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Speed limits for quantum gates in multiqubit systems
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We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations
in multiqubit systems under typical experimental conditions. The operations that we consider include single-,
two-, and three-qubit gates, as well as quantum-state transfer in a chain of qubits. We find in particular that
simple methods for implementing two-qubit gates generally provide the fastest possible implementations of these
gates. We also find that the three-qubit Toffoli gate time varies greatly depending on the type of interactions and
the system’s geometry, taking only slightly longer than a two-qubit controlled-NOT (CNOT) gate for a triangle
geometry. The speed limit for quantum-state transfer across a qubit chain is set by the maximum spin-wave speed
in the chain.
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I. INTRODUCTION

There are a number of candidate physical systems for the
implementation of qubits in a future quantum computer [1].
Single-, two-, and three-qubit gates have been implemented
in some of these systems in the past few years. Various
other quantum-information-related tasks based on collective
manipulation of qubits have also been demonstrated on larger
systems [1].

As qubit systems advance towards large-scale demonstra-
tions and practical applications, it becomes increasingly im-
portant to optimize the time required to implement the different
operations such that the maximum number of operations is
achieved within the coherence time of the system. This goal is
the main motivation of this work.

The question of time-optimal control has already been
discussed in a number of studies in the literature. For example,
Refs. [2,3] considered optimized constructions of general
quantum gates using sequences of basic gates. References [4]
discussed the relationship between speed limits on quantum
gates and the different energy scales in a physical system, while
Refs. [5] explored the analogy between the problem of finding
the minimum times for quantum gates and the problem of
finding geodesics in curved spaces. These ideas were applied
in Ref. [6] in order to find a general recipe for calculating speed
limits for two-qubit gates. The time-optimal implementation
of the quantum Fourier transform in multiqubit systems was
analyzed in Ref. [7], and the time-optimal implementation
of the controlled-NOT (CNOT) gate on indirectly coupled qubits
was studied in Ref. [8]. References [9,10] performed numerical
calculations in order to determine the minimum time required
for quantum gates in specific experimental setups based on
superconducting qubits. The speed limit on quantum-state
transfer in long spin chains has also been studied recently
[11,12].

Here we consider a number of important operations in a
variety of possible setups, with varying degrees of single-qubit
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Garching, Germany.

control and interqubit coupling mechanisms. We use analytical
arguments and numerical calculations based on optimal control
theory in order to give speed limits for these operations.

The paper is organized as follows: In Sec. II, we introduce
the different possible setups, with varying forms of single-
qubit controls and interactions. We then discuss the speed
limits of single-qubit gates (Sec. III), two-qubit gates (Sec. IV),
and three-qubit gates (Sec. V). In Sec. VI, we discuss the
problem of quantum-state transfer. We conclude with a brief
summary of the results in Sec. VII.

II. DIFFERENT TYPES OF QUBITS AND
THEIR COUPLING

Over the years, various physical systems and designs
have been proposed and demonstrated as implementations
of qubits. This variety means that the degree of control in
qubit manipulation and the physical mechanisms for coupling
between qubits vary from one system to another. In some
cases, the qubit is formed by the lowest two energy levels
of a multilevel quantum system, adding complications to the
control requirements of the qubit. Here we shall focus on
“good” qubits, where a description with only two quantum
states provides a good approximation of the physical system.

With the assumption of two-state qubits, the single-qubit
Hamiltonian can be expressed in terms of the two-dimensional
Pauli matrices σ̂α (with α = x, y, or z):

Ĥ = −�(t)

2
σ̂x − ε(t)

2
σ̂z, (1)

where the time dependence in Eq. (1) suggests that both
� and ε are tunable. Some experimental setups (e.g., early
experiments on superconducting qubits) have only one tunable
parameter, typically expressed as ε in Eq. (1). We shall
consider both cases below.

Driving signals used for the manipulation of the qubits can
be applied through the tunable parameters in the Hamiltonian.
We shall assume that any arbitrary driving signal can be
applied to the system. In other words, we look for the fastest
implementation of quantum operations in the space of all
possible control signals.
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The coupling Hamiltonian between two qubits is typically
of Ising or Heisenberg form. The former is described by the
Hamiltonian

ĤI = J σ̂ (i)
z ⊗ σ̂ (j )

z , (2)

while the latter is described by the Hamiltonian

ĤH = J
(
σ̂ (i)

x ⊗ σ̂ (j )
x + σ̂ (i)

y ⊗ σ̂ (j )
y + σ̂ (i)

z ⊗ σ̂ (j )
z

)
, (3)

where J is the coupling strength and the superscripts i and
j denote the two coupled qubits. There are situations where
the coupling strength is tunable, e.g., using additional coupler
elements in the system. However, since we are interested in the
speed limits for performing multiqubit gates, we shall assume
that one would want to set J at its maximum achievable value
and therefore treat J as a fixed parameter in the calculations
below. It is worth mentioning here that it is possible in principle
to have fixed values of � and ε and still be able to obtain the
desired gates via the modulation of J , an approach sometimes
referred to as parametric coupling [13].

The parameters of the single-qubit Hamiltonian are typi-
cally much larger than the interqubit coupling strength, i.e.,
J � �,ε. This separation in energy scales simplifies the
process of identifying the central elements in the speed limits
found in our calculations, and it makes the results easily
applicable to different setups.

III. SINGLE-QUBIT GATES

Since the parameters of the single-qubit Hamiltonian are
typically much larger than the interqubit coupling strength,
one can ignore interqubit interactions when performing
single-qubit gates. Furthermore, performing single-qubit gates
typically requires a negligibly short duration compared to the
duration required for performing a two- or multiqubit gate,
such that the time required for performing single-qubit gates
is usually ignored for purposes of evaluating the computational
cost of a given multiqubit task.

Ignoring interactions, and thus reducing the problem of
finding optimal pulses and speed limits for performing a given
single-qubit gate to a single-qubit problem, the task at hand
becomes straightforward. A common situation is that in which
one of the two parameters, say ε, is tunable over a much larger
range than the other one, while the other parameter is either
fixed or tunable over a much smaller range. A rotation by
an angle β about an axis that makes an angle θ with the z

axis and an angle φ with the xz plane can be implemented as
follows: rotate the state by an angle −φ about the z axis, set the
Hamiltonian to �(σ̂x + σ̂z cot θ )/2 and let it act for a duration
β sin θ/�, and, finally, rotate the state by an angle φ about
the z axis. The first and last steps are fast operations that are
implemented by setting ε to a value that is much larger than �.
As a result, the duration of the second step is the limiting factor
for the minimum time required for implementing the desired
rotation. One can therefore say that the speed limit is set by the
smaller of the two qubit parameters (or, more accurately, the
smaller of the largest achievable values of the two parameters),
which in the above example is �.

IV. TWO-QUBIT GATES

We start the discussion of finding the speed limits for
two-qubit gates by mentioning two approaches that might seem
promising at first sight, but to our knowledge are not always
applicable to the problem at hand. First, there are expressions
for the speed limits of quantum operations based on the energy
and the spread in energy of the quantum state [4]. The reason
why these arguments do not apply straightforwardly here can
be seen by considering two qubits with a coupling strength that
is much smaller than the interqubit detuning. The energy scales
of the combined system are then, to a very good approximation,
set by the individual qubit energies and their detuning from
each other. The coupling strength only slightly modifies the
energy eigenstates and eigenvalues. The coupling strength
must, however, be the limiting factor for performing two-qubit
gates. The larger energy scales can be used to set a lower bound
on the required gate time (i.e., an upper bound on the speed).
However, the coupling strength would give a much-higher
lower bound.

The other approach is that in which two-qubit gates are
visualized using geometric representations, and the process
of performing a two-qubit gate is seen as the motion of
the system’s propagator through the space of all two-qubit
quantum operations [5]. This approach does indeed provide
an intuitive view of the problem and can be very useful
in calculations. Furthermore, for the case of fully tunable
single-qubit parameters, i.e., the case where one can assume to
have (i) a fixed interaction Hamiltonian with no single-qubit
terms, and (ii) the ability to perform fast single-qubit gates,
Ref. [6] gives a recipe for determining the speed limit of any
two-qubit gate with any interaction Hamiltonian. However, it
is not obvious that the speed limits provided by this approach
apply to the case of fixed �, which is relevant to a good number
of realistic experiments.

Four representative gates that are commonly studied in the
literature are: iSWAP, controlled-Z (CZ), CNOT, and

√
SWAP.

There are a number of simple methods that can be obtained
using intuition for the implementation of these gates assuming
a given (fixed) coupling strength J and tunable single-qubit
parameters. The basic techniques, which can also be shown to
be time optimal [6], are summarized as follows [14].

iSWAP gate: The standard approach to implementing the
iSWAP gate with Ising interactions is to put the two qubits in
resonance with each other, i.e., setting �1 = �2 = �, with
ε1 = ε2 = 0 and J � �:

Ĥ = −�1

2
σ̂ (1)

x − �2

2
σ̂ (2)

x + J σ̂ (1)
z ⊗ σ̂ (2)

z ,

≈ −�1

2
σ̂ (1)

x − �2

2
σ̂ (2)

x + J (σ̂ (1)
+ ⊗ σ̂

(2)
− + σ̂

(1)
− ⊗ σ̂

(2)
+ ),

(4)

where the operators σ̂± are raising and lowering operators that
excite or de-excite the individual qubits between their single-
qubit energy eigenstates, which in this case are the eigenstates
of σ̂x . When allowed to act for a duration t = π/(2J ), the
Hamiltonian in Eq. (4) effects an iSWAP gate, in addition to
two single-qubit rotations.

Controlled-π -phase gate: With Ising interactions, the
controlled-π -phase (or CZ) gate can be performed by setting
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�1 = �2 = 0:

Ĥ = −ε1

2
σ̂ (1)

z − ε2

2
σ̂ (2)

z + J σ̂ (1)
z ⊗ σ̂ (2)

z , (5)

with no conditions on ε1 and ε2. When allowed to act for
a duration t = π/(4J ), the Hamiltonian in Eq. (5) effects
a CZ gate, in addition to two single-qubit rotations and an
(unimportant) overall phase factor.

CNOT gate: The CNOT gate can be obtained by combining
the CZ gate with two single-qubit gates. These are π/2 pulses
applied to the target qubit before and after the CZ gate. As a
result, the amount of time required to obtain the CNOT gate
using this approach is approximately equal to the amount
of time required for the CZ gate, i.e., π/(4J ) with Ising
interactions.√

SWAP gate: The
√

SWAP gate is more naturally obtained
with Heisenberg interactions. In this case, one sets �1 = �2

and ε1 = ε2, and after a time t = π/(8J ), one obtains the√
SWAP gate.
Numerical calculations: Here we use numerical calculations

to find the speed limits for a number of standard two-qubit
gates. The method is based on optimal control theory for
finding driving pulses that maximize the gate fidelity [15].
The fidelity is essentially a measure of the overlap between
the numerically calculated gate and the desired target gate.
Here we use the definition

Fidelity =
∣∣∣∣∣
Tr{U †

TargetUNumerical}
2n

∣∣∣∣∣
2

, (6)

where UTarget and UNumerical are, respectively, the target gate and
any given unitary operation (which is obtained from solving
the Schrödinger equation with a given driving signal), and n is
the number of qubits (here n = 2). When the gate time (which
is a variable parameter in the calculations) is set to a small
value, the maximum achievable fidelity is substantially smaller
than unity. As the allowed time is increased, the maximum
achievable fidelity increases, until at a certain value of the
allowed time the fidelity reaches the value one and remains
at that value for larger times [7,12]. In other words, when
plotted as a function of the allowed time, the fidelity exhibits
nonanalytic behavior as it suddenly hits the value one and
remains there. The time at which the fidelity reaches unity
defines the minimum gate time, which can alternatively be
expressed as the speed limit. A commonly used procedure for
deducing speed limits is to set a threshold value for the fidelity
(say 99%) and numerically identify the minimum time required
in order to attain this fidelity. This procedure is illustrated in
Fig. 1.

Here we use an alternative procedure that avoids one of
the drawbacks of the above procedure, namely, the slow
convergence of the pulse-optimization algorithm when the
fidelity approaches its asymptotic value (when plotted as a
function of iteration number). We calculate the maximum
achievable fidelity for times varying between zero and an
estimated value for the minimum gate time. The results of
such a calculation are plotted in Fig. 2 for the case of the√

SWAP gate with Heisenberg interactions. We can see that
the results fit very well with a function that gives the gate
time π/(8J ). The sine function used in the figure was used
as a “trial” fitting function; it was inspired by the behavior of

FIG. 1. (Color online) The fidelity of the CNOT gate for the pulse
obtained using optimal control theory as a function of the allowed time
t (plotted in the combination 4J t/π ) in the case of Ising interactions
and fixed values of �. The parameters are �2/�1 = 0.9 and J/�1 =
0.01. The dashed line represents a possible threshold fidelity for
identifying the minimum gate time. Here this threshold is set at
0.98.

single-qubit gates but turned out to produce an excellent fit in
this case as well. We note here that this alternative method (i.e.,
the method where one looks away from the threshold region
in order to identify the minimum gate time) has not been used
in the literature in the context of optimal control theory. More
complicated fitting functions might be required when applying
this method to systems with more than two qubits. However,
it would be interesting to explore in the future the usefulness

FIG. 2. (Color online) The fidelity of the
√

SWAP gate for the
pulse obtained using optimal control theory as a function of the
allowed time t (plotted in the combination 8J t/π ) in the case of
Heisenberg interactions and fixed values of �. The parameters are
�2/�1 = 0.9 and J/�1 = 0.01. The dashed line represents, as an
example, a threshold fidelity of 0.98. The red dotted line is the function
(5/8) + (3/8) × sin(4J t). Note that the value 5/8 is the fidelity of the
unit matrix with the

√
SWAP gate.
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TABLE I. Minimum times required for various two-qubit gates and physical realizations. The analytical expressions given below are
extracted from the numerical calculations: for each calculation, we identify the value of the time that gives a good fit to a figure similar to Fig.
2 (the sine function used for the fidelity dependence always provided a good fit to the data). In the fixed-� calculations, we set �2/�1 = 0.9
and J/�1 = 0.01.

Gate CNOT CZ iSWAP
√

SWAP

Matrix

⎛
⎝1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎠

⎛
⎝1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎠

⎛
⎝1 0 0 0

0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎠

⎛
⎝

1 0 0 0
0 1+i

2
1−i

2 0
0 1−i

2
1+i

2 0
0 0 0 1

⎞
⎠

Ising, fixed � π

4J
× 1.12 π

4J
× 1.14 π

2J
× 1.25 3π

8J
× 1.00

Ising, tunable � π

4J
× 1.17 π

4J
× 1.26 π

2J
× 1.04 3π

8J
× 1.03

Heisenberg, fixed � π

4J
× 1.01 π

4J
× 1.00 π

2J
× 1.04 π

8J
× 1.01

Heisenberg, tunable � π

4J
× 1.10 π

4J
× 1.00 π

2J
× 1.02 π

8J
× 1.00

of this approach to similar problems. We shall use this method
when identifying the minimum gate time in the calculations
below.

It is worth mentioning that the numerical method used
here is guaranteed to give the optimal pulses, and therefore
the correct speed limit, if given sufficient computation time
[16]. Small-scale calculations could produce results that
overestimate the speed limit because the algorithm might not
converge to the optimal pulses with the given calculation
parameters. The availability of known speed limits in the
literature (e.g., in Ref. [6]) for some physical setups and gates
allows us to characterize the performance of our calculations
with a given set of parameters. We find that in most cases, we
obtain the correct speed limits to within a few percent with
relatively small-scale calculations.

The results for the deduced gate times are summarized in
Table I. The numerical calculations are performed with 500
time steps and 104 iterations. With these parameters, a single
data point takes a calculation time on the order of one hour. We
run each calculation a few times with a variety of initial pulses
in order to minimize the chances of slow convergence towards
the optimal pulse, which is a possibility given the fact that we
do not know the structure of the fidelity landscape. For fixed-
� calculations, we set �2/�1 = 0.9 and J/�1 = 0.01. The
speed limits for the case of tunable �i are known, and using
them we can see that our relatively small-scale calculations
produce a very good approximation to the speed limit in most
cases. This observation gives us confidence in the convergence
behavior of the calculations.

The main observation that we make from the results in
Table I is that all of the results remained unchanged whether
the parameters �i were taken to be fixed or tunable, a result
that is not a priori obvious. In some cases, the calculations
with tunable � produced higher estimates for the minimum
gate time than the calculations with fixed �, even though
the tunable-� case has more tunable parameters and must
therefore result in gates that are at least as fast as those obtained
in the fixed-� case. It seems, however, that the presence of
additional tunable parameters can have the effect of slowing
down the convergence of the optimization algorithm, which
we see for some of the cases considered in Table I. On the
other hand, one case where the fixed-� result is substantially
higher than the tunable-� result is that of the iSWAP gate with

Ising interactions. The speed limit that we find numerically
for the fixed-� case is about 25% higher than that for the
tunable-� case. However, this difference is again caused by
numerical inaccuracies. In the case where J � |�1 − �2| �
�1, it is known that one can approach a gate time of π/(2J ),
and this fast gate is achieved by strongly driving the two qubits
such that they are effectively tuned into resonance with each
other [17]. Since the fixed-� speed limit cannot be higher than
the tunable-� speed limit, one can conclude that the speed
limit is π/(2J ) in both cases. The fact that a large-amplitude,
high-frequency driving pulse is needed in order to achieve the
speed limit (assuming that this is the only way to achieve the
speed limit) might partly explain why the algorithm is not
converging to the optimal pulses. Another partial explanation
of the relatively large gate time obtained in this case could be
the fact that J/�1 = 0.01, which could increase the minimum
gate time by a few percent.

It is also worth noting here that even though the Heisen-
berg interaction Hamiltonian has more terms than the Ising
interaction Hamiltonian, which generally results in larger
frequency shifts and gaps in spectroscopy measurements, it
is not the case that Heisenberg interactions will always result
in faster two-qubit gates. One case that might be particularly
surprising at first sight is that of the iSWAP gate. The term
proportional to (σ̂ (1)

+ ⊗ σ̂
(2)
− + σ̂

(1)
− ⊗ σ̂

(2)
+ ) is larger in the case

of Heisenberg interactions. However, the presence of the
σ̂ (1)

z ⊗ σ̂ (2)
z term in some sense has the effect of slowing down

the iSWAP-gate dynamics, such that Heisenberg interactions
and Ising interactions give the same minimum gate times.

V. THREE-QUBIT GATES

The most well-known three-qubit gate is the Toffoli gate.
This gate is also known as the controlled-controlled-NOT gate,
because it applies the NOT operation to the target qubit when
both control qubits are in the state |1〉. It has been known for
some time that the Toffoli gate can be constructed from six
CNOT gates, in addition to a number of single-qubit gates.
Recently it has been shown that this number (i.e., six) is
the minimum number of CNOT gates required in order to
construct the Toffoli gate [18]. Different constructions based
on general conditional gates have also been proposed, reducing
the Toffoli gate time from 6 to 3.5 times the CNOT gate
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TABLE II. Minimum times required for the three-qubit Toffoli
gate with various physical realizations. The results are given in terms
of the CNOT gate time, i.e., π/(4J ). The numerical calculations are
performed with ∼104 time steps and ∼104 iterations (a single data
point now takes a calculation time on the order of one day). The
parameters �i are fixed in the calculations, and we set �2/�1 =
0.9, �3/�1 = 0.82, and J/�1 = 0.01 for all of the coupling
terms.

Geometry Chain Chain Triangle
Target qubit Center qubit Side qubit Any qubit

Ising 3.8 3.8 1.9
Heisenberg 2.8 2.6 1.4

time [2]. An optimal-control-theory-related calculation based
on certain forms of pulses has found a gate time of about
2.2 times the CNOT gate time for qubits coupled in a triangle
geometry [3].

We have performed numerical calculations in order to
determine the minimum time required in order to obtain the
Toffoli gate for a Hamiltonian with pairwise interaction terms
given by Eq. (2) or Eq. (3). We should stress here that these
calculations are independent of the results mentioned above.
The reason is that the gate-counting calculations assume that
the different gates are applied as separate, well-defined units,
and in some calculations it is assumed that the two-qubit gates
used in the construction are taken from a specific class of
gates (e.g., conditional gates). One can therefore expect that it
should be possible to obtain a shorter minimum time for the
Toffoli gate by considering essentially all the possible driving
pulses.

The results are summarized in Table II. There we show
results where all coupling strengths are equal (allowing small
differences between the different coupling strengths does not
change the main results). We only present results for fixed-
� calculations because the variable-� calculations did not
produce any useful results within any reasonable calculation
time. In addition to the fact that our procedure typically
overestimates the minimum gate time, we would like to point
out that the results of the calculations also showed stronger
dependence on the guess pulses than in the case of two-qubit
gates (the data also did not result in smooth fitting functions as
shown in Fig. 2). We therefore cannot exclude the possibility
that some of the expressions in Table II are substantially larger
than the true minimum gate time. However, for the triangle
geometry, we find Toffoli gate times that are smaller than
twice the minimum time required for a CNOT gate with the
same coupling strength. In this case, we can have a good level
of confidence that the results are at least close to the true
minimum gate time, since it seems implausible that the Toffoli
gate could be faster than the CNOT gate for the same value
of the coupling strengths. From the results shown in the
table, we can also conclude that having the qubits connected
in a triangle geometry would be desirable for purposes of
implementing fast three-qubit gates. We should point out here
that the results presented here give faster gates than any results
for the maximum speed of Toffoli gates in the literature [2,3].
In particular, one can compare the factor 1.9 in Table II with

the corresponding factor of 2.2 in Ref. [3]: an improvement of
about 15%.

VI. QUANTUM-STATE TRANSFER IN
A CHAIN OF QUBITS

Another operation in multiqubit systems that has received
considerable attention in recent years is that of quantum-state
transfer across a chain of qubits [19]. In this section, we provide
analytical expressions for the speed limit of state transfer
across a long chain.

The Hamiltonian for a qubit chain with nearest-neighbor
interactions is given by

Ĥ =
N∑

i=1

(
−�i

2
σ̂ (i)

x − εi

2
σ̂ (i)

z

)
+

N−1∑
i=1

Jiσ̂
(i)
z ⊗ σ̂ (i+1)

z (7)

for the case of Ising interactions and

Ĥ =
N∑

i=1

(
−�i

2
σ̂ (i)

x − εi

2
σ̂ (i)

z

)
+

N−1∑
i=1

Ji

×(
σ̂ (i)

x ⊗ σ̂ (i+1)
x + σ̂ (i)

y ⊗ σ̂ (i+1)
y + σ̂ (i)

z ⊗ σ̂ (i+1)
z

)
(8)

for Heisenberg interactions. The case with fixed and generally
disordered values of �i and/or Ji leads to serious complica-
tions (such as Anderson localization), and we therefore do not
consider this case. For the case of fixed, uniform values of �i

and Ji or the case of tunable �i and uniform Ji , we can use
arguments from band theory to find the speed limit for state
transfer.

The state-transfer process can be thought of as the process
of wave propagation through the chain, as discussed in
Ref. [11]. The speed limit is then determined by the maximum
group velocity of a wave packet traveling through the chain.
We also observe here that wave propagation cannot be sped
up through the application of nonuniform external fields. We
can therefore calculate the maximum wave speed assuming
a uniform external field (i.e., time- and position-independent
values of �i and εi). For the case of Ising interactions, we
start by noting that if we take � = 0, then the operator σ̂ (i)

z

commutes with the Hamiltonian, prohibiting “propagation.”
We therefore conclude that the condition � � J is optimal
for maximizing the propagation speed. With this assumption,
the wave function that describes a wave with momentum k

(with −π < k < π ) is given by

|k〉 =
N∑

j=1

eikj σ̂ (j )
z

∣∣σ (1)
x = 1, . . . ,σ (N)

x = 1
〉
. (9)

The energy spectrum of these waves is given by Ek = 2J cos k.
The group velocity of the wave is given by

vk = dE

dk
= −2J sin k, (10)

which has a maximum at k = π/2, and the maximum is given
by 2J . The minimum time for the wave to traverse a chain
of length N is attained when the wave is initialized and set
to travel at this maximum wave speed. Ignoring chain-length-
independent contributions at the beginning and end of the
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transfer process, the minimum transfer time is therefore given
by

Tmin = N

2J
. (11)

It is worth noting that Tmin is faster by a factor of π than the
sequential application of iSWAP operations across the chain.
We also note that the expression for the maximum wave
speed given above can be found in the literature, e.g., in
Ref. [20].

For the case of Heisenberg interactions, the speed of wave
propagation is independent of the external fields. Taking � �
J , ε = 0, and assuming only one excitation in the system, the
problem reduces to that with Ising interactions but with twice
the coupling strength: the σ̂ (i)

x ⊗ σ̂
(j )
x term has no effect on the

dynamics, and

σ̂ (i)
y ⊗ σ̂ (j )

y + σ̂ (i)
z ⊗ σ̂ (j )

z = 2(σ̂ (i)
+ ⊗ σ̂

(j )
− + σ̂

(i)
− ⊗ σ̂

(j )
+ ).

(12)
The minimum transfer time is therefore given by

Tmin = N

4J
. (13)

This expression is essentially the same as the one given in
Ref. [11]. Using numerical calculations, Ref. [12] found
a time that is a few percent higher (note that there is a
factor-of-two difference between Eq. (8) and the Hamiltonian
used in Ref. [12]).

Even though the maximum wave speed sets an upper limit to
the speed of quantum-state transfer, one still needs to make sure
that the quantum state is transferred without distortion. The
authors of Ref. [11] assumed that one has access to a limited
number of qubits in the chain and analyzed the dispersion of
the propagating wave. They found that if one has access to
a number that is at least on the order of

√
N at both ends

of the chain, then state transfer can occur with high fidelity.

The authors of Ref. [12] assumed access to all of the qubits
and, using numerical calculations, demonstrated that by using
a “carrier” external field (e.g., a harmonic-oscillator potential
that moves along the chain and carries the quantum state as it
moves along), the dispersion of the wave can also be prevented,
and high-fidelity state transfer is possible.

VII. CONCLUSION

We have derived a number of speed limits, or lower bounds
on the required time, for various quantum operations in
various setups that correspond to a variety of experimental
conditions. Single-qubit operation speeds are limited by the
smaller of the Pauli-matrix coefficients in the Hamiltonian.
We have used optimal control theory to obtain speed limits
for a few well-known two-qubit gates and the three-qubit
Toffoli gate. As expected, two-qubit gate speeds are limited
by the interqubit coupling strength. The Toffoli gate requires
approximately three times the minimum time required for a
CNOT gate in a chain geometry and less than twice the minimum
time required for a CNOT gate in a triangle geometry. Finally,
we have used arguments from condensed-matter physics to
derive the speed limit for quantum-state transfer in a qubit
chain. The expressions that we find agree with analytical
results known in the literature and also with recent numerical
results.
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