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99%-fidelity ballistic quantum-state transfer through long uniform channels
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Quantum-state transfer with fidelity higher than 0.99 can be achieved in the ballistic regime of an arbitrarily long
one-dimensional chain with uniform nearest-neighbor interaction, except for the two pairs of mirror-symmetric
extremal bonds, say x (first and last) and y (second and penultimate). These have to be roughly tuned to suitable
values x ∼ 2N−1/3 and y ∼ 23/4N−1/6, where N is the chain length. The general framework can describe the
end-to-end response in different models, such as fermion or boson hopping models and XX spin chains.

DOI: 10.1103/PhysRevA.85.052319 PACS number(s): 03.67.Hk, 03.67.Pp, 03.67.Bg, 75.10.Pq

I. INTRODUCTION

Transferring quantum states between distant registers is one
of the basic tasks that a quantum computer based on qubits
located on fixed positions has to accomplish. The general
scheme where a quantum channel physically connects the
sending and the receiving qubits naturally emerges from such
a requirement and a variety of proposals have been recently put
forward for realizing quantum channels for state transmission
by different physical solutions: phonon modes for trapped
ions [1] or photon modes for superconducting qubits [2,3],
molecular lattices for vibrational excitons [4] or optical lattices
for cold atoms [5–8], arrays of coupled quantum dots [9–12],
and interacting S = 1

2 spins on a one-dimensional lattice,
usually referred to as spin chains. In particular, proposals
based on spin chains were first introduced in this context
by Bose [13,14] and have attracted much attention in the
last decade, due to both the possibility of exploiting their
natural dynamics for the transfer process, and the availability
of analytical results that allow for a detailed description of
their dynamics.

All of the above-mentioned proposals are based on the idea
that the state of the sender qubit be transferred at large distance
via a dynamical site-to-site hopping mechanism that we will
here describe in terms of a general hopping model. Once a
two-dimensional Hilbert space, generated by |0〉 and |1〉, is
assigned to each site i = 1, . . . ,N of a one-dimensional lattice,
the hopping model is defined by the following Hamiltonian:

H = 1

2

N∑
i,j=1

Aij |i〉〈j |, (1)

where |i〉 ≡ |0〉⊗i−1|1〉|0〉⊗N−i is a brief notation for single-
excitation states. Indeed, when quasiperfect state transmission
is considered, initial states with many excitations only slightly
perturb the process, as we extensively analyzed in [15], so that
in this paper we restrict the discussion to the single-excitation
subspace. The structure of the hopping-amplitude matrix
A = {Aij } depends on the properties of the specific model and,
despite being responsible of a possibly long-distance transfer
process, it can be generated by a short-range interaction. Notice

that Eq. (1) describes free bosons as well as free fermions and,
as far as the latter are concerned, an exact mapping exists
between the Hamiltonian (1) and that of the S = 1

2 XY chain,
where the matrix elements Aij correspond to the exchange
couplings. By the hopping model the basic transmission
mechanisms can be studied and characterized: this, in turn,
can also enlighten on the specific role of nonlinearity [16–18],
noise [19], and dissipation [20,21].

The quality of the channel, as far as the transfer process is
concerned, essentially depends on the hopping amplitudes Aij ;
in particular, it has been proven that locally engineered hopping
amplitudes can lead to perfect state transfer [22–28]. A recent
proposal, aimed at improving the fidelity in the presence of
disorder, deals with a combination of the above scheme and
very weak extremal couplings [29]. However, strategies based
on a very detailed design of the internal couplings appear very
demanding from a practical point of view [30].

Having in mind that experimental setups generally require
the couplings to be as uniform as possible (see, e.g., Ref. [31]),
different authors have proposed alternative strategies for
obtaining high-quality state-transfer processes through mirror-
symmetric channels with uniform bulk and just a few extremal
couplings allowed to vary [32–37]. Some of these alternative
strategies are based on the idea of markedly weakening the
couplings between the channel and the sender and receiver
qubits, a solution that has been shown [32,34,38] to lead to a
very-high-quality state transfer. However, this scheme yields
large transmission times and requires such a reduction of the
extremal bonds that a severe limitation on the actual length of
a functioning channel must be taken into account.

In general, the transmission quality of almost-uniform
channels is expected to deteriorate as the length of the
channel is increased [13,14,36] due to dispersion, which is
integral to uniformly distributed couplings. On the other hand,
modeling a scalable quantum-state transfer process whose
quality depends as little as possible on the physical length of the
channel is an essential issue to address, especially if solid-state
implementations and/or experimental analysis are in order.

Therefore, we find ourselves squeezed between the seem-
ingly incompatible requirements of avoiding too much detailed
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design of the physical channel and yet getting a reasonably
long channel characterized by a relatively convenient transfer
time.

Our approach to solve this puzzle stems from the idea
of exploiting, in an almost uniform channel, the ballistic
state-transfer mechanism that allows perfect transmission of
a wave packet [35,39,40], in virtue of a perfectly coherent,
nondispersive, dynamics. Perfect-transfer follows from the
requirement that the normal modes correspond to equally
spaced eigenfrequencies (or, loosely speaking, to a linear
dispersion relation), so that a coherent mirrored reconstruction
of all normal components occurs [41]. We infer that locally
engineering all the interactions in order to yield a linear
spectrum is not necessary as only the modes involved in
the initial configuration of the overall system need to satisfy
the linearity condition [35] in order to get an effectively
ballistic dynamics: systems realizing this condition can be
dubbed “optimal state-transfer” systems. They realize coherent
ballistic transmission in spite of the dispersion relation not
being linear in the whole range, but only in the neighborhood
of the normal modes excited by the initialization of the state
of the first qubit, which coherently evolve as a traveling wave
packet that rebuilds the state at the opposite end.

This idea has been proposed and implemented [15,35] in
a scheme where we could only play with one parameter of
the Hamiltonian; namely, the value of the extremal bond x =
A12 = AN−1,N . We learned that the emergence of an optimal
value for x follows from quite a complex interplay between
two conflicting effects, i.e., the deformation of the eigenvalue
spacings and the shrinking of the mode distribution, which are
simultaneously driven by the value of x. In order to further
improve our results, we understand that these effects must
be handled independently: a goal that be accomplished by
introducing just one more parameter in the model, as shown in
this paper. Notice that the introduction of a second parameter in
the model should not be thought of as a way of moving towards
the perfect-transfer scheme (which requires N/2 parameters)
but rather as a practical answer to the effective need to control
two competing effects.

In Sec. II the state-transfer mechanism in the hopping model
(1) is studied and the quantities that characterize the efficiency
of the quantum channel in terms of the transition amplitudes
are obtained. In Sec. III we describe the setup for implementing
the two-parameter optimal-transfer scheme (with two adjacent
modified bonds at the ends of the chain) and derive implicit
analytical expressions for the frequencies and the matrix
elements entering the transition amplitude. The behavior of
the latter is thoroughly discussed in Sec. IV, where numerical
results are reported together with the analytical derivation of
the large-N limit of the attainable optimal transmission fidelity.
In Sec. V the dynamical behavior is shown to be ballistic, i.e.,
the information is carried by a wave packet traveling at constant
speed along the channel. Conclusions are drawn in Sec. VI.
Some details of the calculations are reported in Appendix A.

II. STATE TRANSFER IN HOPPING MODEL

Let us consider the Hamiltonian (1). In the case of nearest-
neighbor interactions the matrix A is tridiagonal and, for the
chain to be connected, the off-diagonal elements cannot vanish.

Without loss of generality [42], we assume A to be real with
Ai,i+1 = Ai+1,i > 0. Introducing the orthogonal matrix U =
{Uni} that diagonalizes the matrix A,∑

ij

UniAijUmj = λnδnm ≡ 2ωnδnm, (2)

and the one-excitation states

|n〉 =
∑

i

Uni |i〉, (3)

the Hamiltonian takes the diagonal form

H =
N∑

n=1

ωn|n〉〈n|. (4)

If A commutes with the mirroring matrix J = {Jij =
δN+1−i,j }, (i.e., A is mirror symmetric), then also J is
diagonalized by U ,∑

j

JijUnj = Un,N+1−i = jnUni, (5)

and since J2 = 1 the eigenvalues jn are either 1 or −1.
It is proved in Ref. [43] that, if the eigenvalues ωn are
cast in decreasing order, then jn = (−)n+1 = −eiπn; in other
words, the nth eigenvector of A is mirror symmetric or
mirror antisymmetric according to whether n is odd or even,
respectively.

A. Estimating state-transfer quality

The purpose of state transfer is to start with a product state
|ψ〉 = |ψ〉|0〉⊗N−1, with a generic state

|ψ〉 = α|0〉 + β|1〉 (6)

of the first qubit and let it evolve with H in such a way that,
at a given time t � N the state of the last qubit is as close as
possible to |ψ〉. Formally, the evolved overall state is ρ(t) =
e−iHt |ψ〉〈ψ |eiHt and the instantaneous state at site i is

ρi(t) = Tr{1,...,i−1,i+1,...,N}ρ(t). (7)

Defining |0〉 = |0〉⊗N , the evolved overall state obeys

e−iHt |ψ〉 = α|0〉 + β
∑

i

〈i|e−iHt |1〉|i〉, (8)

so that

ρi(t) =
[

1−|β|2|ui(t)|2 αβ∗u∗
i (t)

α∗βui(t) |β|2|ui(t)|2
]
, (9)

where ui(t) is the transition amplitude from site 1 to site i,

ui(t) ≡ 〈i|e−iHt |1〉 =
N∑

n=1

UniUn1e
−iωnt . (10)

The state of the last qubit is described by the density matrix
ρ

N
(t), whose degree of similarity with the initial state |ψ〉〈ψ |

can be estimated by the fidelity,

F(ψ,t) = 〈ψ |ρ
N

(t)|ψ〉. (11)

The overall channel quality can be estimated by taking the
average of F (ψ,t) over all possible initial states |ψ〉 (i.e., over
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the Bloch sphere, |α|2 + |β|2 = 1). This yields the average
fidelity F(t) in terms of u

N
(t), with a dependence on the phase

of the amplitude that one can get rid of by prescribing a proper
local rotation to the last qubit [15], or, in a spin-chain context,
by applying a suitable magnetic field [13] in such a way that
u

N
(t) is real and positive at the arrival time. With this proviso,

setting

u(t) ≡ |u
N

(t)|, (12)

one has

F(t) = 1

3
+ [1 + u(t)]2

6
. (13)

Hence, the average fidelity is a monotonic function of (the
modulus of) the transition amplitude u(t). On the same footing,
it can be shown that the entanglement fidelity, which measures
the efficiency of transfer for an entangled state with an external
noninteracting qubit, reads [15]

FE(t) = [1 + u(t)]2

4
. (14)

It is clear at this point that u(t) ∈ [0,1] can be assumed as
a transfer-quality indicator, with u(t) = 1 corresponding to
perfect transfer. For almost perfect transfer, u = 1−ε, one has
a reduction of the fidelity to first order in ε,

F ≈ 1 − 2
3ε, FE ≈ 1 − ε. (15)

In the following we will thus concentrate onto the task of
maximizing the transition amplitude u(t) for the particular
model introduced in the next section.

B. Mirror-symmetric case

If A is mirror symmetric, Eq. (5) tells us that UnN =
−eiπnUn1, so the transition amplitude we are interested in
takes the form

u(t) =
∣∣∣∣∣

N∑
n=1

Pne
i(πn−ωnt)

∣∣∣∣∣ , Pn ≡ U 2
n1, (16)

which consists of a sum of time-evolving phases with a
weight given by the mode distribution (or density) Pn. In the
case of equally spaced eigenfrequencies ωn = ω0 + v(π/N )n,
where v is a constant, one would have u(t = N/v) = 1
(i.e., full transmission of the state). As already mentioned
in the introduction, this case of a “linear dispersion” can
be realized in discrete finite systems [24] by allowing any
single nearest-neighbor coupling to be properly tuned such
that Ai,i+1 ∝ √

i(N−i).

III. THE QUASIUNIFORM CHANNEL

In a quasiuniform chain almost all couplings are equal,
setting a natural energy unit and, taking the chain spacing as
the length unit, all quantities reported in the following become
dimensionless; for instance, if the bulk dimensionful coupling
is J and the dimensionful lattice spacing is d, then energies
are in units of J , times in units of h̄/J , velocities in units of
dJ/h̄, and so on.

We assume from now on that the mirror-symmetric matrix
A = {Aij } describes the chain of Fig. 1, which is uniform

FIG. 1. Mirror-symmetric quantum channel consisting of N sites
with uniform bonds of unit strength, except for two pairs of weaker
bonds at the extrema, x and y. State transmission is meant to occur
between sites 1 and N .

except for the two extremal bonds A1,2 = AN−1,N ≡ x and
A2,3 = AN−2,N−1 ≡ y, while all other couplings are equal,
Ai,i+1 = 1 for i = 3, . . . ,N − 3. Such quasiuniform interac-
tions were used in Refs. [8,44] for the purpose of studying
long-distance entanglement in the ground state. Explicitly,

A(x,y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x

x 0 y

y 0 1

1 0 1

. . .
. . .

. . .

1 0 y

y 0 x

x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

It is assumed that 0 < x � 1 and 0 < y � 1. In Appendix A
the N energy eigenvalues are found in the form ωn = cos kn,
where the allowed values k = kn are determined by Eqs. (A12)
and (A13), and the mode distribution Pk is given by Eq. (A23).
As the latter is symmetric around π/2, it is more convenient
to work with the shifted variable

q ≡ π

2
− k ∈

(
−π

2
,
π

2

)
, (18)

whose allowed values are

qm = πm − 2ϕqm

N + 1
, m = −N − 1

2
, . . . ,

N − 1

2
, (19)

where m ≡ (N + 1)/2 − n; the corresponding eigenfrequen-
cies are ωq = sin q. Understanding that the variable q assumes
the allowed values (19), we can use it in the place of the
eigenvalue index n. Note that, for even N , m is half integer,
but there is no qualitative difference between the outcomes for
even and odd N : the latter case is just more easily handled
numerically. The phase shifts

ϕq = tan−1

[
y2 sin 2q

x2 − (2 − y2)(1 − cos 2q)

]
− 2q (20)

displace the q values from the equally spaced values of the
fully uniform case (ϕq = 0 for x = y = 1). Note that the phase
shifts do not alter the order of the sequence {qm}.

Note that the denominator of Eq. (20) can vanish and
the argument of tan−1 can jump from ∞ to −∞: when
this happens, the conventional range of tan−1 has to be
extended above π/2 rather than jumping from π/2 to −π/2.
In this way ϕq is a continuous function, shown in Fig. 2 for
positive q. The effect of weakening the bond y is evident:
the deformation is such that ϕq changes its convexity in an
interval |q| � qF (x) whose width is characterized by the fixed
point qF (x) = sin−1 x

2 . Therefore, the parameter y can change
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FIG. 2. (Color online) Shifts ϕq [Eq. (20)] for different values of
x and y. The dashed curves correspond to y = 1. The fixed point
qF = sin−1 x

2 lies on the dashed straight line.

the separation between the allowed q values and, in turn,
between the eigenfrequencies affecting the coherence in the
time evolution.

The mode distribution Pk = U 2
k1, Eq. (A23), can be written

in terms of q as

Pq = 2

N + 1 + 2ϕ′
q

× x2y2

x4 + (4 − x2 − 2y2)2 tan2 q − 16(1 − y2) sin2 q
.

(21)

The term in ϕ′
q is clearly irrelevant for a long chain, even though

it ensures the normalization,
∑

m Pqm
= 1, for any finite N .

Figure 3 describes the typical behavior of the mode density
Pq when y is varied keeping a fixed x < 1. Compared to
its counterpart in the case of the uniform chain, x = y = 1,

FIG. 3. (Color online) Normalized large-N mode density Pq

[Eq. (21)] for x = 0.6 and different values of the second bond
coupling y. The thicker curves are those for y = 1 and for the
threshold value y = Y (x) (see text and Fig. 4). The broad dash-dotted
line is the result for the fully uniform chain, x = y = 1.

FIG. 4. (Color online) Function Y (x) [Eq. (22)] separates the oc-
currence of unimodal and bimodal mode distributions. The optimized
pairs (x,y) [i.e., those which maximize the arrival amplitude u(t)],
are also reported for selected values of N (see Table I).

it is evidently more structured; by lowering y its tails get
increasingly suppressed andPq definitely changes to a bimodal
shape with two symmetric maxima: this occurs when, in the
denominator, the coefficient of sin2 q becomes larger than that
of tan2 q; that is, when y is smaller than

Y (x) ≡
√√

2x − x2

2
, (22)

which is the curve shown in Fig. 4. Pq is unimodal for y �
Y (x) and has its maximum at q = 0; at the threshold y =
Y (x) the maximum flattens, the deviation being ∼q4, before
developing the lateral maxima which are the more pronounced
the smaller y. In the limit y → 0 the distribution Pq tends to
two symmetric δ peaks at q = ± sin−1 x

2 , corresponding to the
excitations of the single dimer with interaction x, which is
indeed isolated from the chain when y = 0.

To represent the behavior of the level spacings, whose
uniformity is crucial for the coherence of transmission, one
can define a sort of “group velocity” by

vq ≡ N + 1

π
ω′

q∂mq = N + 1

N + 1 + 2ϕ′
q

cos q, (23)

where the “derivative” of Eq. (19), (N + 1 + 2ϕ′
q)∂mq = π ,

has been used, and from Eq. (20),

ϕ′
q = −2+ 2y2[x2 + 2(2 − x2 − y2) sin2 q]

x4 + 4[y4−x2(2 − y2)] sin2 q + 16(1−y2) sin4 q
.

(24)

IV. TRANSITION AMPLITUDE

A. Numerical results

The transition amplitude between the sites 1 and N at the
time t is given by Eq. (16). It can conveniently be rewritten as
a sum over the allowed q values (19),

u(t) =
∣∣∣∣∣
∑
m

Pqm
ei(πm−t sin qm)

∣∣∣∣∣ . (25)
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FIG. 5. (Color online) End-to-end amplitude ũ(x,y) at arrival
time as a function of x for selected values of y and N = 501.
The thicker curves correspond to y = 1 and to the optimized value
y = 0.5439.

This sum can be evaluated numerically: for any pair (x,y)
our code solves iteratively the coupled Eqs. (19) and (20)
and looks for the value of the arrival time t � N when u(t)
attains its largest value, say ũ(x,y). Typical results for ũ(x,y)
are reported as a function of x for selected values of y in
Fig. 5, which refers to a chain of length N = 501. One can see
that taking y smaller than 1 the amplitude can become much
closer to 1, also for the longest channels, and it is possible to
identify the optimal values (xopt,yopt) that make ũ(x,y) reach
its maximum uopt ≡ ũ(xopt,yopt). Moreover, the maxima are
so broad in the (x,y) plane that a relatively large mismatch
from the optimal values still keeps giving a large amplitude,
and consequently a large average transmission fidelity, as can
be appreciated in the contour plots of Figs. 6 and 7.

The numerically evaluated optimal data are reported in
Table I, together with those obtained in Ref. [15] by varying
only x with y = 1. Comparing with the latter, it is seen that
the transfer quality improves in an extraordinary way: even for
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y

0.3 0.4 0.5 0.6

0.5
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FIG. 6. (Color online) Contour plot of the average fidelityF(x,y)
at arrival time in (x,y) plane for N = 51.
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y
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0.4

0.6
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FIG. 7. (Color online) Contour plot of the average fidelityF(x,y)
at arrival time in (x,y) plane for N = 501.

a chain of length N = 50 001 the amplitude increases from
0.859 to 0.987; that is, the state-transfer fidelity F rises from
0.909 to 0.991. The values of Table I show that the optimized
transmission amplitude decreases more and more weakly for
large N , so that there could be a finite asymptotic amplitude
attainable for an infinite chain: this is the case, indeed, as
shown in the next subsection. In Fig. 8 the optimal values for
x are reported for y = 1 and for y = yopt. As shown formally
in the next subsection, it turns out that xopt scales as N−1/6 in
the former case, while it obeys a new scaling law, apparently
N−1/3, in the latter.

The great improvement in transmission quality deals with
the same argument we gave in Ref. [15]: although a constant
group velocity vq yields perfect transmission, it is sufficient
that vq be constant for the q modes excited by the initialization
of the first qubit whose distribution isPq . The results illustrated
above confirm that the possibility of controlling, by means of
two parameters (x and y), the two most relevant features, shape
ofPq and stability of vq , allows us to obtain an optimal tradeoff
leading to nearly perfect transmission.

The weaker second bond y acts indeed on the group
velocity, as appears in Fig. 9, where the shape of vq is
reported for the optimized value of x and compared with the
corresponding mode density Pq . With a smaller y, the central
dip appearing for y = 1 is strongly reduced and the group
velocity just shows a small modulation in a rather wide range,
so favoring a coherent dynamics; at the same timePq broadens,
but not dramatically as it is mainly controlled by x (see, e.g.,
Fig. 4 of Ref. [15]); the optimized value y = yopt clearly gives
the best result compatible with the assumed parametrization.

B. Asymptotic behavior for large N

The numerically estimated optimal pairs (xopt,yopt) are
shown in Fig. 4. They evidently lie almost exactly on the
threshold curve Y (x) separating the unimodal from the doubly
peaked shape of Pq , i.e., yopt � Y (xopt). We expect this to hold
in the large-N regime, since the condition y = Y (x) clears the
quadratic terms in the denominator of the density (21) leaving
smaller tails ∼q−4, thus allowing for a more effective cut of
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TABLE I. Optimal pairs (xopt,yopt), corresponding amplitude uopt = ũ(xopt,yopt), and average fidelity Fopt for different channel lengths N .
Also reported are the optimal values obtained in Ref. [15] with y = 1.

N xopt yopt uopt Fopt xopt(y = 1) uopt(y = 1) Fopt(y = 1)

51 0.4322 0.7338 0.99270 0.99514 0.5542 0.9493 0.9666
101 0.3584 0.6742 0.99091 0.99395 0.4931 0.9324 0.9557
251 0.2760 0.5982 0.98932 0.99290 0.4216 0.9127 0.9431
501 0.2247 0.5439 0.98855 0.99239 0.3742 0.9003 0.9352
1001 0.1818 0.4923 0.98849 0.99235 0.3322 0.8899 0.9286
2501 0.1367 0.4300 0.98765 0.99179 0.2840 0.8791 0.9218
5001 0.1097 0.3869 0.98747 0.99167 0.2523 0.8726 0.9178
10 001 0.0878 0.3474 0.98735 0.99159 0.2242 0.8674 0.9145
25 001 0.0652 0.3004 0.98726 0.99153 0.1920 0.8621 0.9112
50 001 0.05209 0.26925 0.98722 0.99151 0.1708 0.8590 0.9093
100 001 0.04150 0.24072 0.98720 0.99149 0.1519 0.8565 0.9078
N → ∞ 1.954 N−1/3 1.662 N−1/6 0.98715 0.99146 1.030 N−1/6 0.8469 0.9018

the modes involving the main nonlinear part of vq . Therefore,
instead of considering y as a free parameter, we fix it to be
given by

y ≡ Y (x) =
√√

2x − x2

2
= 21/4x1/2 + O(x3/2). (26)

As N → ∞ the sum (25) can be written as an integral,

u∞(t) = lim
N→∞

∫
dmPqm

ei(πm−t sin qm). (27)

In order to evaluate this asymptotic expression, first note that
from (19) that one has to set πm = (N + 1)qm + 2ϕqm

and
πdm = (N + 1 + 2ϕ′

q)dq, so that

u∞(t) = lim
N→∞

∫ π
2

− π
2

dq

π
P̃qe

i[(N+1)q+2ϕq−t sin q], (28)

where

P̃q = 2x2y2

x4 + (4 − x2 − 2y2)2 tan2 q − 16(1 − y2) sin2 q
(29)

is exactly the normalized function reported in Fig. 3. As,
by increasing N , the optimal distribution gets narrower and
narrower, the denominator can be expanded taking into account

FIG. 8. (Color online) Optimal values for x, from Table I, reported
vs N both for y = 1 and for the optimized y = yopt. Note that x ∼
N−1/6 in the former case, while x ∼ N−1/3 in the latter.

the assumption (26):

P̃q � 23/2x3

x4 + (2q)4
; (30)

hence, the width of the relevant q region shrinks with x. Let
us introduce the scaled variable ξ = 2q/x, which is of order
unity, so that

P̃qdq �
√

2dξ

1 + ξ 4
. (31)

As for the phase in Eq. (28), the leading term of the expansion
of Eq. (20) is

ϕq � tan−1

√
2ξ

1 − ξ 2
(32)

FIG. 9. (Color online) Group velocity vq and corresponding mode
density Pq for N = 501, x = xopt = 0.225, and selected values of y.
The thicker curves correspond to y = 1 (dotted) and to the optimized
value y = yopt = 0.544 (solid).
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and, defining the arrival-time delay s by t ≡ N + 1 + s, the
remaining terms read

(N + 1)q − t sin q = t(q − sin q) − sq � τξ 3 − σξ, (33)

where

τ ≡ 1

6

(x

2

)3
t, σ ≡ x

2
s, (34)

are the rescaled counterparts of the arrival time t ∼ N and
delay s ∼ N1/3. Eventually, the asymptotic value of the
amplitude reads

u∞(τ,σ ) =
√

2

π

∫ ∞

−∞
dξ

exp[i(τξ 3 − σξ + 2 tan−1
√

2ξ

1−ξ 2 )]

1 + ξ 4
.

(35)
For a numerical evaluation it is convenient to perform the
substitution ξ = tan z, and consider the maximization of

u∞ = 2
√

2

π

∫ π
2

0
dz

1 + tan2 z

1 + tan4 z
cos �(z), (36)

with

�(z; τ,σ ) = τ tan3 z − σ tan z + 2 tan−1 tan 2z√
2

. (37)

Although this phase strongly oscillates for z close to
π/2, the weighting function makes the numerical conver-
gence easy. The overall maximum corresponds to (τ,σ ) =
(0.155 45,3.1645), and amounts to u∞ = 0.987 153, which is
the asymptotic value reported in Table I together with the
asymptotic scaling resulting from Eq. (34),

xopt � 2

(
6τ

N

)1/3

� 1.954N−1/3,

(38)
yopt = Y (xopt) � 1.662N−1/6,

while the delay scales as s = 2σ/x � 3.239N1/3, so that the
arrival time is

t � N + 1 + 3.239N1/3. (39)

V. STATE-TRANSFER DYNAMICS

In Sec. II we introduced the instantaneous transition
amplitude from site 1 to any site i of the chain [Eq. (10)]. This
quantity tells substantially where the information concerning
the initial quantum state sits at any time t . Indeed, it obeys the
sum rule

∑
i

|ui(t)|2 =
N∑

n=1

U 2
n1 = 1, (40)

so one can view the state-transfer process as the transmission
of a traveling wave packet of amplitude ui(t) which is able
to optimally rebuild most of its content in the single N th site.
Looking at the dynamics of this wave packet sheds further light
onto the ballistic transfer mechanism and allows for interesting
comparisons based on the data for |ui(t)| reported in Figs. 10
and 11.

FIG. 10. (Color online) Space-time perspective views of the
propagating wave packet |ui(t)| [Eq. (10)], for a chain of length
N = 251, (a) in the fully uniform chain x = y = 1, (b) in the case
y = 1 and optimal x = 0.422 [15], (c) in the quasiuniform channel
[Eq. (17)], with the optimal x = 0.276 and y = 0.598, and (d) in the
perfect-transfer channel [24] [Eq. (41)]. In all panels the site variable
goes from 1 to 251 and the time variable from 0 to 600, as in Fig. 11.

The first comparison is made in panels (a), (b), and
(c) of Figs. 10 and 11 and involves (a) the fully uniform
channel, which displays a very dispersive dynamics and is
indeed inefficient for transmission, (b) the channel with only
one optimized extremal bond [15], showing an increased
coherence, and (c) the further step with two optimized extremal
couplings which improves transmission close to perfection.
These features can be appreciated looking at the height of the
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FIG. 11. (Color online) Space-time contour views of the propa-
gating wave packet |ui(t)| [Eq. (10)] for the same cases as Fig. 10.

arrival-time maxima in Fig. 10 and at the the rugged features,
more evident in Fig. 11, that represent the amplitude losses
due to dispersion according to Eq. (40). Figure 11 makes also
evident the increasing arrival delay from (a) to (b) and to (c) as a
consequence of the slower packet injection and reconstruction
due to the softened endpoint couplings.

Eventually, let us consider the case of perfect state transfer
[24], which is obtained by designing all nearest-neighbor
couplings along the chain proportionally to the height of a
semicircle of diameter N drawn over the chain,

Ai,i+1 = Ai+1,i = π

N + 1

√
i(N − i); (41)

the energy unit being arbitrary, it is chosen here such that the
resulting linear spectrum

ωm = π

N + 1
m, m = −N − 1

2
, . . . ,

N − 1

2
, (42)

yields the exact arrival time t = N + 1. Notice that, neglecting
terms ∼N−1, the maximum of the couplings {Ji} is π/2, their
average is π2/8, and their mean-square value is π/3; this
allows for a meaningful comparison with our model, and the
corresponding data are reported in Figs. 10(d) and 11(d). The
modulated couplings determine a varying velocity of the wave
packet along the chain, at variance with its constant velocity
in the uniform channel of panels Figs. 10(a)–10(c) and 11(a)–
11(c).

VI. CONCLUSIONS

We have shown that almost perfect ballistic quantum-state
transfer with fidelity larger than 0.99 can be obtained in an
unmodulated channel of arbitrary length N just by allowing the
two endpoint pairs of nearest-neighbor interactions, x and y, to
assume optimal values (xopt,yopt). In addition, this maximum
of the transmission quality in the (x,y) plane, as measured by
the average fidelity or equivalently by the transition amplitude
(16), is so broad that an experimental realization would not be
bound to a fine-tuning of the endpoint couplings, as Figs. 6
and 7 clearly show.

One might think that the approach presented here looks like
the second step of a sequence that, by allowing further bonds
to vary, would lead to perfect ballistic transmission as found in
Ref. [24]. However, such deduction does not hold true: indeed,
while the aim of Ref. [24] is that of obtaining perfect transfer
by letting all normal modes evolve coherently, here we look for
high-quality transfer by requiring that only the modes excited
by the initialization of the first qubit be able to evolve coher-
ently. This is done within an effective scheme ruled by two
effects; namely, the mode distribution and the frequency spac-
ings, which can be kept under control by just two parameters:
the extremal couplings x and y. Our approach leads to extremal
couplings x ∼ N−1/3 and y ∼ N−1/6, sensibly larger than
those required for perfect transfer [Eq. (41)] which scale as
N−1/2.

Furthermore, the value of the fidelity attainable with only
two modified end bonds is so high (more than 0.99) that, for
all practical purposes, the considerably more difficult task of
engineering all the couplings would be unnecessary, because
the unavoidable presence of imperfections in laboratory
implementations would prevent perfect state transfer and,
when the presence of disorder in the couplings along the chain
is taken into account, it has been shown that the one-parameter
optimal state-transfer scheme (y = 1) is more robust than the
perfect-transfer scheme [19]; we expect such an advantage to
be preserved in the two-parameter optimal-transfer scheme.
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The asymptotic results improve from the uniform chain
(x = y = 1), which gives fidelity F∞ = 1/2, to the single
tuned bond [15] (y = 1) giving F∞ = 0.902, and even-
tually to the optimal asymptotic fidelity evaluated in this
paper, F∞ = 0.991. Whether comparable results could be
obtained by other setups is difficult to say: the variants are
numerous and we cannot give a conclusive word in this
respect.

The quasiuniform channel here considered was previously
used in Refs. [8,44] for the different purpose of exploiting
the quasi-long-distance entanglement shared by the extremal
spins in the ground state in order to get efficient teleportation;
in those papers, proposals for realizing the model by means
of coupled cavity arrays and ultracold atoms in 1D optical
lattices are put forward. In the first proposal, each component
of the array is made by an optical cavity with a two-level
atom inside; by tuning the frequency of the cavity mode
to an appropriate value, the effective qubit is given by the
two lowest-lying degenerate energy levels of the field-dressed
atom. Adjacent cavities can then be coupled by photon
hopping or by waveguides: in the former case, the interaction
strength is related to the overlap of the wave functions, so
that increasing the displacements of the two cavities at each
end would result in effective lower couplings; in the latter
case, choosing waveguides with different dielectric properties
would achieve the same result. The second proposal refers to
bosonic ultracold atoms loaded in a one-dimensional optical
lattice, which are well described by the Bose-Hubbard model.
In the dynamical-parameter regime where the onsite repulsion
is much larger than the hopping term, the Fock states with zero
and one particle per site can be considered as the basis of a qubit
and the Hamiltonian turns into an effective hopping model,
like that of Eq. (1), with uniform couplings. Site-dependent
couplings are then realized via local fields on single sites of
the optical lattice, which give rise to an effective interaction
between the sites adjacent to those with the local fields.
The above physical realizations might possibly fit also our
setup.

Finally, we mention the similarity between the problem
of quantum-state transfer and the subject of continuous-
time quantum walks [45], where regular spacetime struc-
tures called quantum carpets [46] can emerge from a
complex dynamics: for instance, the revival of the wave
function is analogous, in a mirror-symmetric context, to state
transmission.
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APPENDIX A: SPECTRAL SOLUTION

1. Characteristic polynomial

The characteristic polynomial χ
N

(λ; x,y) ≡ det[λ −
A(x,y)] associated with matrix (17) is

χ
N

(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −x

−x λ −y

−y λ −1

−1 λ −1

. . .
. . .

. . .

−1 λ −y

−y λ −x

−x λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N

.

(A1)

Expanding χ
N

(λ; x,y) in the last column, one finds

χ
N

= (λ2 − x2)ξ
N−2 − λy2ξ

N−3, (A2)

where ξ
N

is the characteristic polynomial of the associated
matrix with only one nonuniform endpoint,

ξ
N

(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −x

−x λ −y

−y λ −1

−1 λ −1

. . .
. . .

. . .

−1 λ −1

−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N

, (A3)

which can be expanded in the very same manner getting the
analog of Eq. (A2),

ξ
N

= (λ2 − x2)η
N−2 − λy2η

N−3 , (A4)

in terms of the characteristic polynomial η
N

(λ) ≡ χ
N

(λ; 1,1) of
the fully uniform matrix A

N
(1,1). For η

N
one has the recursion

relation

η
N

= λη
N−1 − η

N−2 ; (A5)

together with the conditions η0 = 1 and η1 = λ, it can be solved
in terms of Chebyshev polynomials of the second kind,

η
N

= sin(N + 1)k

sin k
, λ ≡ 2 cos k. (A6)

Hence, in the uniform case the N solutions of the secular equa-
tion χ

N
(λ; 1,1) = η

N
(λ) = 0 correspond [47] to the following

discrete values of k:

k = πn

N + 1
, n = 1, . . . ,N. (A7)

To extract the dependence on x and y in Eq. (A2) one first
uses Eq. (A4),

χ
N

(λ) = (λ2 − x2)[(λ2 − x2)η
N−4 − λy2η

N−5 ]

− λy2[(λ2 − x2)η
N−5 − λy2η

N−6 ], (A8)
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and then Eq. (A6) in the form η
N

sin k = Im{ei(N+1)k},
χ

N
(λ) sin k = Im

{
(λ2 − x2 − λy2e−ik)2ei(N−3)i}

= Im
{
u2

ke
i(N+1)k

}
, (A9)

where

uk ≡ (λ2 − x2 − λy2e−ik)e−2ik

= 1 + (2 − x2 − y2)e−2ik + (1 − y2)e−4ik. (A10)

2. Shifts of eigenvalues

Equation (A9) leads to a compact expression of the secular
equation, Im{ei(N+1)ku2

k} = 0; in the fully uniform case, when
both x,y → 1, it has the solutions given by Eq. (A7). Setting

uk ≡ |uk|e−iϕk , (A11)

the secular equation reads Im{ei[(N+1)k−2ϕk ]} = 0, and the
eigenvalues λn = 2 cos kn can be expressed as deviations from
the uniform-case values (A7) due to the phase shifts ϕk ,

kn = πn + 2ϕkn

N + 1
, n = 1, . . . ,N. (A12)

Keeping in mind that the variable k actually assumes the N

discrete values {kn}, one can unambiguously use the index k

in the place of n. An explicit expression of the phase shifts
follows immediately from Eq. (A10), by separating the real
and imaginary parts of uke

2ik ,

ϕk = 2k − tan−1

[
y2 sin 2k

(2 − x2 − y2) + (2 − y2) cos 2k

]
.

(A13)

3. Mode distribution

To evaluate the transition amplitude (16) one needs the
square components of the first column of the orthogonal matrix
U defined by Eq. (2). A nice formula derived in Ref. [42]
(Corollary 7.9.1) helps: with the formalism used here it reads

Pn ≡ U 2
n1 = χ2:N (λn)

∂λχN
(λn)

, (A14)

where χ2:N (λ) is the first minor of the determinant (A1). It
is equivalent to using the variable k = cos−1 λ

2 ∈ (0,π ) and
writing

Pk ≡ U 2
k1 = −2 sin k

χ2:N (k)

∂kχN
(k)

, (A15)

with k definitely taking the allowed values (A12) [i.e., χ
N

(k) =
0]. As χ2:N (λ) = λξ

N−2 − y2ξ
N−3 , with calculations similar to

those which lead to Eq. (A9), it is found that

χ2:N (k) sin k = Im{eiNkukvk}. (A16)

with

vk = 1 + (1 − y2)e−2ik. (A17)

By deriving Eq. (A9) with respect to k one has

sin k∂kχN
(k) = Im

{
ei(N+1)k

[
i(N + 1)u2

k + 2uku
′
k

]}
= (N + 1)Re

{
ei(N+1)ku2

k

} + 2Im
{
ei(N+1)kuku

′
k

}
.

(A18)

The argument of Re is real by the secular equation so, using
u′

k/uk = ∂k ln uk = ∂k ln |uk| − iϕ′
k ,

sin k∂kχN
(k) =

[
N + 1 + 2Im

{
u′

k

uk

}]
ei(N+1)ku2

k

= (N + 1 − 2ϕ′
k)ei(N+1)ku2

k. (A19)

Equation (A15) becomes

Pk = − 2 sin k

N + 1 − 2ϕ′
k

Im{eiNkukvk}
ei(N+1)ku2

k

= 2 sin k

N + 1 − 2ϕ′
k

Im{eikukv
∗
k }

|uk|2 . (A20)

By means of Eqs. (A10) and (A17) one can express uk =
vk(1 + e−2ik) − x2e−2ik , and a simple expression of the nu-
merator follows: Im{eikukv

∗
k } = x2y2 sin k, finally yielding

Pk = 2x2y2

N + 1 − 2ϕ′
k

sin2 k

|uk|2 . (A21)

A manageable expression for |uk|2 arises by working out
Eq. (A10),

e2ikuk = −x2 + 2(2 − y2) cos2 k + 2iy2 sin k cos k, (A22)

and taking the square modulus. After some algebra, the
outcome is

Pk = 2x2y2

N + 1 − 2ϕ′
k

× 1

x4 + (4 − x2 − 2y2)2 cot2 k − 16(1 − y2) cos2 k
.

(A23)

An explicit expression for ϕ′
k can be found going back to

Eq. (A19)

ϕ′
k = −Im

{
u′

k

uk

}
= − Im{u∗

ku
′
k}

|uk|2 , (A24)

where, from Eq. (A10),

u′
k = −2i[uk − 1 − (1 − y2)e−4ik], (A25)

and some further calculation gives

|uk|2ϕ′
k = 2Re{u∗

k[uk − 1 − (1 − y2)e−4ik]}
= 2|uk|2 − 2y2[x2 + 2(2 − x2 − y2) cos2 k].

(A26)

Eventually, the mode density can be made fully explicit starting
again from Eq. (A21),

Pk = 2x2y2 sin2 k

(N − 3){[x2 − 2(2 − y2) cos2 k]2 + 4y4 cos2 k sin2 k} + 4y2[x2 + 2(2 − x2 − y2) cos2 k]
. (A27)
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M. Bednarska, Phys. Rev. A 72, 034303 (2005).
[33] T. J. G. Apollaro and F. Plastina, Phys. Rev. A 74, 062316 (2006).
[34] L. Campos Venuti, C. Degli, Esposti Boschi, and M. Roncaglia,

Phys. Rev. Lett. 99, 060401 (2007).
[35] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, and

P. Verrucchi, Phys. Rev. A 82, 052321 (2010).
[36] E. B. Fel’dman, E. I. Kuznetsova, and A. I. Zenchuk, Phys. Rev.

A 82, 022332 (2010).
[37] A. Zwick and O. Osenda, J. Phys. A 44, 105302 (2011).
[38] N. Y. Yao, L. Jiang, A. V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M.

Duan, and M. D. Lukin, Phys. Rev. Lett. 106, 040505 (2011).
[39] T. J. Osborne and N. Linden, Phys. Rev. A 69, 052315 (2004).
[40] H. Yadsan-Appleby and T. J. Osborne, Phys. Rev. A 85, 012310

(2012).
[41] D. L. Aronstein and C. R. Stroud, Phys. Rev. A 55, 4526 (1997).
[42] B. N. Parlett, The Symmetric Eigenvalue Problem (SIAM,

Philadelphia, 1998).
[43] A. Cantoni and P. Butler, Linear Algebra Appl. 13, 275 (1976).
[44] S. M. Giampaolo and F. Illuminati, Phys. Rev. A 80, 050301

(2009).
[45] O. Mülken and A. Blumen, Phys. Rev. E 71, 036128 (2005).
[46] W. Kinzel, Physikalische Blätter 51, 1190 (1995).
[47] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (NY) 16, 407

(1961).

052319-11

http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1103/PhysRevA.82.054303
http://arXiv.org/abs/arXiv:1201.5184
http://dx.doi.org/10.1080/09500340008244052
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1143/JPSJ.80.114003
http://dx.doi.org/10.1088/1367-2630/12/2/025019
http://dx.doi.org/10.1088/1367-2630/12/2/025019
http://dx.doi.org/10.1088/0953-8984/16/28/019
http://dx.doi.org/10.1016/j.optcom.2005.12.082
http://dx.doi.org/10.1016/j.optcom.2005.12.082
http://dx.doi.org/10.1002/prop.200900087
http://dx.doi.org/10.1002/prop.200900087
http://dx.doi.org/10.1103/PhysRevA.82.022336
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1088/1367-2630/13/12/123006
http://dx.doi.org/10.1103/PhysRevA.81.012304
http://dx.doi.org/10.1103/PhysRevA.83.062328
http://dx.doi.org/10.1103/PhysRevA.83.062328
http://dx.doi.org/10.1103/PhysRevLett.106.140501
http://dx.doi.org/10.1103/PhysRevLett.106.140501
http://dx.doi.org/10.1103/PhysRevA.85.012318
http://dx.doi.org/10.1103/PhysRevA.85.012318
http://dx.doi.org/10.1140/epjd/e2011-20032-5
http://dx.doi.org/10.1140/epjd/e2011-20032-5
http://dx.doi.org/10.1140/epjd/e2011-20062-y
http://dx.doi.org/10.1142/S0219749910006514
http://dx.doi.org/10.1103/PhysRevA.72.030301
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1103/PhysRevA.71.032310
http://dx.doi.org/10.1103/PhysRevLett.101.230502
http://dx.doi.org/10.1103/PhysRevLett.101.230502
http://dx.doi.org/10.1103/PhysRevA.84.022311
http://dx.doi.org/10.1103/PhysRevA.84.022311
http://dx.doi.org/10.1103/PhysRevA.84.012307
http://dx.doi.org/10.1103/PhysRevA.84.012307
http://dx.doi.org/10.1103/PhysRevA.85.022312
http://dx.doi.org/10.1103/PhysRevA.83.032304
http://dx.doi.org/10.1103/PhysRevA.83.032304
http://dx.doi.org/10.1088/1367-2630/13/10/103015
http://dx.doi.org/10.1088/1367-2630/13/10/103015
http://dx.doi.org/10.1103/PhysRevA.72.034303
http://dx.doi.org/10.1103/PhysRevA.74.062316
http://dx.doi.org/10.1103/PhysRevLett.99.060401
http://dx.doi.org/10.1103/PhysRevA.82.052321
http://dx.doi.org/10.1103/PhysRevA.82.022332
http://dx.doi.org/10.1103/PhysRevA.82.022332
http://dx.doi.org/10.1088/1751-8113/44/10/105302
http://dx.doi.org/10.1103/PhysRevLett.106.040505
http://dx.doi.org/10.1103/PhysRevA.69.052315
http://dx.doi.org/10.1103/PhysRevA.85.012310
http://dx.doi.org/10.1103/PhysRevA.85.012310
http://dx.doi.org/10.1103/PhysRevA.55.4526
http://dx.doi.org/10.1016/0024-3795(76)90101-4
http://dx.doi.org/10.1103/PhysRevA.80.050301
http://dx.doi.org/10.1103/PhysRevA.80.050301
http://dx.doi.org/10.1103/PhysRevE.71.036128
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4

