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Photonic two-qubit parity gate with tiny cross–Kerr nonlinearity
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The cross-Kerr nonlinearity (XKNL) effect can induce efficient photon interactions in principle with which
photonic multiqubit gates can be performed using far fewer physical resources than linear optical schemes.
Unfortunately, it is extremely challenging to generate giant cross-Kerr nonlinearities. In recent years much effort
has been made to perform multiqubit gates via weak XKNLs. However, the required nonlinearity strengths are
still difficult to achieve in an experiment. We here propose an XKNL-based scheme for realizing a two-photon
polarization-parity gate, a universal two-qubit gate, in which the required strength of the nonlinearity could be
orders of magnitude weaker than those required for previous schemes. The scheme utilizes a ring cavity fed by
a coherent state as a quantum information bus which interacts with a path mode of the two polarized photons
(qubits). The XKNL effect makes the bus pick up a phase shift dependent on the photon number of the path
mode. Even when the potential phase shifts are very small they can be effectively measured using photon-number
resolving detectors, which accounts for the fact that our scheme can work in the regime of tiny XKNL. The
measurement outcome reveals the parity (even parity or odd parity) of the two polarization qubits.
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I. INTRODUCTION

The optical system is among the most popular physical sys-
tems for implementing quantum computation. This is mainly
due to the fact that light quantum states are generally more
robust against decoherence than most massive qubit systems,
and that the computation programs can be implemented by
simple optical elements plus photodetections. In addition, all-
optical quantum computation can be combined with quantum
communication without qubit interconversion. In all-optical
quantum information processing (QIP), the qubits are usually
encoded by single-photon polarization states (other types
of photonic qubits can be usually converted to polarization
qubits by optical apparatuses). Parametric down-conversion
can produce polarization-entangled photon pairs and heralded
single photons. Beam splitters (BSs) and wave plates can
be used to accomplish arbitrary single-qubit rotations. To
complete a universal gate set for quantum computation, the
key point that is then needed is an appropriate two-qubit
quantum gate, such as a two-qubit parity gate [1,2] from
which a controlled-NOT (CNOT) gate can be readily constructed
[3–5]. Note that a universal gate set can also serve many
quantum communication protocols in that it can be utilized to
implement their required entangled-state joint measurements
and entangled-channel generations.

To implement a photonic two-qubit gate, nonlinear in-
teractions between individual photons are required. Linear
optical elements plus photodetections can induce effective
nonlinear photon interactions in principle. This way, however,
is nondeterministic, and needs consuming substantial ancillary
photon resources for achieving a high efficiency [6–10], which
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is the main obstacle to large-scale QIP with linear optics.
The required optical nonlinearity can also be achieved directly
using a cross-Kerr medium that can be described by an in-
teraction Hamiltonian of the form H = −h̄χa

†
papa

†
s as [8,11].

Here ap (a†
p) and as (a†

s ) are, respectively, the annihilation
(creation) operators of modes p and s, and χ is the strength
of the nonlinearity. Transforming the mode p (s) using this
Hamiltonian will induce a phase shift that depends on the
number of photons in the mode s (p). Indeed, the mode
transformations of the two beams are ap → ap exp(iθa

†
s as)

and as → as exp(iθa
†
pap), where θ = χt with t being the

interaction time. When θ = π , a two-photon controlled-phase
gate is naturally implemented, from which a CNOT gate can
also be easily constructed. With the giant cross-Kerr phase
shift (XKPS), many schemes for realizing optical quan-
tum nondemolition (QND) measurements, photonic quantum
gates, optical entangled states, and quantum communication
protocols have been proposed (see, e.g., [11–17]).

Unfortunately, even the largest natural XKNL is extremely
weak. Operating in the single-photon regime with a mode
volume of about 0.1 cm3, the XKPS is only θ ≈ 10−18

[18]. This makes cross-Kerr-based optical quantum gates
and QIP extremely challenging. To obtain a giant XKPS,
one can in principle lengthen the cross-Kerr interaction time
by manufacturing a long fiber with the cross-Kerr materials
[19]. In this case, however, photon losses and self-phase
modulation in the cross-Kerr medium will prevent the gate
from operating properly [20,21]. Since the end of the last
century much effort has been made to generate larger XKNLs
using electromagnetically induced transparency (EIT) (see,
e.g., [22–30]). Although considerable progress has been made,
the experimentally available XKNL still cannot satisfy the
requirement [31]. Recently, Nemoto and Munro [4] proposed
a scheme for realizing a nearly deterministic two-photon parity
gate with weak XKNLs, in which the nonlinearity effect
is “amplified” by an intense coherent state bus. Thereafter,
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similar schemes for implementing photonic two-qubit parity
and CNOT gates were developed [32–36]. All these schemes
involve a building block of successive cross-Kerr interactions
between an intense coherent state probe beam (that acts
as a quantum information bus) and a pair of single-photon
qubit beams. To make these schemes work in the regime of
θ ∼ 10−2, giant intensities of coherent states or rounds of
operations (each round involves two cross-Kerr interactions)
are required. These requirements, however, are very difficult to
achieve in the experiment, or even go beyond the reasonability.
In addition, it is still an experimental challenge to achieve such
a value of XKPS. This idea has also been widely employed
in the research on the Bell-state measurement, generation of
entangled states and coherent state superpositions, and so on
(see, e.g., [37–41]).

In this paper, we propose a scheme for realizing near
deterministically a photonic two-qubit parity gate using a tiny
XKNL. The involved XKNL can be several orders of mag-
nitude weaker than the aforementioned schemes. The scheme
employs an optical device based on a high-quality ring cavity
coupled to an external traveling wave (signal mode) through a
cross-Kerr medium [42]. The cavity mode is fed by a coherent
state and serves as a probe, and the detection outcomes at the
cavity output ports reveal the parity (even parity or odd parity)
of the two qubits without destroying the photons.

The paper is organized as follows. In Sec. II we introduce
the idea of performing a two-qubit parity gate with a tiny
XKNL. In Sec. III we discuss the effects of some nonideal
cases on the parity gate: Sec. III A focuses on the imperfection
of the detectors, and Sec. III B on the photon losses of the
coherent state bus. Finally, concluding remarks are given in
Sec. IV.

II. TWO-QUBIT PARITY GATE

The schematic setup of realizing the two-qubit parity gate
is depicted in Fig. 1. For simplicity, we suppose that the two
beam splitters (BSs) have the same transmissivity τ and their
absorptions are negligible. The cavity is fed by a coherent
state |α〉 in the input mode i1, whereas the input mode i2

is left unexcited. After passing through the polarizing beam
splitter (PBS) PBS1, each of the two polarized photons will
be in one of the path modes s1 and s2, which depends on
their polarization states. The mode s1 (signal mode) is coupled
to the cavity mode through the cross-Kerr medium. The two
output ports of the cavity are monitored, respectively, by the
photon-number resolving (PNR) detectors D1 and D2 (when
a certain condition is satisfied, D2 can be omitted as shown
later). PBS2 serves as separating the two photons into different
spatial modes.

Before describing the performance of the parity gate in
more detail, we first analyze the dependence of the states of the
modes o1 and o2 on the state of the mode s1. The input-output
relations for the cavity are given by Refs. [42,43]

a†
o1

= κna
†
i1

+ exp[i(1 − n)θ ]σna
†
i2
,

a†
o2

= σna
†
i1

+ κna
†
i2
, (1)

where the cavity transmissivity σn and reflectivity κn are
dependent on the photon number n in the signal mode s1,
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FIG. 1. Schematic setup for the two-qubit parity gate. PBS1 and
PBS2 are two polarizing beam splitters (BSs), which transmit the
horizontal polarization component and reflect the vertical component.
Two BSs with low transmissivity τ and two mirrors (M) constitute
a ring cavity which is fed by a coherent state in the mode i1. K is
a cross-Kerr medium by which every photon in the mode s1 induces
a phase shift θ on the coherent state. P is a static phase shifter that
puts a phase shift −θ on the coherent state. The cavity transmissivity
and reflectivity are dependent on the phase shift on the coherent state.
D1 and D2 are two photon-number resolving detectors, and their
detection outcomes reveal the parity (even parity or odd parity) of the
two qubits without destroying the photons. Note that a simple local
rotation (which depends on the outcomes of D1 and D2) on qubit 1
or 2 via a feedforward process is not shown in the sketch.

both of which read

κn =
√

1 − τ {exp[i(1 − n)θ ] − 1}
1 − (1 − τ ) exp[i(1 − n)θ ]

,

σn = τ

1 − (1 − τ ) exp[i(1 − n)θ ]
, (2)

|σn|2 =
[

1 + 4
1 − τ

τ 2
sin2 (1 − n)θ

2

]−1

,

|κn|2 = 1 − |σn|2.
Suppose that the mode s1 is initially in an entangled state with
the mode s2,

|ψ〉s1s2 =
∑
n,m

Cnm|n〉s1 |m〉s2 , (3)

where |n〉s1 and |m〉s2 denote the photon-number or Fock states
of the modes s1 and s2, respectively. Then the input state of
the total system is

|ψ〉s1s2i1i2 =
∑
n,m

Cnm|n〉s1 |m〉s2 |α〉i1 |0〉i2 . (4)

According to Eq. (1), we can obtain the output state of the total
system

|ψ〉s1s2o1o2 =
∑
n,m

Cnm|n〉s1 |m〉s2 |κnα〉o1 |σnα〉o2 . (5)

Now we consider the two-qubit parity gate. Assume that
two polarization qubits are initially in the state

|φin〉12 = x0|H 〉1|H 〉2 + x1|H 〉1|V 〉2

+ x2|V 〉1|H 〉2 + x3|V 〉1|V 〉2, (6)
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where H and V denote the horizontal and vertical polar-
izations, respectively. This state may be separable or entan-
gled depending on whether they have interacted previously.
Because the PBSs transmit the horizontal polarization compo-
nent and reflect the vertical component, after passing through
PBS1 (see Fig. 1) the incident state becomes

|φ〉s1s2 = x0|H 〉s1 |H 〉s2 + x3|V 〉s1 |V 〉s2

+ x1|0〉s1 |HV 〉s2 + x2|V H 〉s1 |0〉s2

= x0|1〉s1 |1〉s2 + x3|1〉s1 |1〉s2

+ x1|0〉s1 |2〉s2 + x2|2〉s1 |0〉s2 . (7)

It can be seen that there is only one photon in each path mode
(called balanced) for the initial state |H 〉1|H 〉2 or |V 〉1|V 〉2,
while there are two photons in one path mode and none
in the other (called bunched) for the initial state |H 〉1|V 〉2

or |V 〉1|H 〉2. The mode s1 is then coupled to the cavity
mode through a cross-Kerr medium, as shown in Fig. 1. The
subsequent PBS2 is used to separate the two photons into
different spatial modes. According to Eq. (5) the whole system
will be finally in the state

|φ〉12o1o2 = (x0|H 〉1|H 〉2 + x3|V 〉1|V 〉2)|κ1α〉o1 |σ1α〉o2

+ x1|H 〉1|V 〉2|κ0α〉o1 |σ0α〉o2

+ x2|V 〉1|H 〉2|κ2α〉o1 |σ2α〉o2 . (8)

We observe immediately from Eq. (2) that κ1 = 0, σ1 =
1, κ0 = κ∗

2 = κ , and σ0 = σ ∗
2 = σ . Note that κ1 = 0 and

σ1 = 1 means the cavity being at resonance and having unit
transmissivity [43]. Thus the state of Eq. (8) reduces to

|φ〉12o1o2 = (x0|H 〉1|H 〉2 + x3|V 〉1|V 〉2)|0〉o1 |α〉o2

+ x1|H 〉1|V 〉2|κα〉o1 |σα〉o2

+ x2|V 〉1|H 〉2|κ∗α〉o1 |σ ∗α〉o2 . (9)

For implementing the two-qubit parity gate, that is, obtaining
the even parity state (nonnormalized)

|φeven〉12 = x0|H 〉1|H 〉2 + x3|V 〉1|V 〉2 (10)

(two photons have the same polarization and are correlated
with each other) or the odd parity state (nonnormalized)

|φodd〉12 = x1|H 〉1|V 〉2 + x2|V 〉1|H 〉2 (11)

(two photons have different polarizations and are anticorre-
lated with each other), we need to distinguish the probe state
|0〉o1 |α〉o2 from |κα〉o1 |σα〉o2 and |κ∗α〉o1 |σ ∗α〉o2 , but not (even
in principle) distinguish |κα〉o1 |σα〉o2 from |κ∗α〉o1 |σ ∗α〉o2 . It
will be shown that this task can be accomplished by detecting
the photon numbers of the modes o1 and o2 with the PNR
detectors D1 and D2, respectively.

The indistinguishability between |κα〉o1 and |κ∗α〉o1 with
photon-number detection is evident. The same is true of the
indistinguishability between |σα〉o2 and |σ ∗α〉o2 . For distin-
guishing |0〉o1 |α〉o2 from |κα〉o1 |σα〉o2 and |κ∗α〉o1 |σ ∗α〉o2 , we
in fact only need to distinguish |0〉o1 from |κα〉o1 or |κ∗α〉o1 .
It will be shown later that the photon-number detection on
the mode o2 is just for removing the relative phase shift
between the two components of the odd parity state. The
overlap between |κα〉o1 and |0〉o1 is very small and negligible
if the amplitude κα is large enough, and they can be well
distinguished from each other. The lower limit of |κα| depends

on the quantum efficiency of the detector D1 and the allowable
error rate. For clarity, we first assume both D1 and D2 have
unity quantum efficiency, and the imperfect case will be
discussed later. Then a measurement on the mode o2 projects
the two qubits and the mode o2 in the state (nonnormalized)

|φe〉 ≈ (x0|H 〉1|H 〉2 + x3|V 〉1|V 〉2)|α〉o2 (12)

for the photon number no1 = 0, or (nonnormalized)

|φo〉 = x1e
ino1 arg(κ)|H 〉1|V 〉2|σα〉o2

+ x2e
−ino1 arg(κ)|V 〉1|H 〉2|σ ∗α〉o2

=
∞∑

no2 =0

fno2
{x1e

iϕ(no1 ,no2 )|H 〉1|V 〉2

+ x2e
−iϕ(no1 ,no2 )|V 〉1|H 〉2}|no2〉 (13)

for no1 > 0, where fno2
= e−|σα|2/2(|σ |α)no2 /

√
no2 !,

ϕ(no1 ,no2 ) = no1 arg(κ) + no2 arg(σ ), and the identities
arg(κ∗) ≡ −arg(κ) and arg(σ ∗) ≡ −arg(σ ) have been utilized.
We have used the approximate equality (≈) in Eq. (12) as
there is a small but finite probability that the state (13) can
also occur for no1 = 0. If |x0| = |x1| = |x2| = |x3| = 1/2
(without loss of generality we shall take the same value in the
following context), the probability of this error occurring is
given by

Perr = 1
2 |〈0|κα〉|2 = 1

2 exp(−|κα|2), (14)

which is less than 10−4 when |κα| > 3. Thus, |κα〉o1 and
|0〉o1 can be discriminated near deterministically. Experimental
implementations of discriminating between a coherent state
and a vacuum state using the photon-number measurement
have been recently reported [44,45].

It can be seen that for the measurement outcome no1 = 0
the mode o2 is disentangled and the two qubits are directly
projected in the even parity state of Eq. (10). However, for
no1 > 0 the two qubits are still entangled with the mode o2.
To disentangle the mode o2, one needs to perform another
photon-number measurement on o2 and obtain its photon
number no2 . Then one obtains an odd parity state with the
two components picking up an unwanted relative phase shift
2ϕ(no1 ,no2 ). The phase shift 2ϕ(no1 ,no2 ) can be eliminated
via a classical feedforward operation (In many computational
circuits the phase-shift removing operations can be delayed
and performed at the final measurement stage for the qubits).
After all the operations discussed above, we can conclude
that a two-qubit parity gate is accomplished with near one
probability.

As shown above, detecting the mode o1 is sufficient for
discriminating between the odd and even parities of the two
qubits, and detecting o2 is just for removing the relative
phase shift of the two odd parity components |H 〉1|V 〉2 and
|V 〉1|H 〉2. When |σα| is very small, the mean photon number
(n̄o2 ) of the states |σα〉 and |σ ∗α〉 is close to zero. Then one may
omit the detection of o2. This, however, will yield a small error
probability given by 1 − |〈0|σα〉|2 = 1 − exp(−n̄2

o2
) which is

less than 10−3 when n̄o2 < 0.001.
In what follows we analyze how large XKPS (θ ) is required

for realizing the aforementioned parity gate. For a certain value
of Perr, the value of θ evidently depends on the values of |α| and
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FIG. 2. The dependence relation of |α| and r , with the error
probability Perr = 10−4.

τ . What we are interested in is the weak nonlinearity regime
(i.e., θ � 1). In addition, we assume the transmissivity (τ )
of the BSs is also very small. Then |κ|(= |κ0| = |κ2|) and
|σ |(= |σ0| = |σ2|) can be approximated as

|κ|2 ≈ r2

r2 + 1
, |σ |2 ≈ 1

r2 + 1
, (15)

where r = θ/τ . According to Eqs. (14) and (15), the relation-
ship of r and |α| is given by

|α| ≈ 1

r

√
(r2 + 1) ln

1

2Perr
. (16)

Evidently, r decreases (i.e., θ decreases for a given τ ) as |α|
increases for a certain value of Perr and vice versa. When Perr

and |α| are given (i.e., r is given), θ is in inverse proportion
to 1/τ . These results imply that our scheme can work in the
regime of tiny XKNL.

We take Perr = 10−4 as an example. Then the dependence
relation of r and |α| is shown in Fig. 2. It can be seen
that |α| slowly increases as r rapidly decreases in the range
r � 2, while |α| rapidly increases as r slowly decreases in
the range r � 0.5. This indicates that a large decrease in
θ only needs a small increase in |α| for the case θ � 2τ ,
while a small decrease in θ needs a large increase in |α|
for the case θ � τ/2. Thus there is a tradeoff between θ

and |α|. In the following context, we focus on an example
case, θ = τ . Then the lower τ is, the smaller regime of θ

our scheme can work in. For example, when τ is of the
order of {10−6,10−5,10−4} (these values are available under
current technology [42,46]), θ is correspondingly of the order
of {10−6,10−5,10−4}. It seems that the previous schemes can
also work in the regime of these orders of magnitude of XKPS
by increasing the amplitude of the probe coherent state or the
number of round. However, the intensity of the coherent state
or the number of round would go beyond the accessible or even
reasonable values. For example, to make the parity gate operate
properly even for θ ∼ 10−2 (assuming the error probability is
also of the order of 10−4), the amplitude of the probe coherent

state should be ∼104 in Refs. [4,32,33] (note that a much
more intense ancillary coherent state beam is also required
for accomplishing the homodyne measurement on the probe
coherent state beam [47]), and the number of round (each round
involves two cross-Kerr interactions) should also be ∼104

in Ref. [34]. Although the amplitude of the probe coherent
state can be reduced to a certain extent by using photon-
number measurement than homodyne measurement [34–36],
inaccessibly or even unreasonably intense ancillary coherent
state would be required for accomplishing an appropriate
displacement on the probe coherent state. Thus we conclude
that our scheme can work in the regime of a several orders
of magnitude weaker XKNL than those schemes mentioned
above.

III. EFFECTS OF NONIDEAL CASES ON THE
TWO-QUBIT PARITY GATE

A. Imperfections of detectors

We now consider that the two detectors D1 and D2 have
nonunit quantum efficiencies η1 and η2, respectively. Then the
error probability (14) is replaced by

P (η1)
err = 1

2
Tr

[
|κα〉〈κα|

∞∑
n=0

(1 − η1)n|n〉〈n|
]

= 1

2
exp[−η1|κα|2]. (17)

Evidently the imperfection of D1 can be well compensated
by slightly increasing |α|. For the same κ , P

(η1)
err (α′) = Perr(α)

with α′ = α/
√

η1, and when, for example, η1 = 0.9, |α′| is
about 4.22 for |α| = 4 and about 30.57 for |α| = 29.

For eliminating the relative phase shift of the two odd parity
components, one needs to know the correct photon numbers
of the modes o1 and o2, as shown before. The imperfections
of D1 and D2 will cause an error probability given by

P ′(η1+η2)
err = 1 −

∞∑
n=1

|〈n|κα〉|2ηn
1

∞∑
m=1

|〈m|σα〉|2ηm
2

= 1 − exp[(η1|κ|2 + η2|σ |2 − 1)|α|2]. (18)

For simplicity, we suppose η1 = η2 = η. Then the above
equation reduces to

P ′(η)
err = 1 − exp[(η − 1)|α|2], (19)

which is independent of the XKPS θ . P
′(η)
err is small if and

only if (1 − η)|α|2 is small. When (1 − η)|α|2 < 0.05, P
′(η)
err

is less than 0.05. In addition, for a given value of η, the
larger |α| is the larger P

′(η)
err becomes. Thus, for making

P
′(η)
err be very small, the quantum efficiency is required to

be very high when |α| is not very small. Fortunately, recent
reports [48–50] indicate that η could be close to unity with the
developing techniques. We notice that potential dark counts
of the detectors could also cause errors. However, recent
experiments [48–50] demonstrated that near-unity-efficiency
PNR detectors with negligible dark-count rates could be
produced. Note that other schemes [4,32–36] may be more
fragile to the imperfection of the detectors because they involve
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FIG. 3. Diagrammatic sketch of the two-qubit parity gate. Each
photon in the mode s1 induces a phase shift θ on the coherent state
through the cross-Kerr medium. The additional beam splitter BS′

(with transmissivity λ) is used to model the photon losses in the
coherent state bus.

photon-number measurements on very intense coherent states
as mentioned before.

It is worth stressing that P ′(η1+η2)
err is not the error probability

of distinguishing between the odd and even parities of the two
qubits but the error probability of removing the relative phase
shift of the two odd parity components. The error probability
(P (η1)

err ) of distinguishing the odd parity components |HV 〉 and
|V H 〉 from the even parity components |HH 〉 and |V V 〉
could be close to zero even when the detection efficiency
is low (in the following context, we shall use the abbrevi-
ation |H 〉|V 〉 = |HV 〉). Therefore, even with low-efficiency
detectors, our scheme could be used to implement the Bell-
state measurement with near unity probability [32,35,51] and
generate cluster states with a certain probability [32,52] as
well as serve all other quantum tasks that involve two-photon
polarization-parity detections.

It has been mentioned before that when |σα| is very small
(e.g., r = 100 and |α| is not too large), the measurement on
the mode o2 may well be omitted. Then the error probability
P

′(η1+η2)
err vanishes.

B. Photon losses in the bus

In this section, we discuss the decoherence effect due to
photon absorption in the cross-Kerr medium. Photon losses
may occur in both the bus and the qubit modes. However,
photon losses in the coherent state field is more easier to occur.
Therefore, photon losses of the coherent state field should
be the main source of decoherence in the two-qubit output
state when the interaction time is very short [20,35,39]. In
what follows, we shall consider the photon losses in the bus.
Such photon losses can be modeled via a beam splitter of
transmissivity λ which discards a portion of the coherent state
beam [35,53]. It is assumed that λ does not vary with time and
can be measured in advance through suitable test experiments
[20,35], so its value is known. Then Fig. 1 can be altered
phenomenally to Fig. 3, where the beam splitter BS′ (with
transmissivity λ) is to model the photon losses in the cavity
field. Following the method of the authors of [42,43], we obtain
the input-output relations for the cavity

a†
o1

= Ana
†
i1

+ τ
√

1 − λei(1−n)θ

�
a
†
i2

+
√

τλ

�
a
†
i3
,

a†
o2

= Bna
†
i1

+ Ana
†
i2

+
√

λτ (1 − τ )

�
a
†
i3
, (20)

a†
o3

= Cna
†
i1

+ Cn√
1 − τ

a
†
i2

+ ρei(1−n)θ − √
1 − λ

�
a
†
i3
,

where

� = 1 − (1 − τ )
√

1 − λei(1−n)θ ,

An =
√

1 − τ [
√

1 − λei(1−n)θ − 1]

�
,

(21)
Bn = τ

�
,

Cn =
√

λτ (1 − τ )ei(1−n)θ

�
,

and n (=0,1,2) is the photon number in the mode s1. The mode
o3 that denotes the photon losses in the cavity field has to be
traced out [35,53]. Then, the output state of Eq. (9) is replaced
by

ρ12o1o2 = |φeven〉12〈φeven| ⊗ |A1α〉o1〈A1α| ⊗ |B1α〉o2〈B1α| + |x1|2|HV 〉12〈HV | ⊗ |A0α〉o1〈A0α| ⊗ |B0α〉o2〈B0α|
+ |x2|2|V H 〉12〈V H | ⊗ |A∗

0α〉o1〈A∗
0α| ⊗ |B∗

0 α〉o2〈B∗
0 α| + x∗

1y1|φeven〉12〈HV | ⊗ |A1α〉o1〈A0α| ⊗ |B1α〉o2〈B0α|
+ x1y1|HV 〉12〈φeven| ⊗ |A0α〉o1〈A1α| ⊗ |B0α〉o2〈B1α| + x∗

2y2|φeven〉12〈V H | ⊗ |A1α〉o1〈A∗
0α| ⊗ |B1α〉o2〈B∗

0 α|
+ x2y2|V H 〉12〈φeven| ⊗ |A∗

0α〉o1〈A1α| ⊗ |B∗
0 α〉o2〈B1α| + x1x

∗
2y3|HV 〉12〈V H | ⊗ |A0α〉o1〈A∗

0α| ⊗ |B0α〉o2〈B∗
0 α|

+ x∗
1x2y3|V H 〉12〈HV | ⊗ |A∗

0α〉o1〈A0α| ⊗ |B∗
0 α〉o2〈B0α|, (22)

where

y1 = |〈C0α|C1α〉|2, y2 = |〈C∗
0α|C1α〉|2, y3 = |〈C∗

0α|C0α〉|2, (23)

and the relations A2 = A∗
0 and B2 = B∗

0 have been utilized. In this case, the probe mode o1 must be displaced by an amount
D(−A1α) = exp(A1α

∗ao1 − A1αa
†
o1 ) (A∗

1 = A1) prior to the measurement. Then the state of Eq. (22) evolves to

ρ12o1o2 = |φeven〉12〈φeven| ⊗ |0〉o1〈0| ⊗ |B1α〉o2〈B1α| + |x1|2|HV 〉12〈HV | ⊗ |(A0 − A1)α〉o1〈(A0 − A1)α| ⊗ |B0α〉o2〈B0α|
+ |x2|2|V H 〉12〈V H | ⊗ |(A0 − A1)∗α〉o1〈(A0 − A1)∗α| ⊗ |B∗

0 α〉o2〈B∗
0 α|

+ x∗
1y1e

i|α|2A1ImA0 |φeven〉12〈HV | ⊗ |0〉o1〈(A0 − A1)α| ⊗ |B1α〉o2〈B0α|

052326-5



WANG, ZHANG, TANG, XIE, WANG, AND KUANG PHYSICAL REVIEW A 85, 052326 (2012)

+ x1y1e
−i|α|2A1ImA0 |HV 〉12〈φeven| ⊗ |(A0 − A1)α〉o1〈0| ⊗ |B0α〉o2〈B1α|

+ x∗
2y2e

i|α|2A1ImA∗
0 |φeven〉12〈V H | ⊗ |0〉o1〈(A0 − A1)∗α| ⊗ |B1α〉o2〈B∗

0 α|
+ x2y2e

−i|α|2A1ImA∗
0 |V H 〉12〈φeven| ⊗ |(A0 − A1)∗α〉o1〈0| ⊗ |B∗

0 α〉o2〈B1α|
+ x1x

∗
2y3e

−i2|α|2A1ImA0 |HV 〉12〈V H | ⊗ |(A0 − A1)α〉o1〈(A0 − A1)∗α| ⊗ |B0α〉o2〈B∗
0 α|

+ x∗
1x2y3e

i2|α|2A1ImA0 |V H 〉12〈HV | ⊗ |(A0 − A1)∗α〉o2〈(A0 − A1)α| ⊗ |B∗
0 α〉o2〈B0α|. (24)

Note that the amplitudes of |HV 〉12 and |V H 〉12 have picked up a phase shift due to the displacement. These phase shifts are
unwanted but can be simply removed by static phase shifters (no feedforward is required). After the operations as mentioned
above (performing photon-number measurements on the modes o1 and o2, and eliminating the unwanted phase shifts via a
classical feedforward process), the two qubits end in the even parity state |φeven〉12 for no1 = 0 or an odd parity state

ρodd
12 = |x1|2|HV 〉12〈HV | + |x2|2|V H 〉12〈V H | + x1x

∗
2y3|HV 〉12〈V H | + x∗

1x2y3|V H 〉12〈HV | (25)

for no1 > 0. We have assumed that the detectors are perfect. Obviously, the potentially obtained even parity state is exactly the
target state |φeven〉12 as given in Eq. (10), while the possibly obtained odd parity state is a mixed state which is different from the
desired state |φodd〉12 as shown in Eq. (11). This indicates that the photon losses in the bus only cause decoherence for the odd
parity state of the two qubits.

Let |x0| = |x1| = |x2| = |x3| = 1/2. Then the error probability of distinguishing the even parity components |HH 〉 and |V V 〉
from the odd parity components |HV 〉 and |V H 〉 is

Pe = 1

2
|〈0|(A0 − A1)α〉|2 = 1

2
exp

{
2τ 2(1 − τ )(1 − λ)(cos θ − 1)|α|2

[1 − 2(1 − τ )
√

1 − λ cos θ + (1 − τ )2(1 − λ)][1 − (1 − τ )
√

1 − λ]2

}
. (26)

Figure 4 shows that Pe only depends on the ratio of λ (photon loss parameter) to θ for a given |α| and θ = τ , and it universally
decreases with the increase of |α|. In a word, Pe is approximate to zero and negligible when λ does not exceed a certain threshold
value depending in a nontrivial way upon the values of θ and |α|. The overlap between the potentially obtained odd parity state
and the desired odd parity state |φodd〉12 is given by

Fodd = 12〈φodd|ρodd
12 |φodd〉12

tr(|φodd〉12〈φodd|)tr(ρodd
12

)
= 1

2
+ 1

2
exp

{ −4τ (1 − τ )λ|α|2 sin2 θ

[1 − 2(1 − τ )
√

1 − λ cos θ + (1 − τ )2(1 − λ)]2

}
. (27)

Figure 5 shows the dependence of Fodd on λ/θ for a given
|α| and θ = τ . It can be observed from Figs. 4 and 5 that
the conditions of both Pe being close to zero and Fodd being
very large cannot be simultaneously satisfied when λ/θ is not
sufficiently small.

As shown above, even when Fodd holds small values, the
even and odd parity components could be near determin-
istically distinguished. Similar to the foregoing case, our
scheme with photon losses in the bus could be also used
to implement the Bell-state measurement with near unity
probability [32,35,51] and generate cluster states with a certain
probability [32,52] as well as serve all other quantum tasks
that involve two-photon polarization-parity detections. Finally,
we should point out that photon absorption in the cross-
Kerr interactions could be nearly eliminated under certain
conditions by using EIT materials [54].

Note that other potential factors should be also consid-
ered for practical implementation of our scheme, such as
self-phase modulation and noninstantaneous response in the
cross-Kerr medium. Fortunately, these effects may well be
canceled through replacing fibers with EIT materials [21,55].
In addition, the spectral effect can be also circumvented under
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FIG. 4. The error probability Pe against the ratio of λ (photon loss
parameter) to θ . τ is equal to θ . From top to bottom in each graph the
curves correspond to |α| = 2, 4, and 30, respectively. (a) θ = 10−6.
(b) θ = 10−5. (c) θ = 10−4. (d) θ = 10−3.
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FIG. 5. The fidelity Fodd against λ/θ . τ is equal to θ . From top
to bottom in each graph the curves correspond to |α| = 2, 4, and 30,
respectively. (a) θ = 10−6. (b) θ = 10−5. (c) θ = 10−4. (d) θ = 10−3.

certain conditions [55–57], and other resources of error can be
dealt with using the standard techniques available for linear
optical quantum computation [8].

IV. CONCLUDING REMARKS

In conclusion, we have proposed a scheme for realizing
a nearly deterministic two-photon polarization-parity gate
using a tiny XKNL. Like previous XKNL-based schemes, our
scheme only needs far fewer physical resources than linear
optical schemes. The scheme employs an optical device based

on a high quality ring cavity constructed by both two BSs
and mirrors and fed by a coherent state. Such a device can
substantially “amplify” the nonlinearity effect, which makes it
possible that our scheme work in the regime of a several orders
of magnitude weaker XKNL than previous schemes. As a con-
sequence, our scheme is more practical under current XKNL
techniques. The presented two-qubit parity gate plus single-
qubit rotations can constitute a universal gate set for econom-
ical and feasible all-optical quantum computation. Similarly,
the two-qubit parity gate could serve quantum communication
systems as it can be used to realize complete Bell-state
measurements [32,35,51], multiphoton-entanglement gener-
ations [32,52], optimal nonlocal multiphoton-entanglement
concentrations [58], and so on. In addition, we showed that
when the quantum efficiencies of the PNR detectors are less
than 1 and there are photon losses in the bus, the even and
odd parity states of the two polarization qubits can be near
deterministically distinguished. These findings indicate that
even in the nonideal cases our scheme could efficiently serve
the quantum tasks that involve two-photon polarization-parity
detections.
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