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Quantum correlations between each qubit in a two-atom system and the environment
in terms of interatomic distance
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The quantum correlations between a qubit and its environment are described quantitatively in terms of
interatomic distance. Specifically, considering a realistic system of two two-level atoms and taking into account the
dipole-dipole interaction and collective damping, the quantum entanglement and quantum discord are investigated
during the dissipative process as functions of the interatomic distance. For atoms that are initially maximally
entangled, it turns out that there is a critical distance at which each atom is maximally quantum correlated with
its environment. Counterintuitively, the approach of the two atoms can maximize the entanglement between each
one and the environment and, even at the same distance, minimize the loss of entanglement between the pair.

DOI: 10.1103/PhysRevA.85.052315 PACS number(s): 03.67.−a, 03.65.Yz, 03.65.Ud

I. INTRODUCTION

It is well known that besides entanglement, other quantum
correlations are crucial elements of quantum-information
theory. In this plethora of new quantum-correlation measures,
quantum discord (QD) has emerged as the most frequently
used. QD obeys a monogamic relation with the entanglement
of formation (EOF), and for a tripartite pure state, QD and
the EOF obey a conservative relation [1,2]. Furthermore, QD
is connected with the entanglement irreversibility [3], with
entanglement in a measurement [4], and with the entanglement
distribution [5]. The dynamics of quantum entanglement and
discord in open quantum systems has been widely investigated
in the literature [6,7], but few of these studies focus on the way
that the system gets entangled with the environment [7,8].
Despite the fact that quantum correlation (the EOF or the
QD) does not obey a monogamous equation [9], certainly
the way in which each part of a bipartite system becomes
quantum correlated with the environment governs the way the
entanglement and discord vanish from this system.

This leaves the question: how does a quantum system get
quantum correlated with its environment? Here, we study this
problem in a realistic situation, taking two two-level atoms as
the qubits. We take into account the dipole-dipole interaction,
the collective damping, and, more importantly, the interatomic
distance between them. We investigate how the interatomic
distance influences the way that one of these atoms becomes
quantum correlated with the environment, and as we will show,
this separation emerges as a crucial variable. We demonstrate
that there is an intermediate critical distance rcritical that
maximizes the entanglement between the environment and
each atom (see Fig. 1). More importantly, we show that the
distance at which each atom gets most entangled with the
environment can be exactly the distance where the loss of
entanglement between the pair of atoms is at a minimum. This
counterintuitive example reveals an important new facet in the
construction of a scalable quantum computer, namely, that the
approach of the qubits can maximize the quantum correlation

(EOF and QD) with an environment and, even so, minimize
the loss of quantum correlation between the pair of atoms.

This article is organized as follows. In Sec. II, we introduce
some measures of nonclassicality and, in particular, nonclassi-
cal correlations: quantum mutual information, entanglement,
and quantum discord. In Sec. III, we present the model for our
system and describe the dependence of the dynamics on the
interatomic distance. In Sec. IV, we study the correlations
between one atom and the environment in terms of the
interatomic distance, using the monogamic relation between
discord and entanglement in a tripartite system. We conclude
our work in Sec. V.

II. QUANTUM CORRELATIONS

In this article we use two kinds of quantum correlation
to analyze our results: EOF and QD. The EOF is broadly
accepted to be necessary for a set of important tasks in
quantum-information theory, such as quantum teleportation
[10], quantum-key distribution [11], and many others. On the
other hand, QD emerges as a fundamental quantity of quantum
information and includes other kinds of quantum correlations
than entanglement [12–16].

The EOF is a measure of entanglement, developed about
fifteen years ago, with a clear operational interpretation [17].
For two qubits, an analytical solution was developed by
Wootters in terms of concurrence [18]. In this case, it can
be calculated as

E(ρ) = H

[
1 +

√
1 − C2(ρ)

2

]
, (1)

where H is the binary entropy function defined as

H (x) = −x log2 x − (1 − x) log2(1 − x), (2)

and the concurrence is given by

C(ρ) = max
{
0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (3)
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FIG. 1. (Color online) An illustrative scheme to elucidate the
critical distance where each atom is maximally quantum correlated
with the environment.

where λi are the eigenvalues listed in decreasing order of ρρ̃.
ρ̃ is the time-reversed density operator

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (4)

where ρ∗ is the conjugate of ρ in the standard basis of two
qubits and σy is the Pauli y operator.

QD, on the other hand, was originally defined as the mutual
information minus the classical correlation [19] wherein the
latter is given by the well-known Henderson and Vedral
definition [20]. Hence,

δ←
AB = I(ρAB) − max

{�k}
I(ρA|{�k}), (5)

where I(ρAB) is the quantum mutual information, which
comprehends the total amount of correlation, both classi-
cal and quantum, in a given bipartite quantum state, and
max{�k} I(ρA|{�k}) is the maximal classical mutual infor-
mation when, in this case, a measurement is performed on
subsystem B [19,20]. The maximization is carried out over all
possible positive operator-valued measures, and in general, it
is very hard to carry out, except in some particular cases. If
ρA (ρB) is the reduced-density operator of part A (B), then the
quantum mutual information is defined as

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (6)

where S(·) is the von Neumann entropy. The measurement-
based mutual information is often called classical correlation
and is given by

C←
AB = max

{�k}
I(ρA|{�k})

= S(ρA) − min
{�k}

∑
k

pkS(ρA|{�k}), (7)

where ρA|{�k} = TrB(�kρAB�k)/TrAB(�kρAB�k) is the re-
duced state of A after obtaining the outcome k in B and �k is
a complete set of positive operator-valued measures that result
in the outcome k with probability pk = TrAB(�kρAB�k).
Finally, the QD is thus defined in terms of the mismatch

δ←
AB = I(ρAB) − C←

AB. (8)

This definition is in general asymmetric with respect to the
interchange of the subsystems, and it is always a non-negative
quantity. Actually, a quantum state has zero discord if and only
if there exist a complete orthonormal basis |l〉 for subsystem

A and some density operator ρB for subsystem B such that
ρ = ∑

l pl|l〉〈l| ⊗ ρB , where |l〉 is an orthonormal set, pl is a
probability distribution, and ρB are quantum states.

III. THE MODEL

Here, we consider a realistic situation in which two identical
two-level atoms are coupled to a quantized electromagnetic
field [21,22]. The two atoms are close enough for the
transition-dipole moment and collective damping to need to
be considered. Furthermore and more importantly, we analyze
the influence of the separation between the qubits that here is
given by the interatomic distance. In the interaction picture,
the Hamiltonian can be written as

H = − i

2∑
i=1

∑
�ks

[ �di · �g�ks(�ri)a�ks(σ
+
i e−i(ωk−ωi )t )]

− i

2∑
i=1

∑
�ks

[ �di · �g�ks(�ri)a�ks(σ
−
i e−i(ωk+ωi )t )] + H.c., (9)

where i accounts for the two atoms and �ks the field mode.
Here, �di is the transition-dipole moment, ωi is the transition
frequency, σ+

i (σ−
i ) is the raising (lowering) operator, and a�ks

is the annihilation operator of the field mode �ks. With this field
mode, we associate a vector �k, a frequency ωk , and an index
of polarization s. The coupling constant is given by

�g�ks(�ri) =
√

ωk

2ε0h̄V
ê�ks exp i�k · �ri, (10)

where V is the quantization volume, ε0 is the vacuum
permittivity, and ê�ks is the electric-field-polarization vector.
Finally, �ri is the position of the ith atom. Here, we suppose that
the environment begins in the vacuum state, and we assume
that the rotating-wave approximation is valid. In this case,
considering a Markovian approximation, the dynamics of the
two atoms can be written as

∂ρ

∂t
= −ω0

2∑
i=1

[
σ z

i ,ρ
] −

∑
i �=j


ij [σ+
i σ−

j ,ρ]

−1

2

2∑
i,j=1

γij (σ+
i σ−

j ρ − 2σ−
j ρσ+

i ρσ+
i σ−

j ), (11)

where σ z
i is the Pauli z operator of the ith atom, γii ≡ γ

is the spontaneous-decay rate, and γij and 
ij describe the
collective damping and dipole-dipole interaction, respectively.
Explicitly, we have

γij = 3

2
γ [1 − ( �d · �rij )2]

sin[k0rij ]

k0rij

+3

2
γ [1 − 3( �d · �rij )2]

[
cos[k0rij ]

(k0rij )2
− sin[k0rij ]

(k0rij )3

]
(12)

and


ij = − 3

4
γ [1 − ( �d · �rij )2]

cos[k0rij ]

k0rij

+ 3

4
γ [1 − 3( �d · �rij )2]

[
sin[k0rij ]

(k0rij )2
+ cos[k0rij ]

(k0rij )3

]
, (13)
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where k0 = ω0/c, rij = |ri − rj | is the distance between the
two atoms, �d is the unit vector along the atomic-transition-
dipole moment, and r̂ij is the unit vector along the interatomic
axis. Note that in Eq. (11) the electromagnetic field has been
formally eliminated to be replaced by an effective atom-atom
interaction. Furthermore, it is important to emphasize that the
master equation takes into account the spontaneous-emission
process.

To illustrate the dependence of the dynamics on the atomic
distance, we focus on two important classes of pure states
given by

|�〉 = α|01〉 +
√

1 − α2|10〉 (14)

and

|�〉 = β|00〉 +
√

1 − β2|11〉, (15)

where 0 and 1 represent the two-level-atom system. These
initial conditions are of fundamental importance in quantum-
information theory since they include the four Bell states that
can be used on their own for universal quantum computation
and are associated with a unit of entanglement called the
e-bit. It should be understood that despite this limitation of
the initial state, our analysis is general and the dynamics could
be calculated for any initial state.

IV. QUANTUM CORRELATIONS BETWEEN ONE ATOM
AND THE ENVIRONMENT

It is important to note that to calculate how one of the atoms
quantum correlates with the environment is a simple but not
direct task. To elucidate this aspect, we begin by supposing
just one two-level atom is interacting with an environment. If
the whole system (atom plus environment) begins as a pure
state, the manner in which this atom gets entangled with the
environment can be calculated in a simple manner: the whole
system is pure, and the von Neumann entropy of the atom is
the entanglement of formation. Now, extending the analysis to
our situation in which two initially pure atoms interact with
an environment, how could we calculate the entanglement
between one of the atoms and its environment? In this case,
since the bipartite system composed of one atom plus its
environment is a mixed state, the von Neumann entropy is
not the right answer. For this purpose we use the monogamic
relation between the EOF and the QD [2].

We suppose the initial state of the environment as the
vacuum state since the whole system (two atoms plus envi-
ronment) is pure. In this case, the monogamic relation gives

EAE = δ←
AB + SA|B (16)

and

δ←
AE = EAB + SA|B. (17)

Thus, as we observe, the entanglement of formation and the
quantum discord between the atoms can be used to calculate
the quantum correlations between the environment and one
of the atoms. Curiously, for this task we do not need any
information about the state of the environment since it is
completely traced out to calculate the dynamics. Actually,
for a tripartite pure state it is always possible to infer the

FIG. 2. (Color online) (a) EAE , (b) δ←
AE , (c) EAB , and (d) δ←

AB

as a function of the interatomic distance for various values of the
scaled time. The dashed-dotted (red) line is for γ t = 1, the dashed
(black) line is for γ t = 1.5, and the solid (blue) line is for γ t = 2.
The two-qubit initial state is given by Eq. (14) with α2 = 1/2.

EOF and the QD if just one of the possible bipartitions is
known. Moreover, the quantum discord between A and E can
be calculated analytically without any approximation [23].

To explore the influence of interatomic distance on the
behavior of the quantum correlations, we plot, for various
values of scaled time γ t , the correlations between different bi-
partitions as a function of the distance k0r . We emphasize that
the choice of the range of values for the plot axes is made only
for clarity and that other values of the parameters α and β in the
initial states do not alter the critical distance at which one of the
atoms is maximally quantum correlated with the environment.

In Figs. 2 and 3, we show the variation of correlations EAE ,
δ←
AE , EAB , and δ←

AB with interatomic distance for various values

FIG. 3. (Color online) (a) EAE , (b) δ←
AE , (c) EAB , and (d) δ←

AB

as a function of the interatomic distance for various values of the
scaled time. The dashed-dotted (red) line is for γ t = 1, the dashed
(black) line is for γ t = 1.5, and the solid (blue) line is for γ t = 2.
The two-qubit initial state is given by Eq. (15) with β2 = 1/2.
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of the scaled time and for the initial Bell states (14) and (15),
respectively. The dashed-dotted line is for γ t = 1, the dashed
line is γ t = 1.5, and the solid line is for γ t = 2.

From Fig. 2, we note that for each partition, AE and AB,
the correlations of the EOF and QD behave similarly with
respect to the distance k0r . Interestingly, we find that for each
instant, there is one maximum of the correlations EAE and δ←

AE

at a specific value of the interatomic distance rcritical. Hence,
in a short time, one special distance maximizes the EOF and
QD between each qubit and the environment. Furthermore,
for the initial condition given by Eq. (14), the critical distance
that maximizes the quantum correlation with the environment
is exactly the one that least disturbs the quantum correlations
between the atoms. This is a very counterintuitive feature since,
in this case, diminishing the quantum correlations between
each atom and the environment is not a good strategy to
preserve the quantum correlations between the atoms. This
means that the maximal correlations between one atom and
the environment are very sensitive to the distance r and that
the decay rate of correlations between one subsystem and
its environment may be controlled through the separation
between the subsystems. As we see in Fig. 2(c) for a fixed
time (γ t = 1), the entanglement between the atoms can vary
by about 0.2 as the interatomic distance rises from rcritical. For
a separation of about k0r = 0.7, the environment reduces the
initial entanglement to approximately 0.4 while at k0r = 1,
the entanglement goes down to less than 0.2. Furthermore,
the relation between the distance and the loss of entanglement
is not monotonic since at a distance of about k0r = 1.8, the
environment reduces the initial entanglement to about 0.3.
These results make the distance between the qubits a relevant
parameter to take into account in the construction of a working
quantum computer.

On the other hand, it is important to note that the behavior
of the correlations, EAB and δ←

AB , present a different response
for a different initial state. For example, from Figs. 3(c)
and 3(d), we find that the increase of the EOF and QD with the
environment is accompanied by a decrease of the correlations
between the subsystems. However, it is important to emphasize
that even in this case a critical distance exists at which each
atom entangles fast with the environment.

V. CONCLUSION

To summarize, we have studied the distribution of the
quantum correlations, given by the EOF and the QD, between
the qubits and the environment. We focused on the way that the
distance between two qubits, given by two atoms, can affect
the manner in which each one becomes quantum correlated
with the surroundings. In our analysis a critical distance
emerged wherein the quantum correlation of each atom with
the environment is at a maximum. Counterintuitively, we
showed that this critical distance can be the one that minimizes
the loss of quantum correlations between the pair of atoms.
Indeed, the gap between the qubits emerged as a fundamental
element in the construction of a scalable quantum computer,
and the size of this gap was shown to be an important variable
to take into account. The present results also suggest that in
a future analysis, initially mixed states should be considered
since the influence of finite-temperature environments on the
critical distance could then be contemplated.
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