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Particle-hole configuration-interaction polarizabilities and Verdet constants of noble-gas atoms
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Polarizabilities and Verdet constants are calculated using a relativistic particle-hole configuration-interaction
(CI) method. Particle-hole CI is saturated by including quasicontinuum states built by enclosing an atom in
a cavity. Agreement with experiment is achieved, and the method is more accurate than, for example, the
Hartree-Fock method. The accuracy of the particle-hole CI method is limited by the omission of configurations
with double excitations. Perturbation theory can be applied to account for these excitations, and we expect in the
future to further improve the accuracy. The method can be also applied to the calculations of polarizabilities of
excited states and can be generalized to other open-shell atoms.
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I. INTRODUCTION

Atomic polarizability has been accurately evaluated in
noble gases and has been used to test theory. For example,
the polarizability of the helium ground state has been studied
with very high precision, with experimental precision reaching
5 ppm and theoretical results quoted with six to nine digits.
The agreement between theory and experiment has been
found at the level of 0.05% (see, for example, Ref. [1]). The
experimental precision in other noble-gas atoms is somewhat
lower, with four to five digits quoted, and the theoretical
precision is even lower [2]. The loss of theoretical precision
is due to extra complexity of these multielectron atoms in
which correlation corrections are difficult to take into account.
However, from this point of view it is quite remarkable that
theories show worse agreement in neon than in heavier noble-
gas atoms. This is one motivation for conducting theoretical
analysis in this paper with some focus on the neon atom.
In general, agreement between experiment and some theories
is on the order of 10% [2]. The coupled-cluster theory with
energy-adjusted pseudopotentials that includes single, double,
and triple excitations gives good agreement with experiment
for all noble-gas atoms. Static and dynamic polarizabilities
are related to refractive indices, with static in the limit
of long wavelengths and dynamic at arbitrary wavelengths.
These quantities can be measured directly in experiment and
accurately in gases and calculated with similar methods to
polarizabilities. In addition to testing theories, polarizability
is used for constructing model potentials and in many other
applications [3]. The Verdet constant is yet another quantity
related to dynamic polarizability that can be directly measured
in experiment.

In this paper, we use the framework of particle-hole
configuration-interaction (CI) and relativistic many-body per-
turbation theory (RMBPT) to calculate polarizabilities and the
derived properties, such as refractive indices and Verdet con-
stants. RMBPT is a powerful method for treating multielectron
atoms and ions. To apply it to atoms and ions with two or
more valence electrons the so-called mixed CI + RMBPT
has been developed, and good precision for energies and
transitions has been demonstrated in a number of atoms. The
CI + RMBPT approach is difficult to apply to particle-hole
states of closed-shell atoms due to poor convergence of
RMBPT. Previously, we developed a reliable particle-hole

CI + RMBPT approach for noble-gas atoms and demon-
strated agreement with experiment for energies, oscillator
strengths [4–7], and g factors [8]. This theory can be applied to
calculations of polarizabilities and Verdet constants. However,
particle-hole CI + second-order RMBPT was applied to the
lowest states, but the calculations of transitions to continuum
levels have the difficulty of small denominators that can appear
randomly in second-order perturbation terms. To avoid this
problem, we removed the RMBPT part of the theory, that is,
reduced it to the particle-hole CI.

We calculate polarizability and derive properties by sum-
ming the particle-hole CI oscillator strength (OS) over the
complete spectrum that includes quasicontinuum contribu-
tions. The CI states are formed as linear combinations of dis-
crete Dirac-Hartree-Fock (DHF) VnB-spline basic functions.
For comparison, we also perform calculations by summing
relativistic DHF OSs in the Vn basis. We find that although
DHF polarizabilities agree with experiment, this agreement is
fortuitous because of cancelations of correlation corrections.

We demonstrate that the particle-hole CI formalism can
be used to obtain reliable values of polarizabilities and
Verdet constants for noble-gas atoms. Theory can be further
improved by including second-order RMBPT corrections or
by expanding single particle-hole CI to two-particle–two-
hole CI, which is beyond the scope of this paper due to
the above-mentioned difficulties with denominators or the
extra complexity of the two-particle–two-hole CI approach.
One method to avoid denominator difficulties could be the
Brillouin-Wigner variant of perturbation theory, in which the
ground-state energy is used so that the denominators will be
always negative. It is also known that this theory works near
degeneracy. Thus this could be the most promising approach.
Unfortunately, the current codes have to be significantly
modified to accommodate the required changes and tested with
energy and transition calculations. Also, other CI methods,
such as two-particle, three-particle, etc., CI can be applied
to polarizability calculations of a large number of atoms
using DHF B-spline bases and the approach of summing
OSs over the complete spectrum demonstrated here. It is
also possible to use the hybrid approach in which low-energy
OSs are calculated with CI + the second-order RMBPT and
high-energy OSs are taken from experiment or other theories
more suitable for continuum states.
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This work is also motivated by the need to develop a
reliable ab initio theory for calculations of the so-called nuclear
spin optical rotation (NSOR) effect [9]. This effect is quite
similar to the Faraday effect, that is, polarization rotation
by a magnetic field, but, instead of an external field, the
field of the atomic nucleus is the cause of light polarization
rotation. For NSOR calculations, it is important to include or
evaluate contributions from the full spectrum. The distribution
of spectral contributions for NSOR can be quite different
than that for polarizability. So to cross-check the theory, it
is important to have agreement not only for a single quantity
such as polarizability but also for the Verdet constant and
OS sum rules. Eventually, NSOR theory based on CI and
RMBPT can be extended to molecules and condensed-matter
systems. Relativistic effects are expected to be significant
(they are substantially enhanced because of the importance
of the behavior of wave function near the nucleus), so fully
relativistic treatment, CI + RMBPT, is preferable.

II. THEORETICAL CALCULATIONS AND ANALYSIS

A. RMBPT framework

The starting point of our calculations is the solution of the
DHF equation for a closed-shell atom to obtain the Vn potential
for core electrons. Then the DHF equation is solved for this
frozen-core potential in a B-spline basis. To make the basis
discrete and compact the atom is placed in a spherical cavity,
whose radius is chosen to minimize the effect of the cavity on
the lowest states. Forty splines are chosen for each relativistic
spin-angular index, and the maximum angular momentum is
restricted to 5. Angular reduction, that is, summation over the
magnetic sublevels, is performed for the perturbation terms.
We use the same Vn basis for DHF and particle-hole CI
calculations. DHF values are calculated for comparison.

B. DHF Vn approximation

Static scalar DHF polarizability expressed in atomic units
in the case of closed-shell atoms is

αc = 2

3

∑
am

|〈a‖r‖m〉|2
Em − Ea

. (1)

Here angular reduction is already carried out; a denotes hole
states, m denotes excited states, and E is the energy. We
calculate reduced dipole matrix elements 〈a‖r‖m〉 using radial
B-spline DHF wave functions, which were described above.

The dynamic polarizability at low frequency ω, more
precisely, away from resonances, is calculated by modifying
the previous expression to include frequency dependence (see,
for example, Ref. [10]):

αd (ω) = 2

3

∑
am

(Em − Ea)|〈a‖r‖m〉|2
(Em − Ea)2 − ω2

. (2)

The refractive index n in a very general case is related to the
dynamic polarizability:

n2 − 1

n2 + 2
= 4πNαd (ω)a3

0

3
, (3)

where N is the number of atoms per cm3, αd (ω) is the
polarizability in atomic units, and a0 is the Bohr radius in
cm. Because the refractive index is proportional to N , it is
often given for a gas at STP with N = 2.68709 × 1019 cm−3.
In dilute gas, n is also very close to unity, so

n2 − 1 = 5.004 × 10−3αd. (4)

The Verdet constant can be calculated from the derivative of
the refractive index [11] (in units of μmin Oe−1 cm−1 at STP):

V = 1.024 × 106ω
∂n

∂ω
. (5)

Our calculated DHF polarizabilities and Verdet constants are
given in Table I.

C. Relativistic particle-hole CI method

The CI method is expected to be more accurate than
DHF because it includes first-order corrections due to particle
interactions. It can also be applied to arbitrary open-shell
atoms. In this paper we focus on the particle-hole system, for
which we have developed a CI + RMBPT theory. Second-
order corrections introduce questions about the denominators,
and we postpone the solution of the problem for future research
in this direction. In this paper, we consider only the first-order
CI + RMBPT, which also can be called the particle-hole CI
method. In the CI method energy denominators do not appear.
To find energies and wave functions of particle-hole states of
closed-shell atoms, we introduce the orthogonal set of orbitals
for particle-hole states defined as (see, for example, Ref. [17]
for detail on notations)

�JM (av) = √
2J + 1

∑
ma,mv

(−1)jv−mv

×
(

jv J ja

−mv M ma

)
a†

vmv
aama

|0〉. (6)

The first-order Hamiltonian between these states is

H (1) = δvv′δaa′ (εv − εa) + 1

2J + 1
(−1)jv+ja+J+1ZJ (av′va′).

(7)

We chose the configurations with the hole states a running
over all core states (for example, neon has core states
1s,2s1/2,2p1/2,2p3/2) and with excited states v running over
possible excited states up to the limit of 30 for the radial
spline number. We created 40 spline orbitals for each spin-
angular momentum number, and the result is saturated by
including only 30 spline orbitals. After diagonalization of the
Hamiltonian H (1), the states are formed as linear combinations
of particle-hole orbitals:

	i =
∑
av

Ci(av)�JM (av). (8)

Using configuration expansion of reduced matrix elements
of r ,

ri =
∑
av

Ci(av)〈a‖r‖v〉(−1)ja−jv , (9)

we can find the sums of oscillator strengths, static and dynamic
polarizability, refractive indices, and Verdet constants by
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TABLE I. Our calculations [particle-hole (ph) CI and Vn DHF] of polarizabilities and Verdet constants (μmin Oe−1 cm−1 at 750 nm) and
comparison with theories and with empirical values of [12].

ph CI V n DHF Theory Ref. [12] Expt.
Helium
α 1.398 1.272 1.383193a 1.384
V 0.277 0.098 0.261b, 0.259c 0.281
Neon
α 2.58 1.98 2.693d 2.633 2.669e, 2.678f

V 0.422 0.157 0.475b, 0.393c 0.542
Argon
α 12.8 10.2 11.073d 11.08 11.08e, 11.221f

V 5.41 2.2 4.74c 5.27
Krypton
α 19.7 15.8 17.064d 16.7 16.79e, 17.075f

V 11.36 4.56 9.94c 10.589
Xenon
α 32.8 26.8 27.658d 27.29 27.16e, 27.815f

V 27.6 10.9 24.1c 23.65

aReference [1].
bFully coupled HF of [13].
cTime-dependent DHF of [14], quadratically interpolated to 750 nm.
dCoupled-cluster single-double calculations with energy adjusted pseudopotentials and tripple excitations added perturbatively of [2].
eReference [15].
fReference [16].

summing ri over all possible J = 1 odd excited particle-hole
states i:

μ0 =
∑

i

fi =
∑

i

2

3
ωir

2
i , (10)

μ−1 =
∑

i

fi/ωi =
∑

i

2

3
r2
i , (11)

μ−2 =
∑

i

fi/ω
2
i =

∑
i

2

3

r2
i

ωi

= α, (12)

n2 − 1 = 5.004 × 10−3 2

3

∑
i

ωir
2
i

ω2
i − ω2

. (13)

The Verdet constant can be calculated from Eq. (5).
The sum of OSs can be used as a test of completeness

since it is known that this sum has to be equal to the number
of electrons in the atom (the Thomas-Reiche-Kuhn rule). For
neon we obtained this sum equal to 11.3 independently of
various parameters that might affect the completeness of the
basis: the maximum radial number varied from 30 to 35, and
the cavity size varied from R = 60 a.u. to R = 40 a.u. An
accurate sum must equal 10, the number of electrons in the
neon atom, so we have 11% deviation. Two papers reported
better values, 9.86 [18] and 10.32 [19]. Because, for the
total sum of oscillator strengths, high-energy photoionization
OSs are important, we are not surprised that we found some
deviation. On the other hand, the sums of oscillator strengths
that are divided by energies and hence are less sensitive to
high-energy contributions are in better agreement: our result
for μ−1 is 2.03 and is different by only 3.5% and 5.4% from the
values of 1.96 and 1.922 reported in Refs. [18,19], respectively;
for μ−2 our value 0.64 is 4.5% different from the value of 0.67
reported in Refs. [18,19].

Our particle-hole CI values of static dipole polarizability
and Verdet constants at 750 nm are listed in Table I. Verdet
constants in the spectral range 375–1000 nm are plotted in
Fig. 1 and are given for several wavelengths in Table II.

III. DISCUSSION

A. Comparison of DHF and particle-hole CI

Accurate polarizability assumes the summation over accu-
rate OSs with correlations included, so a particle-hole CI that
includes the interaction between a particle and a hole in the

FIG. 1. Comparison of our particle-hole CI Verdet constants
(large squares, He; solid circles, Ne; open circles, Ar; triangles, Kr;
stars, Xe) with values from [12] (solid curves) and the experimental
measurements of [20] (solid curve with small squares).
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TABLE II. Particle-hole CI Verdet constants (in μmin Oe−1 cm−1).

λ (nm) He Ne Ar Kr Xe
375 1.14 1.75 23.2 50.1 127
429 0.865 1.32 17.4 37.2 92.9
500 0.631 0.964 12.5 26.6 65.6
600 0.435 0.664 8.56 18.1 44.1
750 0.277 0.423 5.41 11.4 27.5
1000 0.155 0.237 3.01 6.30 15.2

excited states of closed-shell atoms is a better approximation
than Vn DHF. The limited accuracy of DHF approximation
is particularly clear in the case of helium. According to our
calculations, Vn DHF polarizability is 1.272 and deviates by
8% from the accurate value of 1.384, while the particle-hole
CI value of 1.398 deviates by only 1% (Table I). Poor
agreement for helium is somewhat surprising because for
other noble-gas atoms relatively good agreement of DHF Vn

values with experiment can be observed. We attribute this
to the cancellation of correlation corrections. However, DHF
V n Verdet constants, which are the derivative of the dynamic
polarizability, are completely off for all noble-gas atoms, and
the discrepancy increases from He to Xe, as expected from
the increase of correlation corrections. The particle-hole CI
method gives consistent agreement with experiment for Verdet
constants for all noble-gas atoms in a large spectral range
(Fig. 1).

B. Evaluation of error in calculations due
to second-order effects

As we mentioned earlier, to avoid denominator problems
in the continuum range, the second-order RMBPT corrections
are excluded. While it is quite difficult to estimate the errors
arising from multiple terms that are neglected, crudely, error
can be estimated from the magnitude of large terms. One such
large term gives a correction to the hole energy due to the
second-order effect arising from the interaction of the hole with
core electrons. In neon, we found that hole energy changed
from 0.84 to 0.71 a.u., the sum of oscillator strength from 11.3
to 10.7, polarizability from 2.58 to 2.94 (12%), and the Verdet
constant at 770 nm from 0.423 to 0.738 (70%). In argon,
the hole energy changed from 0.588 to 0.519, polarizability
from 12.8 to 14.3 (11%), the Verdet constant from 5.41 to 7.98
(50%), and the sum of the OS from 21.9 to 20.9. In Kr, the hole
energy changed from 0.514 to 0.453, polarizability from 19.7
to 22.0 (11%), and the Verdet constant at 770 nm from 11.36 to
17.1 (50%). So it appears that polarizability is affected by the
hole-energy change at the level of 10% and the Verdet constant
at 770 nm at the level of 50%. A larger change occurs for the
Verdet constant because it is more sensitive to the energy.
Shifting only hole energy is not the most appropriate way to
include second-order effects because the hole wave functions
also change, and this effect can compensate for that of the
energy change. Another way to estimate the error is to look at
the difference between DHF calculations and particle-hole CI.
The change in the Verdet constant was quite large, so indeed the
Verdet constant is highly sensitive to correlation corrections.
Particle-hole interaction is very important because it is on the
order of unity and has to be treated at all orders, as we did in this

paper. Second-order effects should be smaller, but they should
be done carefully because there is strong cancellation between
large terms. In our previous work we found that if second-order
effects are added in the correct way, agreement for a large
number of OSs and energies is achieved [4–7]. The evaluation
of error discussed in this section is quite approximate, and a
better evaluation of the theory is obtained by comparison with
experiment for multiple atoms and wavelengths.

C. Comparison of particle-hole CI Verdet constants
with experiment

In order to evaluate the accuracy of the particle-hole CI
method, we compared polarizabilities and Verdet constants
with reliable semiempirical interpolation equations given
by Dalgarno and Kingston [12] which agree closely with
experiment, except for the case of neon. For this reason,
in Fig. 1 we added purely experimental data for neon. We
also observed accurate agreement of our results for noble-gas
atoms except for neon, which is also quite surprising. Purely
experimental neon data agree better at 750 and 1000 nm with
our results than values obtained from the interpolation of [12].
This raises some questions about experimental values of neon
at other wavelengths where agreement was not as close as in
all other cases considered.

D. Other theoretical calculations

Polarizabilities have been calculated with many methods.
Very close agreement with experiment has been achieved
in coupled-cluster single-double calculations with optimized
basis sets and triple excitations added perturbatively with
energy-adjusted pseudopotentials [2] (Table I). Our purely
ab initio calculations are less accurate for polarizabilities,
but this is expected considering the approximation of the
first-order RMBPT. We expect that inclusion of second-order
RMBPT corrections or some pseudopotentials to account for
the omitted correlation corrections will improve agreement.
One interesting point about our current calculations is that the
basis is more or less complete at the level of particle-hole
orbitals and our approach allows systematic treatment of
correlations. The CI method with a complete discrete basis
of an atom in a cavity can be applied to other atoms where CI
configurations might be more complicated and extensive.

For Verdet constants, good agreement is obtained with
four-component Hartree-Fock calculations for Ar, Kr, and
Xe, but surprisingly very poor agreement is obtained for
Ne and He [14]. This raises questions about this method.
Good agreement is also obtained with the random-phase-
approximation exchange (RPAE) method for Xe, but the results
for the Verdet constants are not shown for other noble-gas
atoms [21]. Our method predicts Verdet constants for all
noble-gas atoms consistently, although in neon an anomaly
exists. Although, in the case of helium, high precision is
achieved with available accurate methods, here we considered
helium to understand overall trends of our method and to show
that DHF is inaccurate.
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IV. CONCLUSION

We applied particle-hole CI theory built in the RMBPT
framework to calculations of polarizabilities and Verdet
constants and found a consistent agreement for all noble-gas
atoms. The CI approach with a B-spline finite basis can be
applied to other atoms. Currently, we excluded second-order
RMBPT corrections because they contain denominators that
can be randomly small, so correlations beyond the particle-hole
interaction are excluded. This can be amended in the future

after the CI + RMBPT approach is investigated for continuum
state transitions, and it seems that the Brillouin-Wigner variant
of perturbation theory can help to avoid the zero-denominator
problem.
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