrical susceptibility only Eq. (60), χ⊥,‖,
and hence can be computed out of optical observations. On
the contrary, the total vacuum energy is not, and only a cluster
expansion is possible Eq. (68). Only in the quasicrystalline
approximation is it possible to give a closed expression for the
vacuum energy in terms of χ

qc
⊥,‖ [Eqs. (74)–(76)].

Using a hard-sphere model we have discussed to what
extent recurrent scattering terms contribute to the total vacuum
energy. Except for the free-space Lamb energy, which needs
a UV cutoff, no other divergences either in frequency or
momentum space show up in the rest of the vacuum energy. In
momentum space, LFFs kill the short distance divergences in
the same manner they do in the spectrum of emission [27,67].
In frequency space, the UV divergences of retarded modes are
exponentially suppressed by a natural cutoff at the wavelength
of the order of the correlation length. On the contrary, both
momentum and frequency divergences show up in the vacuum
energy of a bulk effective medium which is a function of the
effective Dyson propagator only and contains no LFFs. For
this reason we interpret that the LFFs play the role of spectral
functions with respect to the spectrum of bulk modes in the
sense introduced by Ford [70].

Related to the last issue, the Schwinger approach to the
vacuum energy of a bulk effective medium is, in general, in-
sufficient to compute the Lamb shift out of variations of FV

Sch.,
which contradicts the result in Ref. [35] (Secs. V B and VI).
FV

Sch. does not account for the total vacuum energy and contains
artificial divergences due to the absence of LFFs. Nevertheless,
FV

Sch. is sufficient to study the retarded Casimir forces between
macroscopic dielectrics [52].

By evaluating the vacuum energy of the longitudinal long-
wavelength modes of a Maxwell-Garnett dielectric we have
obtained that FV

eff|stat � ρh̄�ωLL, which is readily identifiable
with the collective Lamb shift in a homogeneous effective
medium. This relation has been interpreted as a result of the
consistency between the spectrum of χMG and the energy of
the modes involved in the construction of χMG. Nonetheless, it
has been concluded that neither the spectrum of the refractive
index nor the shift in the resonance of the dielectric constant
are sufficient either to quantify the energy of radiative modes
or to estimate the electrostatic binding energy of a molecular
dielectric. In particular, the collective Lamb shift of the
dielectric constant is not readily identifiable with a binding
energy.
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APPENDIX A: DECOMPOSITION
OF φ(1,0) AND COMPUTATION OF φ

(1,0)
ovd

We write Eq. (93) as a spatial space integral in order to
show the radiative and electrostatic nature of the propagators
involved. To this aim, we make use of the fact that Ḡ

(0)
rad.(r) is

totally transverse and Ḡ
(0)
stat.(r) is totally longitudinal in Fourier

space,

2φ
(1,0)
α⊥ = −k2ραTr

{∫
d3r
[
Ḡ

(0)
rad.(r) + Ḡ

(0)
stat.(r)

]

· Ḡ(0)
rad.(r)[1 + h(r − ξ )]

}
= −k2ρα

∫
d3r

× Tr
{
Ḡ

(0)
rad.(r) · Ḡ

(0)
rad.(r) (A1)

+ Ḡ
(0)
rad.(r) · Ḡ(0)

rad.(r)h(r − ξ ) (A2)

+ Ḡ
(0)
stat.(r) · Ḡ

(0)
rad.(r)h(r − ξ )

}
, (A3)

φ
(1,0)
α‖ = −k2ραTr

{∫
d3r
[
Ḡ

(0)
rad.(r) + Ḡ

(0)
stat.(r)

]
· Ḡ(0)

stat.(r)[1 + h(r − ξ )]

}
= −k2ρα

∫
d3r

× Tr
{
Ḡ

(0)
stat.(r) · Ḡ

(0)
stat.(r) (A4)

+ Ḡ
(0)
stat.(r) · Ḡ

(0)
stat.(r)h(r − ξ ) (A5)

+ Ḡ
(0)
rad.(r) · Ḡ(0)

stat.(r)h(r − ξ )
}
. (A6)

Note that it is the presence of h(r − ξ ) that makes the crossed
terms nonvanishing.

Next, particularizing to the hs model with h(r − ξ ) =
−
(r − ξ ),

2φ
(1,0)
α⊥

∣∣
hs = keiζ

4πζ 3
ρα[2 − 2iζ + eiζ (−2 + 4iζ + 2ζ 2 − iζ 3)]

� −k

2π
ρα

[
1

2ζ
+ 5

6
i

]
, ζ < 1, (A7)

φ
(1,0)
α‖

∣∣
hs = −k

2π
ραeiζ

[
1

ζ 3
− i

ζ 2

]

� −k

2π
ρα

[
1

ζ 3
+ 1

2ζ
+ i

3

]
, ζ < 1, (A8)

where ζ = kξ . The ζ -independent terms correspond to the
long-wavelength propagating modes. In Fourier space, they
are given by the poles of the radiative propagators in Eqs. (A1),
(A3), and (A6).

Next, we estimate the contribution of the two-point over-
density correlation function to φ(1,0) in ELSh

O(ρ),FV
O(ρ2). Let

hovd(r − ξ ) = ξCδ(1)(r − ξ ), where C is a positive constant
which accounts for the molecular coordination number. It
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(a)

(b)

FIG. 4. Diagrammatic representation of the series of recurrent
scattering diagrams which amount to (a) φ(1) and (b) χ̄ (2). In the latter
series the first diagram corresponds to χ̄ (2,0) while the remaining ones
belong to χ̄ (2)

rec .

suffices to integrate in angles to obtain

φ
(1,0)
ovd = Tr

{∫
d3r Ḡ(0)(�r) · (−k4ρα̃)Ḡ(0)(�r)ξCδ(1)(r − ξ )

}

= −k3

2π
Cρα̃e2iζ

[
3

ζ 3
− 6

ζ 2
i − 5

ζ
+ 2i + ζ

]
. (A9)

APPENDIX B: COMPUTATION OF φ(1)
α AND χ̄ (2)

αrec

INCLUDING RECURRENT SCATTERING

We proceed to sum up the infinite series of recurrent
scattering diagrams which contribute to φ(1)

α in ELSh
O(ρ),FV

O(ρ2).
The series is pictured diagrammatically in Fig. 4(a). Replacing
α̃ with α the sum reads

φ(1)
α = −k4ραTr

{∫
d3rḠ(0)(�r)

·
∑
m=0

(k2α)2m[Ḡ(0)(�r)]2m · Ḡ(0)(�r)[1 + h(r − ξ )]

}
,

(B1)

where the scatterers are all taken bare to keep the order ρ

in the series. An analytical expression for this sum can be

given. We follow the computation of [71] in which the authors
decompose Ḡ(0)(�r) in transverse and longitudinal components
with respect to the position vector, �r ,

Ḡ(0)(�r) = P (r)[Ī − r̂ ⊗ r̂] + Q(r)r̂ ⊗ r̂ , (B2)

with

P (r) = −eikr

4πr
[1 + i/(kr) − 1/(kr)2],

Q(r) = −eikr

4πr
[−2i/(kr) + 2/(kr)2].

In terms of P , Q, Eq. (B1) reads

φ(1)
α = −k4ρα

∫
d3r

[
2P 2

1 − (k2αP )2

+ Q2

1 − (k2αQ)2

]
[1 + h(r − ξ )]. (B3)

The integration in r of Eq. (B1) and its further integration
in ω in Eq. (92) require their expansion in powers of α, hence,
the series of Eq. (99).

In a similar fashion, the full series of recurrent scattering
diagrams which amount to χ

(2)
rec⊥,‖ are those on the right-hand

side of the equality of Fig. 4(b), except for the first one. Their
sum yields

χ̄ (2)
αrec(�r) = −k2(ρα)2Ḡ(0)(�r) ·

∑
m=1

(−k2α)2m

× [Ḡ(0)(�r)]2m [1+h(r−ξ )]. (B4)

Using the decomposition of Ḡ(0) in terms of P , Q, it can be
written as

χ̄ (2,2)
α (�r) = −k2(ρα)2

[
P

1 − (k2αP )2
(Ī − r̂ ⊗ r̂)

+ Q

1 − (k2αQ)2
r̂ ⊗ r̂

]
[1 + h(r − ξ )]. (B5)

At leading order in (α/ξ 3)2, the zero mode which modifies the
original MG formula for the electrical susceptibility is

χ (2)
αrec|⊥,‖(qξ = 0) � 1

3 (ρα̃)2(α̃/4πξ 3)2. (B6)
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