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Nonrelativistic energies for the low-lying states of lithium are calculated using the variational
method in Hylleraas coordinates. Variational eigenvalues for the infinite nuclear mass case with up
to 34 020 terms are −7.478 060 323 910 147(1) a.u. for 1s22s 2S, −7.354 098 421 444 37(1) a.u. for
1s23s 2S, −7.318 530 845 998 91(1) a.u. for 1s24s 2S, −7.410 156 532 652 41(4) a.u. for 1s22p 2P , and
−7.335 523 543 524 688(3) a.u. for 1s23d 2D. The selection of the minimum set of angular momentum
configurations is discussed, with the 2P and 3D states as examples to demonstrate the impact of various
configurations on the variational energies. It is shown by numerical example that the second spin function (i.e.,
coupled to form a triplet intermediate state) has no significant effect on either the variational energies or the
spin-dependent Fermi contact term. Results of greatly improved accuracy for the Fermi contact term are presented
for all the states considered.
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I. INTRODUCTION

The ultimate aim of theoretical atomic spectroscopy is
to match or exceed the state of the art for accuracy in
spectroscopic measurements. A comparison with the mea-
surements then yields tests of fundamental theory, or new
values for physical parameters such as fundamental constants
or properties of the nucleus. It is currently not possible to
achieve this goal of accuracy for many-electron atoms, even in
the nonrelativistic limit, but it is possible for hydrogen, helium,
and more recently also for lithium.

The most accurate results are achieved for two- and
three-electron atoms by using the Rayleigh-Ritz variational
method in Hylleraas coordinates. Though many difficulties
still remain, significant advances have been achieved in the
past two decades [1–9]. Especially in the past five years, the
rate of progress has accelerated. For example, the ground-state
energy of lithium has been calculated to 14 digit accuracy [8,9]
and similarly for the 3S state [9]. Needless to say, these
advances are closely correlated with the progress of computer
technology. Basis sets containing as many as 27 000 terms were
used in our recent work [9]. At this level, parallel processing
becomes a necessity.

Other competitive methods are also under develop-
ment. Sims and Hagstrom [10] used the Hy-CI (Hylleraas-
configuration-interaction) method to calculate the ground-state
energy of lithium to be −7.478 060 323 452 a.u. with 16 764
basis functions. Stanke et al. [11] used a method based on
explicitly correlated Gaussian basis functions [12] to calculate
the ground-state energy of lithium to −7.478 060 323 81 a.u.
with 10 000 terms. These two results are both very accurate,
but still several orders of magnitude less than the most accurate
one obtained by using pure Hylleraas coordinates. This verifies
that a variational method based on Hylleraas coordinates is still
the most accurate method for solving the Schrödinger equation
for two- and three-electron atoms.

One of the problems exhibited by Hylleraas basis sets is
that, as the basis set is enlarged, it tends to develop a near

linear dependence and numerical instability. To avoid this
problem, Yan and Drake [2] (see also McKenzie and Drake
[1]) introduced Hylleraas basis sets partitioned into multiple
sectors with different distance scales that are individually
optimized for each sector. These basis sets have been verified
to be very efficient and stable in practical calculations [2–6].
In our recent paper [9], we made a slight modification to this
method of choosing the basis sets and found that the new
method is more efficient than the old one, and is still stable. The
modifications involved subdividing one sector and truncating
the terms in another, but this remains a matter of trial and error
with few general rules to guide one’s intuition. In particular,
rules that appear to be true for small basis sets may no longer
hold for large basis sets.

One issue that has not been adequately explored is the role
of the second spin function. As well known, a spin-doublet
state of lithium can be formed by coupling a third electron to
either an intermediate singlet pair, or an intermediate triplet
pair. Usually just the former is used in calculations. The
impact of not including the latter triplet has been studied
by many authors [13–17]. Their common conclusion is that
including the triplet spin coupling explicitly will not enhance
the convergence of the energy significantly, but it will strongly
affect the expectation values of other operators which are
spin dependent, such as the Fermi contact term. In this paper,
we will give an argument to show that the triplet spin wave
function is indispensable for the correct wave function of the
system, though the energy is not very sensitive to it.

A further problem concerns the selection of angular
momentum configurations for non-S states. The problem is
well studied for two-electron systems in Hylleraas coordinates
by Breit [18], Schwartz [19], and Drake [20], but for the
three-electron case little had been published before the work of
Harris [21] in 2005. In the present paper, we reinvestigate this
problem and take the 2P and 3D states of lithium as examples
to demonstrate the impact of various angular momentum
configurations on the energy levels.
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The rest of the paper is organized as follows. Section II
discusses the overall form of the variational wave function, and
especially the partitioning of the radial part into sectors with
individually optimized distance scales. Section III presents a
general discussion of the various angular couplings that are
required for completeness of the variational basis set, and
Sec. IV presents results for the 2P and 3D states to illustrate
the role played by different angular momentum couplings.
Section V studies in detail the effect of the second spin function
on both the energies and the spin-dependent Fermi contact
term. Finally, Sec. VI contains a brief summary of the results
and their significance.

II. CONSTRUCTION OF BASIS SETS

For the sake of completeness, we briefly describe the
structure of variational basis sets, based on our early work [2].
Further modifications to obtain better convergence of energy
eigenvalues will be discussed in Secs. III and V.

The variational wave function is a linear combination of
terms of the form (in atomic units throughout)

ψ = A(φ(r1,r2,r3)), (1)

where

φ(r1,r2,r3) = r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3

×YLM
(�1�2)�12,�3

(r1,r2,r3)χ1 (2)

and

YLM
(�1�2)�12,�3

(r1,r2,r3)

= r
�1
1 r

�2
2 r

�3
3

∑
mi

〈�1m1; �2m2|�1�2; �12m12〉

× 〈�12m12; �3m3|�12�3; LM〉
×Y�1m1 (r1)Y�2m2 (r2)Y�3m3 (r3) (3)

is the vector-coupled product of spherical harmonics for the
three electrons to form a state of total angular momentum L

and z component M ,

χ1 = α(1)β(2)α(3) − β(1)α(2)α(3) (4)

is the spin function with the total spin 1/2, and

A = (1) − (12) − (13) − (23) + (123) + (132) (5)

is the three-particle antisymmetrizer. The quantities ri , i =
1,2,3 are the radial coordinates for the three electrons, and the
rij = |ri − rj | are the interparticle coordinates. The angular
momenta �i are chosen according to

(�1,�2,�3) = (0,0,0)A for S states,

(�1,�2,�3) = (0,0,1)A,(0,1,0)B for P states, (6)

(�1,�2,�3) = (0,0,2)A,(0,1,1)B for D states.

As described previously [2], all terms in Eq. (2) are nominally
included such that

j1 + j2 + j3 + j12 + j23 + j31 � 	 (7)

and the convergence of the eigenvalues is studied as 	 is
progressively increased. However, terms that may potentially
cause near linear dependence are omitted. For example, if
�1 = �2 and α ≈ β, then terms with j1 > j2 are omitted, as

well as terms with j1 = j2 when j23 > j31. The presence of the
near-linear dependency problem in a basis set may be detected
by diagonalizing the positive-definite overlap matrix to check
for abnormally small or negative eigenvalues. Furthermore,
the first sector (0,0,L)A is further divided into five subsectors
according to correlations among the three electrons

sector 1 : all j12, j23 = 0, j31 = 0,

sector 2 : all j12, j23 = 0, j31 �= 0,

sector 3 : all j12, j23 �= 0, j31 = 0, (8)

sector 4 : j12 = 0, j23 �= 0, j31 �= 0,

sector 5 : j12 �= 0, j23 �= 0, j31 �= 0.

Thus the basis sets contain five sectors for S states and six
sectors for P and D states including (0,1,0)B or (0,1,1)B . The
size of each sector is separately determined by assigning to
each an 	i according to

{	1,	2,	3,	4,	5} = {	,	,	,	,	}, L = 0

{	1,	2,	3,	4,	5,	6} = {	,	,	,	,	,	 − 2}, L=1,2

III. COMPLETENESS OF HYLLERAAS-TYPE BASIS SETS

For the S states of two-electron atomic systems, the
completeness of a Hylleraas-type basis set has been proved
rigorously by Klahn and Bingel [22]. Their detailed proof is
lengthy, but the problem can be simply understood from the
viewpoint of configuration interaction involving a multipole
expansion. By definition r2n

12 can be written in the form

r2n
12 = [

r2
1 + r2

2 − 2r1 · r2
]n

, (9)

and r1 · r2 = r1r2 cos θ12, where θ12 is the angle between the
vectors r1 and r2. Thus the right-hand side of Eq. (9) contains
terms up to cosn θ12, which can be reexpressed as finite linear
combinations of Legendre polynomials up to Pn(cos θ12). Each
Legendre polynomial can in turn be expanded into multipoles
according to the spherical harmonic addition theorem

Pq(cos θ12) = 4π

2q + 1

q∑
m=−q

(−1)mYq−m(r1)Yqm(r2). (10)

Since cos θ12 is rotationally invariant, so also is the sum over
spherical harmonics on the right-hand side. Thus each term
Pq(cos θ12) is equivalent to the coupling of two electrons of
angular momentum q to form an S state; and so the even
powers of r12 alone, when multiplied into the uncorrelated
wave function with independent variational parameters, are
equivalent to the partial wave expansion of a configuration
interaction (CI) wave function for an S state, and a CI wave
function is known to be complete when all partial waves
are included. The angular momentum couplings generated
are thus of the form (ss ′) 1S + (pp′) 1S + (dd ′) 1S + · · ·, with
independent variational coefficients for each term. The odd
powers of r12 greatly accelerate the rate of convergence
because they are suited to a representation of the electron cusp
condition along the line r1 = r2. For an example, see Ref. [23].
The problem of completeness for the three-electron case can
be understood in a similar way, as discussed further below.

For the non-S states of two-electron atomic systems, the
problem of the completeness of Hylleraas coordinates has been
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studied by Breit [18], Schwartz [19], and Drake [20]. The
common conclusion of these authors is that, because rn

12 is
included explicitly in the Hylleraas-type basis functions, the
addition of at most [L/2] angular momentum configurations
is sufficient to achieve completeness in the limit as the basis
set is enlarged, where [L/2] denotes “greatest integer in.” A
detailed rule for selecting these additional angular momentum
configurations has been given by Drake [20]. For a singly
excited state of angular momentum L, the minimum (�1,�2)
configurations needed in the basis set are those with �1 + �2 =
L, and �1 � �2. As a simple example, for L = 2 the essential
angular couplings are of the form sd 1D and pp′ 1D, and
similarly for the triplets.

For the non-S states of three-electron atomic systems, the
problem of the completeness of Hylleraas coordinates was
recently discussed by Harris [21], building on the earlier work
of Schwartz [19] for the two-electron case. We first summarize
the main points of Schwartz and Harris and then give the
necessary angular momentum configurations for 2P and 3D

states of lithium.
The basic form of the Hylleraas-type basis functions for

three-electron systems is described by Eq. (2) and the angular
part of the functions is described by Eq. (3). As for the
two-electron case, we first consider the additional angular
functions that are generated when the basic function in Eq. (3)
is multiplied by powers of the rij coordinates. It follows from
the triangular rule for angular momentum coupling and parity
selection rules that

cos θY�,m(θ,φ) = A�−1
�,m Y�−1,m(θ,φ) + A�+1

�,m Y�+1,m(θ,φ).
(11)

The only nonvanishing values for the coefficients A� ′
�,m are

A� ′
�,m = (−1)m[(2� + 1)(2�′ + 1)]1/2

×
(

1 � �′
0 m −m

)(
1 � �′
0 0 0

)
(12)

expressed in terms of 3j symbols [24] with �′ = � ± 1. The
general form for r̂1 · r̂2 acting on the initial YLM

(�1�2)�12,�3
is thus

(r̂1 · r̂2)YLM
(�1�2)�12,�3

= C1YLM
(�1−1, �2−1)�12,�3

+ C2YLM
(�1−1, �2+1)�12,�3

+C3YLM
(�1+1, �2−1)�12,�3

+ C4YLM
(�1+1, �2+1)�12,�3

, (13)

where the Ci are constants, and all �i ± 1 are non-negative.
Thus successive powers of r̂1 · r̂2 generate a wide variety of
configurations ((�′

1,�
′
2)�12,�3; LM), but they are not all linearly

independent because of the fixed Ci coefficients in Eq. (13).
Similarly powers of r̂2 · r̂3 generate configurations of the form
((�1,�

′
2)�′

12,�
′
3; LM), but again they are not all linearly inde-

pendent. For a state with definite total angular momentum L,
only those configurations satisfying the following conditions
need be included explicitly in Hylleraas bases [21]:

�1 + �2 + �3 = L for parity (−1)L, (14)

�1 + �2 + �3 = L + 1 for parity (−1)(L+1). (15)

Another problem that should be emphasized is that the
coupling schemes of angular momenta for three-body systems
are not unique [24]. The three distinct coupling schemes are (in

TABLE I. Angular momentum configurations for P states (odd
parity) of lithium.

No. �1 �2 �12 �3 L M

1 0 0 0 1 1 0
2 0 1 1 0 1 0
3 1 0 1 0 1 0

an obvious notation) |(�1,�2)�12 �3; LM〉, |�1(�2,�3)�23; LM〉,
and |(�1,�3)�13 �2; LM〉. In general, there are multiple possible
values for the intermediate angular momenta �12, �23, and �13.
In fact, these three-coupling schemes should be physically
equivalent. This is ensured by the possibility of unitary
transformations among these three schemes. For example,
there is a relationship between the state vectors of the first
and second according to the recoupling transformation

|�1(�2,�3)�23; LM〉
= (−1)�1+�2+�3+L

∑
�′

12

√
(2�′

12 + 1)(2�23 + 1)

×
{

�1 �2 �′
12

�3 L �23

}
|(�1,�2)�′

12 �3; LM〉, (16)

expressed in terms of the standard 6j symbols [24]. It can
be seen from the above equation that the transformation from
the first to the second scheme can be completed only if all
possible values of �12 are included in the basis set. So, the
values of the intermediate angular momenta (�12, or �23, or
�13) are important.

IV. RESULTS FOR THE 2P AND 3D STATES

Following the discussions of the preceding section, we list
the necessary angular momentum configurations for 2P and
3D states of lithium in Tables I and II, respectively. For the
2P state, there are three configurations in total. As pointed out
by Yan and Drake [2], the energy of the 1s22p 2P state would
converge to a wrong value if only the first configuration in
Table I were used. This is evidence of the incompleteness of
the basis set. In Table III, we list the energies of the 2P state
calculated using two configurations and three configurations.
The results calculated using two configurations are quoted
from our recent paper [9]. The variational basis set for
the calculations using three configurations is constructed as
follows: the whole basis set is divided into seven sectors, and
the radial parts of the first four sectors are generated according
to the basic manner described previously, namely, formula (8).

TABLE II. Angular momentum configurations for D states (even
parity) of lithium.

No. �1 �2 �12 �3 L M

1 0 0 0 2 2 0
2 0 1 1 1 2 0
3 0 2 2 0 2 0
4 1 0 1 1 2 0
5 2 0 2 0 2 0
6 1 1 2 0 2 0
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TABLE III. Convergence study for the nonrelativistic energy
of lithium in the 1s22p 2P state, calculated using two and three
angular momentum configurations, respectively, and with the second
spin function χ2. Units are atomic units, and 	 = ∞ denotes the
extrapolated value.

	 N E(	) R(	)

(�1,�2,�3) = (0,0,1), (0,1,0) with χ1 only
10 3024 −7.410 156 531 219 66
11 4824 −7.410 156 532 310 89
12 7440 −7.410 156 532 558 34 4.409
13 11118 −7.410 156 532 625 75 3.670
14 16164 −7.410 156 532 640 83 4.470
15 23004 −7.410 156 532 648 43 1.983
16 30224 −7.410 156 532 650 66 3.402

(�1,�2,�3) = (0,0,1), (0,1,0), (1,0,0) with χ1 only
8 1016 −7.410 156 502 496 189
9 1870 −7.410 156 529 965 265

10 3300 −7.410 156 532 354 927 11.49
11 5600 −7.410 156 532 619 679 9.026
12 9170 −7.410 156 532 647 379 9.557
13 14532 −7.410 156 532 651 514 6.698
14 22400 −7.410 156 532 652 175 6.257
15 33600 −7.410 156 532 652 360 3.575
∞ −7.410 156 532 652 4(1)

(�1,�2,�3) = (0,0,1), (0,1,0), (1,0,0) with χ1 and χ2

5 153 −7.410 148 566 764 002
6 385 −7.410 155 955 712 337
7 888 −7.410 156 484 860 455 13.96
8 1878 −7.410 156 528 148 006 12.22
9 3692 −7.410 156 532 067 689 11.04

10 6828 −7.410 156 532 624 245 7.04
11 11950 −7.410 156 532 650 209 21.43
12 20000 −7.410 156 532 652 104 13.69
13 32200 −7.410 156 532 652 370 7.13
∞ −7.410 156 532 652 41(4)

Other calculations
8 1715 −7.410 156 518 4a

12 −7.410 156 532 628 6b

∞ −7.410 156 532 665(14)b

aYan et al. [2].
bPuchalski et al. [6].

The radial part of the fifth sector is generated by the formula

j1 + j2 + j3 + j12 + j23 + j31 � 	 − 4, (17)

but terms with j1 > j2 and j1 = j2 when j23 > j31 are
omitted to avoid unnecessary duplication and potential linear
dependence. The radial parts of the sixth sector and the
seventh sector are also generated by formula (17), but no
terms are omitted here. The first five sectors are assigned
the angular momentum configuration (�1,�2,�3) = (0,0,1),
and the sixth and seventh sectors are assigned configurations
(�1,�2,�3) = (0,1,0) and (�1,�2,�3) = (1,0,0), respectively.

As can be seen from Table III, the energies decrease
significantly when the third configuration is added, and the
energy convergence ratios R(	) are much larger (i.e., faster
convergence) when using three configurations than when using
two configurations. R(	) is defined in terms of the ratio of

successive differences by

R(	) = E(	) − E(	 − 1)

E(	 − 1) − E(	 − 2)
, (18)

and so it immediately reveals the pattern of convergence.
The case R = constant is the ideal case corresponding to
geometric convergence. The results in Table III demonstrate
that the third configuration (�1,�2,�3) = (1,0,0) is important
for calculations of the 2P state of lithium.

For the 3D state of lithium, according to our analysis, there
are in total six necessary angular momentum configurations.
For completeness, we add these one by one and study their
impact on the energy of the 3D state, as listed in Table IV.
It can be seen from the table that with only one angular
momentum configuration (0,0,2), the energy of the 1s23d 2D

state converges to −7.335 523 087 a.u., in which only the first
seven figures are correct. When two configurations (0,0,2)
and (0,1,1) are used, the variational energy decreases to
−7.335 523 543 078, in which the first ten figures are correct.
When three configurations (0,0,2), (0,2,0), and (0,1,1) are
used, the variational energy with 25 788 basis functions is
−7.335 523 543 523 941 a.u., with almost thirteen correct
figures. When four configurations (0,0,2), (0,2,0), (2,0,0),
and (0,1,1) are used, the variational energy with 30 000 basis
functions is −7.335 523 543 524 386 a.u., which has thirteen
correct figures. When five configurations (0,0,2), (0,2,0),
(2,0,0), (0,1,1), and (1,0,1) are used, the variational energy
with 32 760 basis functions is −7.335 523 543 524 685 a.u.,
which has fourteen or fifteen correct figures. It is significant
that the R(	) convergence ratios are much larger with
five configurations than they are for the other cases with
fewer configurations. We find that adding the sixth and final
configuration (1,1,0) in Table II does not further lower the
energy significantly, and so we do not list the results explicitly
in Table IV.

V. EFFECT OF THE SECOND SPIN FUNCTION
ON ENERGIES AND SPIN-DEPENDENT

MATRIX ELEMENTS

As mentioned in the Introduction, there are two independent
spin wave functions for the double states of lithium,

χ1(1,2,3) = α(1)β(2)α(3) − β(1)α(2)α(3), (19)

χ2(1,2,3) = 2α(1)α(2)β(3) − β(1)α(2)α(3)

−α(1)β(2)α(3). (20)

The physical meaning of χ1 is that electrons 1 and 2 are first
coupled to a spin single state S12 = 0, and the result coupled
with electron 3 to give a final state with total spin S = 1/2 and
z component Sz = 1/2. χ2 means that electrons 1 and 2 are first
coupled to a spin triplet state S12 = 1, and the result coupled
with electron 3 to give a final state with total spin S = 1/2 and z

component Sz = 1/2. Larsson had given detailed discussions
about the necessity of the second spin wave function in the
calculations of the energy levels of lithium [13]. His conclusion
is that if the basis set contains the terms generated by the
operator

A{(13)φχ1}, (21)
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TABLE IV. Convergence study for the nonrelativistic energy of
lithium in the 1s23d 2D state, calculated using different angular
momentum configurations. Units are atomic units.

	 N E(	) R(	)

(�1,�2,�3) = (0,0,2)
7 288 −7.335 522 846 909 011
8 570 −7.335 523 005 011 643
9 1050 −7.335 523 078 299 127 2.157

10 1830 −7.335 523 086 314 969 9.142
11 3040 −7.335 523 087 718 336 5.711

(�1,�2,�3) = (0,0,2), (0,1,1)
10 1785 −7.335 523 540 669 860
11 3045 −7.335 523 542 483 543
12 4970 −7.335 523 542 882 444 4.471
13 7820 −7.335 523 543 001 790 3.342
14 11952 −7.335 523 543 052 819 2.338
15 17780 −7.335 523 543 078 357 2.018

(�1,�2,�3) = (0,0,2), (0,1,1), (0,2,0)
9 1722 −7.335 523 541 259 572

10 3180 −7.335 523 543 125 368
11 5548 −7.335 523 543 444 753 5.841
12 9240 −7.335 523 543 510 569 4.852
13 13800 −7.335 523 543 520 135 6.880
14 16960 −7.335 523 543 522 726 3.692
15 25788 −7.335 523 543 523 941 2.132

(�1,�2,�3) = (0,0,2), (0,1,1), (0,2,0), (2,0,0)
8 704 −7.335 523 524 776 523
9 1428 −7.335 523 541 000 464

10 2700 −7.335 523 543 043 150 7.942
11 4888 −7.335 523 543 477 152 4.706
12 8400 −7.335 523 543 512 381 12.31
13 13832 −7.335 523 543 522 043 3.646
14 21966 −7.335 523 543 524 045 4.824
15 30000 −7.335 523 543 524 386 5.876

(�1,�2,�3) = (0,0,2), (0,1,1), (0,2,0), (2,0,0), (1,0,1)
8 780 −7.335 523 524 256 807
9 1638 −7.335 523 541 397 026

10 3180 −7.335 523 543 374 304 8.688
11 5810 −7.335 523 543 510 671 14.49
12 10115 −7.335 523 543 523 117 10.95
13 16835 −7.335 523 543 524 362 9.997
14 26955 −7.335 523 543 524 655 4.177
15 32760 −7.335 523 543 524 685 9.820
∞ −7.335 523 543 524 688(3)

Other calculations
8 1673 −7.335 523 540 35a

∞ −7.335 523 541 10(43)a

4000 −7.335 523 542 97b

aYan et al. [2].
bSharkey et al. [25].

then, according to this argument, the second spin function
need not be explicitly included. Here, A is the three-particle
antisymmetrizer and (13) denotes the exchange of electron 1
and electron 3 operating on φ (the orbital part of the wave
function). The energy lowering when A{φχ2} = A{(13)φχ1}
is included would then be small.

In the following two sections, we present extensive numer-
ical tests of the effect of the second spin function on energies
and expectation values of spin-dependent operators, such as
the Fermi contact term.

A. Second spin function and energies

In Table V, we list the energies for the ground state of
lithium calculated using only χ1, only χ2, and both χ1 and χ2,
respectively. The energies calculated using only χ1 are cited
from our recent paper [9]. The radial parts of the basis set for
using χ2 are obtained by exchanging j1 with j3 and j12 with
j23 of the radial parts of the basis set for using χ1. The radial
part of the basis set for using both χ1 and χ2 is divided into six
sectors. The first four sectors are constructed according to the
basis manner described in Sec. II, namely, formula (8). The
fifth sector is generated by the following manner:

j1 + j2 + j3 + j12 + j23 + j31 � 	 − 3, (22)

but terms like j1 > j2 and j1 = j2 when j23 > j31 are omitted
for avoiding the potential linear dependence. The sixth sector
is also generated by Eq. (22), but when 	 < 10 the terms
that should be omitted are the same as the fifth sector; when
	 � 10, terms like j1 > j3 and j12 > j31 when j1 = j3 are
omitted.

It can be seen from Table V that the energy of
the ground state of the lithium can be calculated to
−7.478 060 323 910 134 a.u. with 265 20 basis functions only
using χ1, and it can be calculated to −7.478 060 323 909 942
a.u. with 265 20 basis functions only using χ2. When both
χ1 and χ2 are used, the energy can be calculated to
−7.478 060 323 910 146 894 a.u. with 340 20 basis functions.
Comparing these results, we can make the conclusion that the
nonrelativistic energy levels of lithium do not depend on the
spin wave functions. No matter whether χ1 or χ2 or both χ1

and χ2 are used, the energy of the ground state of the lithium
converges to the same limit. However, if both χ1 and χ2 are
used, the energy converges slightly more quickly. In Tables VI
and VII, we list the energies of 3S–6S states of lithium which
are calculated using χ1 and both χ1 and χ2, respectively. Here
also, adding the second spin wave function slightly improves
the convergence ratios.

We also explored the effect of the second spin function
for the 2P state, using a basis set divided into ten sectors.
The first seven sectors were the same as those in the one-spin
case, and with the same 	 for the highest sum of powers. The
last three sectors (i.e., 8, 9, and 10) were assigned the second
spin function and angular momentum configurations (0,0,1),
(0,1,0), and (1,0,0), respectively, but with the smaller sum of
powers 	2 = 	 − 3 [cf. Eq. (22)]. In addition, the terms in the
eighth sector were truncated such that terms with j1 � j2 when
j23 > j31 were omitted. The results are included in Table III.
As can be seen, the pattern of convergence is unusually smooth
for this case, and yields the best variational bound for the 2P

state. The results with and without the second spin function
agree with each other within the estimated uncertainty.

B. Second spin function and the Fermi contact term

For expectation values of spin-dependent operators, such
as the Fermi contact term, one might argue that the effect of
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TABLE V. Convergence study for the nonrelativistic energy of Li in the ground state, calculated using only the first spin wave function χ1,
the second spin wave function χ2, and both spin wave functions χ1 and χ2, respectively. N is the number of terms, and 	 = ∞ denotes the
extrapolated value. Units are atomic units.

	 N E(	) R(	)

With only χ1

10 3910 −7.478 060 323 880 889
11 6039 −7.478 060 323 905 362
12 9056 −7.478 060 323 909 450 5.986
13 13248 −7.478 060 323 909 950 8.174
14 18935 −7.478 060 323 910 102 3.290
15 26520 −7.478 060 323 910 134 4.679

With only χ2

10 3910 −7.478 060 323 491 870
11 6039 −7.478 060 323 825 035
12 9056 −7.478 060 323 891 747 4.994
13 13248 −7.478 060 323 902 848 6.009
14 18935 −7.478 060 323 908 907 1.832
15 26520 −7.478 060 323 909 791 6.851

With both χ1 and χ2

10 5082 −7.478 060 323 905 585 516
11 7992 −7.478 060 323 909 524 819
12 12168 −7.478 060 323 910 044 374 7.582
13 18108 −7.478 060 323 910 127 997 6.213
14 24552 −7.478 060 323 910 144 868 4.956
15 34020 −7.478 060 323 910 146 894 8.327
∞ −7.478 060 323 910 147(1)
Sims et al. [10] 16764 −7.478 060 323 452
Stanke et al. [11] 10000 −7.478 060 323 81
Yan et al. [4] 9577 −7.478 060 323 892 4
Puchalski et al. [8] 30632 −7.478 060 323 910 097
Puchalski et al. [8] ∞ −7.478 060 323 910 2(2)

TABLE VI. Convergence study for the nonrelativistic energies of Li in the 1s23s 2S and 1s24s 2S states, calculated using the spin wave
function χ1 and the spin wave functions χ1 and χ2, respectively. N is the number of terms, and 	 = ∞ denotes the extrapolated value. Units
are atomic units.

	 N E(	) R(	) E(	) R(	)

1s23s 2S 1s24s 2S

With χ1 only

10 3910 −7.354 098 421 345 692 −7.318 530 845 805 121
11 6039 −7.354 098 421 430 788 −7.318 530 845 973 819
12 9056 −7.354 098 421 441 885 7.668 −7.318 530 845 994 767 8.053
13 13248 −7.354 098 421 443 757 5.928 −7.318 530 845 998 076 6.330
14 18935 −7.354 098 421 444 256 3.746 −7.318 530 845 998 783 4.679
15 26520 −7.354 098 421 444 313 8.792 −7.318 530 845 998 873 7.861

With χ1 and χ2

10 5082 −7.354 098 421 429 480 658 −7.318 530 845 949 424 961
11 7992 −7.354 098 421 442 608 886 −7.318 530 845 993 305 012
12 12168 −7.354 098 421 444 138 932 8.580 −7.318 530 845 998 086 597 9.176
13 18108 −7.354 098 421 444 332 016 7.924 −7.318 530 845 998 795 354 6.746
14 24552 −7.354 098 421 444 354 317 8.658 −7.318 530 845 998 889 685 7.513
15 34020 −7.354 098 421 444 364 045 2.292 −7.318 530 845 998 906 901 5.479
∞ −7.354 098 421 444 37(1) −7.318 530 845 998 91(1)
King [26] 1900 −7.354 098 355 1900 −7.318 530 816
Sims et al. [10] 17180 −7.354 098 420 933 17072 −7.318 530 845 331
Stanke et al. [11] 10000 −7.354 098 421 113
Puchalski et al. [8] 15952 −7.354 098 421 442 66 15952 −7.318 530 845 990 3
Puchalski et al. [8] ∞ −7.354 098 421 443 2(4) ∞ −7.318 530 845 994(2)
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TABLE VII. Convergence study for the nonrelativistic energies of Li in the 1s25s 2S and 1s26s 2S state, calculated using the spin wave
function χ1 and the spin wave functions χ1 and χ2, respectively. N is the number of terms and 	 = ∞ denotes the extrapolated value. Units
are atomic units.

	 N E(	) R(	) E(	) R(	)
1s25s 2S 1s26s 2S

With χ1 only
10 3910 −7.303 551 578 555 033 −7.295 859 506 736 444
11 6039 −7.303 551 579 159 207 −7.295 859 510 281 078
12 9056 −7.303 551 579 216 794 10.49 −7.295 859 510 759 016 7.416
13 13248 −7.303 551 579 224 834 7.162 −7.295 859 510 827 607 6.967
14 18935 −7.303 551 579 226 329 5.377 −7.295 859 510 841 869 4.809
15 26520 −7.303 551 579 226 629 4.986 −7.295 859 510 843 625 8.126

With χ1 and χ2

10 5082 −7.303 551 578 888 417 980 −7.295 859 509 245 942 566
11 7992 −7.303 551 579 198 474 278 −7.295 859 510 700 292 483
12 12168 −7.303 551 579 223 521 339 12.37 −7.295 859 510 830 668 471 11.15
13 18108 −7.303 551 579 226 342 318 8.878 −7.295 859 510 842 332 362 11.17
14 24552 −7.303 551 579 226 649 253 9.190 −7.295 859 510 843 842 102 7.725
15 34020 −7.303 551 579 226 734 650 3.594 −7.295 859 510 844 131 039 5.225
∞ −7.303 551 579 226 77(4) −7.295 859 510 844 19(6)
King [26] 1900 −7.303 551 551 −7.295 859 384
Sims et al. [10] 17072 −7.303 551 578 291 −7.295 859 509 943
Puchalski et al. [8] 15952 −7.303 551 579 219 0 −7.295 859 510 808 3
Puchalski et al. [8] ∞ −7.303 551 579 222(3) −7.295 859 510 815(6)

the second spin wave function may be more important. The
circumstantial evidence presented by King [16,17] seemed to
indicate that the rate of convergence was greatly accelerated
by adding the second spin function, based on basis sets with
332 terms vs 602 terms with both spin functions.

In order to settle the question, we have carried out extensive
calculations using only the first spin function, and both spin
functions together. The uncorrected Fermi contact factor fc is
defined by

fc = 4π〈�|
3∑

i=1
δ(ri)σzi |�〉, (23)

where h̄σzi/2 is the spin operator of electron i in the z direction,
and � is the nonrelativistic wave function of lithium for infinite
nuclear mass. This is related to the full hyperfine structure
coupling constant A1/2(exp) by

A1/2(exp) = 2(1 + ae)CrelCMCRCQED

× 95.410 67(7)
μI

3I
fc MHz, (24)

where μI is the magnetic moment of the nucleus, ae is the
anomalous magnetic moment correction, Crel is the relativistic
correction factor, CM and CR are the finite nuclear mass and
size correction factors, and CQED is the QED correction factor
other than the anomalous magnetic moment correction (see
Ref. [27] for further details).

The results of calculations of fc for the 2S and 3S states
of lithium are shown in Table VIII. The ratios R(	) of suc-
cessive differences indicate that the convergence is generally
erratic, but the differences between successive calculations
nevertheless progressively decrease. The significant point is
that the number of figures that are correct are about the
same for basis sets of approximately the same size. The

final result is more accurate with two spin functions only
because the total basis set size is larger. The final result
for the 2S state of fc = 2.905 968 95(5) a.u. is in harmony
with our previous value 2.905 922(50), and with the effective
nonrelativistic result 2.905 89 extracted from the large-scale
relativistic CI calculations of Yerokhin [29]. It seems clear
that the larger value 2.908 56(8) a.u. obtained by Esquival
et al. is overestimated. The results in Table VIII for the
3S state are in similarly good agreement with our previous
calculations and those of Yerokhin [29]. The value with two
spin functions has evidently converged to the very accurate
result fc = 0.673 380 816(3) a.u. Previous experience with
high precision Hylleraas calculations for helium [30] indicates
that the accuracy for both states could be further improved
by a factor of 20 or more by use of the Hiller-Sucher-
Feinberg (HSF) [31] global operator. For wave functions of
low accuracy, or for Gaussian basis sets [32], even larger
improvements in accuracy have been obtained with both the
HSF and Drachman [33] global operators.

Results for the higher-lying S states, the 2P state, and
the 3D state are summarized in Table IX. For most cases,
the results with one spin function and both spin functions
agree within the estimated uncertainties, although the 2P state
appears to be anomalous in this regard, undoubtedly due to the
erratic nature of the convergence.

The conclusion from all the results taken together is that the
second spin function has no direct effect on the final converged
value of expectation values, even for spin-dependent operators
such as fc. However, the rate of convergence may depend
on the strategy used to construct the variational wave function.
The multiplicity of distance scales used in the present work for
the spatial part appears to produce the same enhancement of
convergence as including the second spin function explicitly,
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TABLE VIII. Fermi contact term fc for the Li 2S and 3S states, with and without the second spin function χ2. N is the number of terms
and 	 = ∞ denotes the extrapolated value. Units are atomic units.

	 N fc R(	) fc R(	)

1s22s 2S 1s23s 2S

With χ1 only
5 255 2.909 653 645 056 0.680 191 820 971
6 500 2.906 774 702 366 0.674 102 759 251
7 910 2.905 845 558 005 3.098 0.673 273 729 239 7.344
8 1580 2.906 015 663 946 −5.462 0.673 414 603 634 −5.884
9 2620 2.905 998 447 250 −9.880 0.673 412 297 822 −61.099

10 3910 2.905 952 999 341 0.378 0.673 384 394 853 0.083
11 6039 2.905 970 621 969 −2.578 0.673 377 420 547 4.000
12 9056 2.905 969 401 324 −14.43 0.673 381 377 367 −1.762
13 13248 2.905 969 443 355 −29.04 0.673 380 631 643 −5.306
14 18935 2.905 968 909 939 −7.879 0.673 380 926 602 −2.528
15 26520 2.905 968 946 277 −14.67 0.673 380 729 330 −5.678
∞ 2.905 968 944(37) 0.673 380 81(19)

With χ1 and χ2

5 270 2.901 676 269 089 0.676 996 860 796
6 550 2.905 038 297 856 0.672 848 734 456
7 1024 2.906 005 450 054 3.476 0.673 624 710 626 −5.345
8 1840 2.905 974 291 454 −31.03 0.673 327 460 084 −2.610
9 3125 2.905 987 258 807 −2.402 0.673 386 386 061 −5.044

10 5082 2.905 968 903 909 −0.706 0.673 382 187 111 −6.988
11 7992 2.905 969 903 592 −18.36 0.673 381 678 637 −2.263
12 12618 2.905 968 826 597 −0.928 0.673 380 436 264 −3.008
13 18188 2.905 968 925 663 −10.87 0.673 380 904 796 −2.643
14 26250 2.905 969 012 972 1.135 0.673 380 813 175 −4.135
15 34020 2.905 968 915 597 −0.897 0.673 380 816 397 −5.433
∞ 2.905 968 967(52) 0.673 380 816(3)
Yan et al. [27] 2.905 922(50) 0.673 41(5)
Esquivel et al. [28] 2.908 56(8)
Yerokhin [29] 2.905 89 0.673 36

as observed by King [16,17]. This conclusion applies only to
first-order perturbation corrections. The second spin function
would play a crucial role in sums over virtual intermediate
states for higher-order perturbation corrections due to spin-
dependent operators.

VI. SUMMARY

In this paper, we discussed the completeness of the
Hylleraas-type basis set for three-electron atomic systems,
with the 2P and 3D states as examples to demonstrate the
impact of the various angular moment configurations to the
energy levels. We presented the most accurate nonrelativistic

TABLE IX. Fermi contact term fc for excited states of lithium,
with and without the second spin function. Units are atomic units.

State With χ1 only With χ1 and χ2

4S 0.253 973 48(2) 0.253 973 58(1)
5S 0.121 867 2(5) 0.121 867 22(1)
6S 0.067 594 6(1) 0.067 594 4(2)
2P −0.214 617 83(6) −0.214 617 75(2)
3D −0.000 354 39(5)

energies and wave functions available for the 2S–6S, 2P , and
3D states of lithium. It is well established in the literature
that the energies are not sensitive to the second spin wave
function, and that is fully confirmed in this work. What is not
so well established is the role of the second spin function for
spin-dependent operators. Contrary to previous work [16,17],
our results show that the second spin function does not affect
diagonal expectation values, such as the Fermi contact term,
provided that there is sufficient flexibility in the spatial part
of the variational wave function. The accuracy of this term
is substantially improved for the 2S–6S, 2P , and 3D states
of lithium. These results lay the foundation for improved
calculations of corrections due to relativistic and QED effects,
and applications to isotope shifts [4].
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