
PHYSICAL REVIEW A 85, 052313 (2012)

Optimized pulses for the control of uncertain qubits
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Constructing high-fidelity control fields that are robust to control, system, and/or surrounding environment
uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener
model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and
investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct
a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse
criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution
operator for an open quantum system, previous analysis of environment-decoupling control pulses has calculated
explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from
π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate
of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical
example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the
resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly
to gate errors as system and environment fluctuations.
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I. INTRODUCTION

Demanding requirements for gate fidelities to achieve
fault-tolerant quantum computation (QC) [1] have motivated
the need for improved quantum control protocols (QCPs). In
quantum information science [2], there are (at least) three
distinct dynamical approaches to improving the fidelity of
qubit operations in the presence of environmental interactions:
dynamical-decoupling (DD) pulse sequences [3,4], optimal
control theory (OCT) [5,6], and quantum error-correcting
codes (QECCs) [1]. Although interesting nondynamical meth-
ods exist for noise suppression, such as decoherence-free
subspaces (DFSs) [7], noiseless subsystems [8], and anyonic
or topological systems [9], the work reported in this article
focuses exclusively on dynamical approaches for controlling
quantum systems [10]. Specifically, the objective of this work
is to construct a hybrid QCP, combining methods and results
from DD and OCT, to locate control fields that (a) produce
high-fidelity rotations about a particular axis and (b) are
robust with respect to an uncertain frequency of rotation about
an orthogonal axis. By combining complementary features
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of these analytically and numerically based QCPs, we have
developed a hybrid QCP where estimates of system parameters
can be directly incorporated into numerical simulations to
generate improved quantum operations.

During the past few years, P. Karbach, S. Pasini, G. Uhrig,
and colleagues have made significant contributions toward the
mathematical analysis and design of DD pulses and sequences
for controlling qubit systems and decoupling them from
their surrounding environment (see, e.g., Refs. [4,11–17]).
In a recent article [15], using a rather general open-system,
time-dependent Hamiltonian for one qubit, they derive an-
alytical control-field criteria for π/2 and π pulses, which,
when satisfied, eliminate the first- and second-order errors
in the unitary time-evolution operator resulting from qubit-
environment interactions. In this work, we refer to these criteria
as “decoupling-pulse criteria” (DPC) and to the control fields
that satisfy this criteria as “decoupling pulses” (DPs). We
adapt the DPC for the case of closed-system unitary control,
where the dynamics are influenced by an uncertain drift (i.e.,
time-independent) term in the qubit Hamiltonian. For control
fields that satisfy the DPC, this adaptation eliminates the first-
and second-order effects resulting from the drift term. Using
a novel method for multiobjective control, we combine the
mathematical DPC with a numerical procedure based on OCT
for unitary control [18] that incorporates an estimate of the
drift-term magnitude (i.e., system information) to construct
control fields with increased fidelity and robustness to uncer-
tainty in the drift term. For brevity, we refer to this combination
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of the DPC and OCT as “DPC + OCT.” To demonstrate the
utility of our approach, we optimize and evaluate these control
fields using a qubit model based on the two-level Landau-Zener
Hamiltonian [19] that has an uncertain drift term and is driven
by a deterministic control field. Even though the qubit model
is quite general (i.e., the Hamiltonian employed represents a
one-qubit system with a linear drift term, driven by a scalar
control field) and thus describes a variety of qubits (e.g.,
atomic, spin, superconducting, etc. [2]), we select physical
units for the model that are relevant to double quantum dot
(DQD) qubits to investigate the practical features of our
results [20]. With this model system, we demonstrate that the
DPC + OCT combination can be used to produce (a) improved
fidelity compared to DPs alone and (b) improved robustness
to uncertainty in the drift magnitude compared to results from
DPs and OCT alone. Although research examining the effects
of classical control noise is extremely important for practical
QC [21,22], all control fields in this work are assumed to
be deterministic, with control amplitudes that are exact to
numerical precision. Thus, uncertainty is assumed to be present
only in the system and, unless otherwise specified, control
robustness refers to robustness to drift uncertainty.

Related research on hybrid QCPs includes that performed
by Lidar et al., who proposed the application of DD pulse
sequences on logical qubits encoded in DFSs or QECCs to
eliminate decoherence in solid-state and trapped-ion qubits
[23–26]. Borneman et al. used OCT to design control fields
that are robust to systematic amplitude and resonance inhomo-
geneities, thereby improving the performance of the so-called
Carr-Purcell-Meiboom-Gill pulse sequence [27]. In addition,
there have been many studies on the control and controllability
of (inhomogeneous) quantum mechanical ensembles, such as
a collection of coupled or uncoupled spin systems, primarily
for state-based objectives (see, e.g., Refs. [28–32]), and
sequences of unitary time-evolution operators that compensate
for systematic off-resonant effects (see, e.g., [33–37]).

This article is organized as follows: Section II intro-
duces and develops the model qubit system based on the
Landau-Zener Hamiltonian [19] used in our optimizations and
simulations. For illustrative purposes, this model is compared
to a logical DQD semiconductor qubit, where uncertainty
in the drift term of the system Hamiltonian is due to the
surrounding nuclear spin environment [38,39]. A system of
scaled units is defined that allows for the comparison of our
model and control fields to relevant experimental parameters.
In Sec. III, we summarize our gradient-based OCT routine for
deterministic Hamiltonian systems, describing our objective
functional for unitary control, relevant control properties, and
the numerical optimization procedure. Section IV presents
results from unitary OCT for subsequent comparison to those
from the DPC and DPC + OCT QCPs. Inherent robustness of
these optimal controls (OCs) to variations in the magnitude
of the uncertain drift term is also analyzed, and a functional
is proposed to quantify this robustness. For the individual
unitary targets considered, despite the similar structures of
the resulting OCs for different drift-term magnitudes, their
gate distances as a function of the drift magnitude differ
dramatically. Section V summarizes the nonlinear control-field
criteria developed by Pasini et al. for designing control pulses

that are robust to decoherence [15]. Our adaptation of these
criteria to closed-system unitary control is explained and the
hybrid DPC + OCT control problem is posed. Control fields
satisfying this criteria are applied to our model qubit system
and their robustness is analyzed. In Sec. VI, we describe and
mathematically formulate our gradient-based method for solv-
ing the nonlinearly constrained control problem. Section VII
presents results from our DPC + OCT optimization algorithm.
Gate distance and robustness of the control fields are numer-
ically analyzed and discussed. We also compare OCT, DPC,
and DPC + OCT results collectively to illustrate the benefit
of our hybrid approach. In addition to comparing the gate
distances directly, we apply these controls to an inhomoge-
neous ensemble of systems to emphasize the improvement
that may be obtained from this hybrid QCP. Like the OCT
results, significant gate-distance sensitivities to relatively small
control-field differences are observed for the DPC + OCT
controls, supporting further study and suppression of the
effects of undesired control-field fluctuations and noise on
quantum information processing. We conclude this article in
Sec. VIII with a summary of our results and identify several
future directions of our research.

II. LANDAU-ZENER MODEL SYSTEM

A. Model Hamiltonian

We represent the dynamical model of a qubit with the
following Hamiltonian (where h̄ = 1; details regarding units
appear in Sec. II C):

H (t) := εSx + C(t)Sz, (1)

where Sλ := σλ/2 is a spin operator for a spin-1/2 particle, σλ

is a Pauli matrix (λ ∈ {x,y,z}), εSx represents a persistent
rotation about the x axis, and C(t) represents the time-
dependent control field driving rotations about the z axis.
Note that H (t) corresponds to the two-state Landau-Zener
model [19], and that both C(t)/h̄ and ε/h̄ have units of angular
frequency (e.g., radians per second in SI units).

Let H denote the Hilbert space of the system, where
n := dim{H} (n = 2 for one qubit), and {|Si〉} denote the
orthonormal basis of Sz that spans H, with corresponding
eigenvalues ±1/2. The Lie group of all unitary operators on
H is denoted by U(H). In general, the unitary time-evolution
operator U (t) ∈ U(H) for a closed quantum system obeys the
time-dependent Schrödinger equation

U̇ (t) = −iH (t)U (t), (2)

where U (t = 0) = 1n, the n × n identity matrix. From a
controllability perspective [40,41], the Hamiltonian in Eq. (1)
generates the Lie algebra su(2). Thus, the system is completely
dynamically controllable; that is, any element of the Lie group
SU(2) can be generated via Eq. (2) and an appropriately shaped
control field. However, this analysis does not necessarily reveal
anything about the control-field structure required to realize
an arbitrary SU(2) operation. As an illustrative example of our
DPC + OCT QCP, we focus on constructing unitary operations
corresponding to π/2 and π rotations about the z axis.
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B. Double quantum dot logical qubit

Although our qubit model is quite general, for illustrative
purposes we refer to a particular application of a DQD
solid-state qubit [42,43], which has been studied in an array
of experiments (see, e.g., [44–48]). With one electron in each
quantum dot, the DQD system spans four spin-1/2 states.
An applied magnetic field will break the degeneracy of the
states in which both electrons are either aligned against or
with the field. In this situation, it is possible (and often
advantageous) to work within the two-level subspace where
the net spin angular momentum is zero. By adjusting voltages
in the electrostatically defined quantum dots, the magnitude
of the exchange interaction between the electrons may be
controlled. This interaction controls the splitting between the
singlet |S〉 := (|↑↓〉 − |↓↑〉)/√2 and triplet |T0〉 := (|↑↓〉 +
|↓↑〉)/√2 states of the spin-zero manifold. Designating |S0〉 =
|S〉 and |S1〉 = |T0〉, we equate C(t) in our general model
[Eq. (1)] with the exchange interaction.

The spin-zero manifold is insensitive to a global magnetic
field. However, gradients in the magnetic field will cause
singlet-triplet transitions. Such a gradient splits the energy
of the states |↑↓〉 = (|T0〉 + |S〉)/√2 and |↓↑〉 = (|T0〉 −
|S〉)/√2 by the difference in effective Zeeman energies
for an electron in either of the two quantum dots. In this
context, we may therefore equate the energy ε with this
effective Zeeman-energy difference. In GaAs DQD systems,
the effective Zeeman-energy difference is typically dominated
by the Overhauser shifts from a lattice of randomly polarized
nuclear spins corresponding to approximately 1.602 × 10−26

to 1.602 × 10−25 J (or 10−7 to 10−6 eV) [42,43]. It has been
demonstrated that a desired difference in Overhauser shift of a
GaAs DQD may be realized through feedback control from a
preparatory qubit [48]. However, the value of ε will drift over
time through the nuclear spin diffusion that causes spectral
diffusion [3,38,39,49], motivating the need for robust control.
In proposed Si DQD systems (see, e.g., Ref. [50]), nuclear
spins may be eliminated through isotopic enrichment. Other
spin baths, such as electron spins of donor impurities [51]
or dangling bond spins at an interface [52], may also lead to
variations and drift in the value of ε.

C. Scaled-unit system

In addition to setting the reduced Planck constant h̄ = 1
(corresponding to unit of angular momentum: energy × time),
a simple set of scaled units is defined by also setting the final
time of the controlled evolution tf = 1. The ratio h̄/tf = 1
yields the scaled unit of energy, which, when tf = 20 ns (as an
example), corresponds to approximately 5.273 × 10−27 J (or
3.291 × 10−8 eV). By appropriately scaling the Hamiltonian
and control field, this propagation time can be transformed to
any final time tf . Relationships between these scaled units and
SI units (when tf = 20 ns) are summarized in Table I.

In this work, optimizations were performed for individual
values of ε ∈ [0,5]; we denote the nominal values of ε used in
these calculations as ε0. This range of ε corresponds to zero
and moderate rotations from the environment for the GaAS
DQD example. For a DQD logical qubit,

ε = geμBB�, (3)

TABLE I. Scaled and SI units for the logical qubit described by
the Hamiltonian in Eq. (1).

Physical quantity Scaled unit SI unit

Angular momentum: h̄ 1 1.055 × 10−34 J s
Time: t 1 2.0 × 10−8 s
Energy: C, ε 1 5.273 × 10−27 J

where ge is the so-called electron g factor, μB is the Bohr
magneton, and B� is the magnetic field resulting from the
difference in the random hyperfine fields from each quantum
dot along the direction of the applied field. When 1 scaled unit
of time corresponds to 20 ns (a representative estimate of the
time required for one-qubit rotations for a DQD system [45,
53]), ε = 5 scaled units of angular frequency (the maximum
value of ε0 considered) corresponds to B� ≈ 6.5 mT; this is
consistent with experimental reports of GaAs DQDs (where
ge = −0.44) [42,43,45]. Unless stated otherwise, all physical
quantities in this work are expressed in scaled units.

III. OPTIMAL CONTROL OF UNITARY OPERATIONS VIA
GRADIENT-BASED ALGORITHMS

A. Objective functionals for unitary operations

For a target unitary operation V ∈ U(H), the distance �

between V and a simulated final-time unitary operation U (tf)
is

�[V,U (tf ; C)] : = min
ϕ∈R

1√
2n

‖U (tf ; C) − exp(iϕ)V ‖HS (4a)

=
√

1 − 1

n
|Tr[V †U (tf)]|, (4b)

where ‖ · ‖HS denotes the norm based on the Hilbert-Schmidt
inner product: 〈A,B〉HS := Tr(A†B), A,B ∈ Mn(C) [Mn(X)
denotes the set of n × n matrices over the field X]. This phase-
invariant distance measure is a special case of a more general
distance measure developed in Ref. [54], which is applicable
to studies involving composite systems where only the qubit
(system) dynamics are directly of interest [55,56].

Concerning mathematical notation, because the unitary
time-evolution operator is a function of time and a functional
of the control, it will be expressed more generally as U (t ; C)
for all time t and a control C, compared to U (t); the final-time
unitary operator will be expressed more generally as Utf (C),
compared to U (tf). Also, we denote the space of admissible
controls with final time t = tf as Ctf . Some properties of the
Hilbert space Ctf are discussed below; further details are in
Ref. [54].

Because 0 � � � 1 in general, it is useful to define the
fidelity F of unitary operations as [54,57]

F := 1

n
|Tr[V †U (tf)]| = 1 − �2(V,Utf

)
, (5)

which is a common phase-invariant measure of gate fidelity
based on the Hilbert-Schmidt inner product (see, e.g.,
Refs. [18,58,59]). Note the quadratic dependence of F on
� (i.e., a distance of 10x corresponds to a fidelity of 1 − 102x ,
where x � 0).
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An optimal control field for a given unitary operation may
be located by minimizing an objective functional J [C] of the
control field that incorporates the final-time unitary target V ,
constrains the dynamics of U (t) to evolve according to Eq. (2),
and penalizes the fluence of the control field. For this work,
the objective functional is defined as

J [C] := �
[
V,Utf (C)

] + α

2

∫ tf

0

C2(t)

s(t)
dt. (6)

Often, the minimization of J is performed using a gradient-
based algorithm (GrA; see [18,54,55,60] for details and exam-
ples of gradient-based optimizations). Here, α � 0 weighs the
control-field fluence relative to the distance � and s : [0,tf] 
→
R is a continuous “shape function.” When appropriately
chosen, s(t) penalizes undesirably shaped functions [54]. We
use s(t) = sinp(πt/tf), where p ∈ Q+ ∪ {0}. For p 
= 0, this
form penalizes the control-field slew rate around the initial and
final times and favors controls where C(0) = C(tf) = 0.

For the time-dependent Hamiltonian in Eq. (1), Utf :
Ctf → U(H) denotes the map, defined implicitly through the
Schrödinger equation [Eq. (2)], that takes a control field C ∈
Ctf to the final-time unitary evolution operator Utf ∈ U(H).
Note that Ctf is a Hilbert space of admissible controls, on
which U (t ; C) exists for all t ∈ [0,tf ] and all C ∈ Ctf [61],
where the inner product on Ctf is

〈f,g〉Ctf
:=

∫ tf

0

f (t)g(t)

s(t)
dt ∀ f,g ∈ Ctf . (7)

As such, J : Ctf → R is the dynamical version of the distance
measure �, with a relative cost on the control-field fluence,
determined by α. The role of the shape function s(t) in Eqs. (6)
and (7) is to change the geometry of control space, moving
undesirably shaped functions away from the origin, out to
infinity, where they are less likely to be the targets of a
minimization over Ctf [54].

B. Control rotation angle θ (t; C)

In addition to the objective functional J and inner product
on Ctf , another important expression is the integral of the
control field:

θ (t ; C) :=
∫ t

0
C(τ )dτ. (8a)

The angle θ corresponds to the rotation about the z axis
performed by the control field during the time interval [0,t].
Although θ is a functional of the control field C(t), whenever
appropriate we abbreviate θ (t ; C) as θ (t) to avoid unnecessar-
ily cumbersome notation. Equation (8a) is equivalent to

dθ (t ; C)

dt
= C(t). (8b)

Also,

δθ [t ; C]

δC(t ′)
= H(t − t ′) (8c)

(i.e., the functional derivative of θ with respect to C), where
H(t − t ′) is the Heaviside step function:

H(t ′ − t) :=
{

1 when t � t ′
0 when t < t ′. (9)

C. Optimization with gradient-based algorithm

This section briefly summarizes the variational analysis of
J and describes criteria for the optimal points (or submani-
folds) of J with respect to a control field C. The gradient of
the objective functional J is explicitly derived in Ref. [54];
we present it here for continuity:

(∇J [C])(t) = s(t)

4n�[V,Utf (C)]
Im

(
Tr

{[
U

†
tf (C)R − R†Utf (C)

]

×U †(t ; C)SzU (t ; C)
}) + αC(t), (10)

where R := exp(iϕ)V and ϕ := Im{ln[Tr(V †Utf )]}. Critical
points of J (a real-valued functional) are defined as controls
for which (∇J [C])(t) = 0 for all time t [62]. Control fields are
iteratively updated using this gradient to improve the value of
the objective functional J . Given the kth iterate of the control
field C(k)(t), adjustments to the control field for the (k + 1)th
iteration are given by

C(k+1)(t) := C(k)(t) − β(∇J [C(k)])(t), (11)

where β is a constant that determines the magnitude of the field
adjustment. This procedure describes an implementation of a
steepest-descent algorithm [63]. In this work, initial control
fields C(0) are continuous approximations to simple square-
wave pulses, where initial and final times and slew rates are
consistent with the shape function s(t) = sin(πt/tf).

IV. RESULTS FROM QUANTUM OPTIMAL
CONTROL THEORY

Using only the GrA presented in Sec. III, OCs were found
for unitary targets that perform π/2 and π rotations about the
z axis:

Zφ :=
(

exp (−iφ/2) 0
0 exp (iφ/2)

)
, (12)

where φ ∈ {π/2,π}. The final time for all OCs was fixed at
tf = 1 scaled unit of time. With the GrA and the objective
functional J , a combination of the value of ε and the structure
of the initial control field determines the resulting optimal
control field. Optimizations were performed individually for
specific angular frequencies: ε0 ∈ [0,5]. As described in
Sec. II C, this interval represents the regime of zero to moderate
rotation from the environment for the DQD logical qubit. To
emphasize the ε-specific nature of these OCs, we denote them
as Co(ε0; t).

Because of the similarity of results over the entire interval
0 � ε � 5, only a subset will be presented. OC fields for Zπ/2

and Zπ as a function of ε are presented in Figs. 1 and 2,
respectively, for ε0 ∈ {0,1,2,3,4,5}. Even though all of these
OCs were located using the same initial control field, which
is very similar to the OC reported for ε0 = 0 for both targets,
some of the converged fields differ dramatically for different
values of ε0. All OCs have distances � < 10−6 (or F > 1 −
10−12, essentially corresponding to the limits of numerical
precision), which is expected because this system is relatively
simple and fully controllable [40,41]. For ε0 = 0, all OCs
for Zφ satisfy θ (tf) ≡ φ (mod 2π ) (i.e., OC design simply
corresponds to pulse-area control in this situation). However,
when ε 
= 0, there is no corresponding pulse-area requirement.
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FIG. 1. (Color online) OC fields producing a Zπ/2 operation
for several specific values of ε0 and tf = 1 scaled unit. All OCs
have distances �(Zπ/2,Utf ) � 10−6. The inset presents the difference
between Co(1; t) and Co(2; t). Although distinct, note that Co(1; t),
Co(2; t), and Co(3; t) appear nearly indistinguishable in this figure.

In fact, if ε is known accurately, it is possible to perform Zφ

operations with piecewise constant controls that satisfy θ (tf) =
0. Table II contains information about some of the properties
of these OCs. For a DQD logical qubit, we observe that these
controls require negative exchange coupling values. Although
negative exchange energy is uncommon, it is predicted to be
possible to produce through combined tuning of the magnetic
field, dot size, and tunnel coupling [64].

For both Zπ/2 and Zπ operations, despite the similar
structures of the OCs, especially Co(1; t) and Co(2; t), their
gate-distance responses for 0 � ε � 6 (with a numerical
resolution of 0.01 scaled units) are quite unique, as shown
in Figs. 3 and 4, respectively. Even though maxt ‖Co(1; t) −
Co(2; t)‖ < 0.2 scaled units of energy for both operations (see
inset of Figs. 1 and 2), and the mean relative difference is
approximately 1.4% and 5.7% for the Zπ/2 and Zπ operations,
respectively, this two-level system effectively discriminates
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FIG. 2. (Color online) OC fields producing a Zπ operation
for several specific values of ε0 and tf = 1 scaled unit. All OCs
have distances �(Zπ,Utf ) < 10−6. The inset presents the difference
between Co(1; t) and Co(2; t).

between these two similar control fields through the response
of the distance functional � in Eq. (4). Within the interval
0 � ε � 3, the gate distances of Co(1; t) and Co(2; t) do
not significantly overlap. The sensitivity of this system to
these relatively small control-field variations combined with
the inherent noise (and limited resolution) present in most
realistic control sources warrants further study of the impact
that realistic control-field fluctuations may have on practical
fault-tolerant QC [20,50,58,65].

For the target operation Zπ/2, when ε0 ∈ {0,1,2,3}, the
OCs produce a net positive angle of rotation about the z axis,
given the initial control field. When ε0 ∈ {4,5}, OCs produce
a net negative angle of rotation about the z axis. As the static
angular frequency of the rotation about the x axis increases,
the OC strategy tends toward a controlled rotation about the z

axis in the negative direction. OC simulations for 3 � ε0 � 4,
with a numerical resolution of 0.01 scaled units of energy
(detailed results are not reported), reveal a distinct transition

TABLE II. Performance of the OCs Co(ε0; t) for one-qubit Zφ operations. Here, max |Co|, θ , �[C] := ∫ tf
0 C2(ε0; t)dt , �, and Rφ are the

maximum control-field amplitude, angle of controlled z axis rotation, control-field fluence, gate distance, and gate robustness, respectively, in
the corresponding scaled units described in Sec. II C.

Target operation: Zπ/2

ε0 0 1 2 3 4 5

max |Co| 2.4 18.5 18.4 18.3 6.7 5.9
θ (tf ; Co) π/2 1.5779 1.6002 1.6406 −3.4333 −2.5660
�[Co] 3.4 84.5 83.0 80.7 17.5 12.1
�(Zπ/2,Utf ) 4.59 × 10−8 1.11 × 10−7 2.03 × 10−7 6.23 × 10−8 1.25 × 10−7 3.94 × 10−8

Rπ/2[Co,ε0,0.5] 7.40 × 10−2 1.44 × 10−3 3.65 × 10−3 6.96 × 10−3 5.04 × 10−2 6.21 × 10−2

Target operation: Zπ

ε0 0 1 2 3 4 5

max |Co| 4.8 12.2 12.1 11.9 11.6 11.4
θ (tf ; Co) π 3.1020 2.9824 2.7802 2.4923 2.1181
�[Co] 13.7 39.5 38.4 36.5 34.1 31.4
�(Zπ,Utf ) 6.05 × 10−8 2.73 × 10−7 3.16 × 10−8 5.58 × 10−8 4.34 × 10−8 2.79 × 10−8

Rπ [Co,ε0,0.5] 3.80 × 10−2 6.95 × 10−3 1.38 × 10−2 2.05 × 10−2 2.68 × 10−2 3.24 × 10−2
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FIG. 3. (Color online) Distance of OCs optimized with particular
values of epsilon, denoted as Co(ε0; t), for the Zπ/2 operation
[�(Zπ/2,Utf ) < 10−6 for all controls], subsequently applied over the
interval 0 � ε � 6 (with a resolution of 0.01 scaled units).

between OCs with shapes very similar to Co(3,t) and Co(4,t)
reported in Fig. 1, corresponding to net positive and negative
rotations, respectively. For the initial control field used in
this work, this transition occurs when ε0 ≈ 3.9. Comparing
the gate-distance responses in Fig. 3 for Co(3,t) and Co(4,t)
reveals that these OCs are not equivalent solutions for unitary
control; the difference between these controls is exclusively
due to the effect of the different values of ε0 on the qubit
dynamics.

Quantum-computing architectures often assume encoded
quantum operations to correct the inevitable errors due to
control and environmental noise. Gate operations, such as Zφ

simulated here, must achieve a minimum fidelity threshold for
successful quantum error correction. A predicted maximum
distance � of less than 10−3 for ε ∈ [0,5] is within typical
ranges necessary for fault-tolerant QC [1,43,50]. These results
highlight the potential advantage of using OCT if estimates of
Hamiltonian parameters are known well. However, these OCs
are not robust to uncertainty in the magnitude of ε; in fact, they
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FIG. 4. (Color online) Distance of OCs optimized with particular
values of epsilon, denoted as Co(ε0; t), for the Zπ operation
[�(Zπ,Utf ) < 10−6 for all controls], subsequently applied over the
interval 0 � ε � 6 (with a resolution of 0.01 scaled units).

are highly sensitive to small perturbatives in ε. Uncertainty can
result from incomplete or poor system parameter estimates as
well as from dynamics of the environment [38,51].

The objective functional J in Eq. (6) does not include
criteria to evaluate control-field robustness with respect to
variations in ε. To investigate any inherent robustness quan-
titatively, OC fields optimized for particular values of ε [i.e.,
Co(ε0; t)] were subsequently applied to a surrounding interval
of ε0. Results are presented in Figs. 3 and 4 for the Zπ/2 and
Zπ operations, respectively. Consider the distance response
of Co(2; t) to variations in ε, which varies substantially with
respect to variations that correspond to ∼1 mT fluctuations
(corresponding to approximately 1.6 � ε � 2.4) for GaAS
DQD systems. Without specifying a measure of robustness as
an additional control objective, the resulting OCs are not inher-
ently robust to modest local magnetic-field fluctuations (e.g.,
at each quantum dot). Numerical calculations with these OCs
for both operations indicate that the error in the measurement
fidelity used to characterize ε for a particular system must be
smaller than 10−2 (corresponding to approximately 1.3 × 10−5

or smaller T for the GaAs DQD example) to realize gates
with distances that are 10−3 or smaller. Moreover, with these
controls, ε could not drift significantly during a computation
without serious fidelity loss.

In addition to the data presented in Figs. 3 and 4, we
introduce the following functional to investigate robustness
of Zφ operations over the interval [ε−,ε+]:

Rφ[C,ε,δε] :=
∫ ε+

ε−
�

[
Zφ,Utf (C)

]
dε′, (13)

where ε± := ε ± δε. Values forRφ[Co,ε0,0.5], corresponding
to the average gate distance over a unit interval centered at
ε0, are reported in Table II. Quantifying robustness with this
metric further demonstrates the general lack of robustness of
these OCs; Rφ varies from 1.44 × 10−3 (which is somewhat
robust) to 7.40 × 10−2.

V. ROBUST DECOUPLING-PULSE CRITERIA

Optimization of the functional J in Eq. (6) is highly under-
determined, and multiple control fields exist that will produce
the same target operator V [59,66]. Requiring robustness to
control and/or system variations involves the specification of
additional constraints or penalties, such as Eq. (13), thereby
limiting solutions to this OCT problem. In this section, we
summarize a set of control-field constraints that characterize
robustness to perturbative decoherence and adapt them to
locate controls that are robust to system uncertainty.

A. General robustness criteria

Consider the following open-system Hamiltonian for one
qubit:

Hopen(t) := �S · �C(t) + �S · �� + He, (14)

where �S := (Sx,Sy,Sz) represents the spin-operator vector,
�C(t) := (Cx,Cy,Cz) represents a multipolarized control field,
�� := (�x,�y,�z) represents the environment interaction oper-
ator, and He represents the environment Hamiltonian.
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By expanding the final-time unitary evolution operator
generated by Hopen with respect to tf‖He‖ and tf‖��‖ about
tf‖He‖ = 0 and tf‖��‖ = 0, Pasini et al. have identified control-
field criteria necessary to eliminate perturbative first- and
second-order effects resulting from the environment Hamilto-
nian He and the interaction term �S · �� [15]. Although applica-
ble to multipolarized controls and general qubit-environment
coupling, the methodology developed in this section assumes
control-qubit coupling along the z axis and qubit-environment
interaction along the x axis; namely,

H ′
open(t) := C(t)Sz ⊗ 1ne

+ Sx ⊗ �x + 12 ⊗ He, (15)

where ne := dim{He} and He is the Hilbert space of the
environment. For controlled π/2 and π rotations about the
z axis, Pasini et al. derived the following vector functional
characterizing the space of controls that suppress first- and
second-order effects errors resulting from an x axis interaction
with the environment:

�ζ [θ ] := (ζ1,ζ2,ζ3,ζ4,ζ5)T, (16a)

where

ζ1[θ ] :=
∫ tf

0
sin[θ (t)]dt, (16b)

ζ2[θ ] :=
∫ tf

0
cos[θ (t)]dt, (16c)

ζ3[θ ] :=
∫ tf

0

∫ tf

0
sin[θ (t1) − θ (t2)]sgn(t1 − t2)dt1dt2,

(16d)

ζ4[θ ] :=
∫ tf

0
t sin[θ (t)]dt, (16e)

ζ5[θ ] :=
∫ tf

0
t cos[θ (t)]dt. (16f)

Recall θ (t ; C) from Eq. (8a) in Sec. III B, which represents the
net rotation performed by the control field C during the time
interval [0,t].

For convenience and simplicity in the analysis that follows
this section, we define �η as

�η[C] := (η1,η2,η3,η4,η5)T, (17a)

where

ηi := ζi ◦ θ. (17b)

Thus, �η : Ctf 
→ R5. For one qubit, the components of �η
represent the first- and second-order perturbative errors, with
respect to the final time tf and error Hamiltonians �x and
He, of a controlled π/2 or π rotation about the z axis.
Specifically, η1 and η2 represent first-order errors, while
η3, η4, and η5 represent second-order errors. Thus, when
�η = 0, the pulse is accurate up to third-order, eliminating the
first- and second-order effects resulting from a perturbative
qubit-environment interaction. According to the analysis in
Ref. [15], when [He,�λ] = 0, for all λ, components η4 and η5

can be neglected from the vector constraint.

B. Closed-system robustness criteria

To apply these results to a closed one-qubit system and
construct robust Zφ operations for the DQD logical qubit
using this criteria, we first compare the Hamiltonians H in
Eq. (1) and H ′

open in Eq. (15). These Hamiltonians are equal
if �x = ε and He = 0, which implies that [He,�λ] = 0, so
�η r := (η1,η2,η3)T is the relevant reduced vector constraint.
Incorporating these nonlinear equality constraints into the
original optimization problem yields the following nonlinearly
constrained control problem:

min
C∈Ctf

J [C]
(18)

subject to �η r[C] = 0.

Methods such as “diffeomorphic modulation under
observable-response–preserving homotopy” (DMORPH) [58,
67–69] or sequential quadratic programming [70] are required
to generate OCs that maintain or satisfy approximate feasi-
bility, determined by �η r = 0. A technique using DMORPH is
developed and applied in the next sections.

For a qubit described by the Hamiltonian in Eq. (1), control
fields from Ref. [15] satisfying ‖�η r‖2 < 10−7 (where ‖ · ‖2

denotes the vector two norm) and corresponding gate distances
for π/2 and π pulses are presented in Figs. 5 and 6, respec-
tively. These fields are denoted as Cd(t), where the subscript
“d” indicates the decoupling feature of these DPs. Satisfying
the control-field constraints specified by Pasini et al. [15], first-
and second-order perturbations about ε = 0 are eliminated. As
such, gate distance increases with the magnitude of ε and opti-
mum performance occurs when ε = 0, which is not necessarily
expected to be valid for realistic qubit systems with drift terms
(see, e.g., [45]). Although we use �η r = 0 as a general condition
for robustness in this work, whether controls satisfying �η r = 0
are robust about points where ε 
= 0 remains an open question.
However, comparing the gate distances in Fig. 6 to those in
Figs. 3 and 4 reveals a certain degree of robustness in control
fields Cd(t) relative to Co(ε; t); for example, for both Zφ op-
erations and all values of ε0 considered, d�/dε around ε0 for
Cd(t) is much smaller than Co(ε0; t). Table III contains infor-
mation about some of the properties of the DPs in Figs. 5 and 6.
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FIG. 5. (Color online) Control fields satisfying the DPC in
Eq. (17), denoted as Cd(t), for Zφ operations (�η r‖2 < 10−7), from
Pasini et al. [15].
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TABLE III. Performance of the DPs Cd(t) for one-qubit Zφ operations. Here, �, Rφ , max |Cd|, θ , �[C] := ∫ tf
0 C2(ε0; t)dt , and ‖�η r‖2 are

the gate distance, gate robustness, maximum control-field amplitude, angle of controlled z axis rotation, control-field fluence, and constraint
vector norm, respectively, in the corresponding scaled units described in Sec. II C.

Target operation: Zπ/2

ε0 0 1 2 3 4 5

�(Zπ/2,Utf ) 7.60 × 10−8 1.52 × 10−4 1.34 × 10−3 4.47 × 10−3 1.02 × 10−2 1.89 × 10−2

Rπ/2[Cd,ε0,0.5] 2.84 × 10−6 1.96 × 10−4 1.42 × 10−3 4.58 × 10−3 1.03 × 10−2 1.91 × 10−2

max |Cd| = 29.5, θ (tf ; Cd) = π/2, �[Cd] = 335.5, ‖�η r(t ; Cd)‖2 = 2.52 × 10−8

Target operation: Zπ

ε0 0 1 2 3 4 5

�(Zπ,Utf ) 5.67 × 10−8 5.84 × 10−4 4.63 × 10−3 1.54 × 10−2 3.56 × 10−2 6.75 × 10−2

Rπ [Cd,ε0,0.5] 1.83 × 10−5 7.29 × 10−4 4.91 × 10−3 1.58 × 10−2 3.61 × 10−2 6.81 × 10−2

max |Cd| = 28.8, θ (tf ; Cd) = π , �[Cd] = 264.8, ‖�η r(t ; Cd)‖2 = 8.04 × 10−8

VI. HYBRID QUANTUM CONTROL:
DECOUPLING-PULSE CRITERIA + OPTIMAL

CONTROL THEORY

Given the favorable structure of quantum-control land-
scapes (e.g., trap-free structure, continua corresponding to
optimal solutions, etc.) for regular controls [59,65,66,71],
DMORPH provides a mathematical means to explore families
of controls that achieve the same objective [58,67]. Appli-
cations of DMORPH include the continuous variation of a
Hamiltonian while preserving or optimizing the value of a
quantum mechanical observable [67,72] and exploring the
level sets of state and unitary control [58,69,73]. DMORPH
can also be used as direct optimization technique [74]. We
develop DMORPH techniques to explore the space of controls
corresponding to �η = 0 while optimizing J for a specified ε0.

Expressed more formally, in this section, we develop a
method to optimize J over the set Cη

tf := �η−1(0) ⊂ Ctf ; that is,
the set of feasible controls satisfying �η = 0, where �η−1 denotes
the pre-image of �η.1 To increase general applicability, we

1The pre-image of a particular subset S ⊂ Y of the codomain of a
function f : X 
→ Y is the set of all elements of the domain X of
f that map to elements of S [i.e., f −1(S) := {x ∈ X : f (x) ∈ S}].
Because �η : Ctf 
→ R5, this implies that �η−1 : R5 
→ Ctf .

develop this technique for �η, rather than the reduced constraint
�η r. Away from critical points of �η (a real-valued vector); that
is, controls for which the set of gradients {∇ηi} are linearly
dependent [75], Cη

tf is a codimension-5 submanifold of Ctf [76].
It is assumed that critical points of �η are rare; an assumption
supported by the success of the resulting algorithm. The
gradient of the restricted functional K := J |Cη

tf
at a point

C ∈ C
η
tf is just the projection of the gradient of J at C onto the

tangent space TCC
η
tf of C

η
tf at C [58,77,78]. By systematically

updating the control field iteratively using a GrA with this
projected gradient, the algorithm is able to simultaneously
improve the value of J and maintain approximate feasibility,
or at least impede deviations from feasibility. It is unlikely
that the quantum-control landscape for the restricted objective
functional K is trap free. As such, a global optimization
algorithm might be better suited to finding solutions. However,
because a global parametrization of the set C

η
tf is lacking,

maintaining (approximate) feasibility (i.e., �η = 0) might be
difficult in general.

A. Gradients of feasibility constraints

Using DMORPH to remove the components of ∇J that
cause a change in �η requires the gradient of each element of �η,
∇ηi :

(∇ηi[C]) (t) =
∫ tf

0

δζi[θ ]

δθ (τ )

δθ (τ )

δC(t)
dτ =

∫ tf

t

δζi[θ ]

δθ (τ )
dτ (19a)

⇒

⎛
⎜⎝

(∇η1[C])(t)
...

(∇η5[C])(t)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ tf

t

cos[θ (τ )]dτ∫ tf

t

sin[θ (τ )]dτ

2
∫ tf

t

∫ tf

0
{cos[θ (τ )] cos[θ (τ ′)] + sin[θ (τ )] sin[θ (τ ′)]}sgn(τ − τ ′)dτ ′dτ∫ tf

t

τ cos[θ (τ )]dτ∫ tf

t

τ sin[θ (τ )]dτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19b)
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As expressed here, the vector of gradients ∇ηi is a function of
the time variable t . Note that the set {∇ηi} spans the normal
space (TCC

η
tf )

⊥ when C ∈ C
η
tf is a regular point of �η.

B. Gradient projection method

In addition to the gradients ∇ηi , we also need a vector that
specifies the relative weight of each gradient component to
remove. This is determined by first calculating the Gramian
matrix, with elements

(Gc)ij := 〈∇ηi[C],∇ηj [C]
〉
Ctf

. (20)

In general, Gc is not guaranteed to be full rank; nonsingularity
of Gc must be explored (numerically) as a function of C. The
Gramian matrix Gc is rank deficient if and only if elements in
the set {∇ηi} are linearly dependent (i.e., if and only if C is
a critical point of �η [75]). However, when ∇ηi are all linearly
independent, Gc is invertible. With Eqs. (19) and (20), all
gradient directions ∇ηi can be removed from ∇J , producing
∇K as follows:

∇K[C] = ∇J [C] −
5∑

i=1

∇ηi[C]
{
G−1

c [�qc (∇J [C])]
}

i
,

(21a)

where K : C
η
tf → R is a restriction of J (i.e., K := J |Cη

tf
) and

�qc has elements

[�qc(∇J [C])]i := 〈∇J [C],∇ηi[C]〉Ctf
. (21b)

Thus, ∇K is a vector field on C
η
tf , and the ordinary

differential equation (ODE)

dC(s)

ds
= −∇K[C(s)] (22)

describes the gradient flow of K on C
η
tf that minimizes J

without changing the value of �η. The GrA in this work
implements a forward Euler integration of this equation, which
should be sufficiently accurate, provided that the multiplier
β in Eq. (11) is selected properly; that is, β is within the
validity of the linear approximation of the tangent space at
C. Higher-order numerical ODE solvers (e.g., Runge-Kutta
methods [63]) might offer higher accuracy and/or greater
efficiency but have not been explored in this work.

Equation (21) describes the orthogonal projection from
TCCtf to TCC

η
tf . That ∇K is orthogonal to all elements of

{∇ηi} can be verified as follows: Let

ξ :=
5∑

i=1

χi∇ηi[C]; (23)

that is, ξ is a linear combination of the elements of the set
{∇ηi}, where χi ∈ R. Replacing ∇J with ξ in Eq. (21) yields

ξ −
5∑

i=1

∇ηi[C]
{
G−1

c [�qc(ξ )]
}

i

= ξ −
5∑

i=1

∇ηi[C]
(
G−1

c Gc �χ)
i
= 0, (24)
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FIG. 6. (Color online) Distance of the Zφ operations as a function
of ε (with a resolution of 0.01 scaled units) and φ ∈ {π/2,π} for the
Landau-Zener model of Eq. (1) and control fields Cd(t) presented in
Fig. 5. The inset displays the gate distance for 0 � ε � 1 in greater
detail, on a linear scale.

where �χ := (χ1,χ2,χ3,χ4,χ5)T. If ξ ∈ TCCtf is such that ξ is
orthogonal to all gradients ∇ηi , then the projection described
in Eq. (21) acts as identity on ξ . Together with the previous
statement, this shows that Eq. (21) is the orthogonal projector
from TCCtf to TCC

η
tf .

As mentioned in the introduction, because we combine DPC
and OCT methods to generate improved control fields, we
denote the integrated optimization procedure described in this
section as DPC + OCT. Straightforward modifications of Gc

and �qc are required when �η r is the constraint vector rather than
�η [i.e., Gc ∈ M3(R) rather than M5(R)], and �qc(∇J ) ∈ R3

rather than R5.

VII. RESULTS FROM DECOUPLING-PULSE CRITERIA +
OPTIMAL CONTROL THEORY

Using the DPC + OCT protocol described in Sec. VI and
the DPs in Fig. 5 for the initial iterations of all values of
ε0 considered, we sought to numerically explore the space
of controls satisfying �η r = 0 and � = 0 to improve control
fidelity and robustness to ε uncertainty for Zπ/2 and Zπ

operations, compared to the original DPs. To a certain extent,
it appears a priori that the minimization of � and �η r might
be competing control objectives. For example, compare the
gate-distance plots for OCT (Figs. 3 and 4) to those for the
DPs (Fig. 6) over the interval 0 � ε � 6 (with a numerical
resolution of 0.01 scaled units). OCT for the design of
unitary operations, as we have formulated it in Sec. III,
seeks to minimize � for a particular value of ε; namely,
the parameter estimate ε0. Because the system described by
the Hamiltonian in Eq. (1) is controllable and the underlying
control landscape possesses a fortuitous structure for regular
controls [59,66], a GrA achieves this objective quite efficiently
and successfully. However, as presented in Sec. IV, these
OCs are not inherently robust to perturbations in ε, whereas
controls satisfying �η r = 0 are nearly optimal (with respect to
J ) when ε0 ≈ 0. This scenario illustrates the potential balance
that can exist between fidelity and robustness in general.
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FIG. 7. (Color online) DPC + OCT fields Ch(ε0; t) producing a
Zπ/2 operation, optimized using Cd(t) as the initial control for all
estimates/values of ε0 and tf = 1 scaled unit. Although distinct, note
that Ch(0; t), Ch(1; t), and Ch(2; t) appear nearly indistinguishable in
this figure.

Overall, the controls that satisfy �η r = 0 are reasonably robust
to perturbations in ε, provided that ε and/or �ε are within
the perturbative limit. Given that these two control objectives
are potentially competing, we use the hybrid optimization
procedure developed in Sec. VI to suppress deviations from
�η r = 0 but not entirely eliminate them. In other words,
convergence of the DMORPH DPC + OCT algorithm occurs
only when J stops decreasing, not when �η r starts increasing.

Because the formulation of OCT requires the specification
of ε, we consider ε0 ∈ [0,5]. As before, the final time for all
controls was fixed at tf = 1 scaled unit of time. DPC + OCT
fields for Zπ/2 and Zπ are presented in Figs. 7 and 8,
respectively. These fields are denoted as Ch(ε0; t), where
the subscript “h” indicates the hybrid feature of this QCP.
Corresponding results for the gate distance � are presented in
Figs. 9 and 10; results for the vector-constraint norm ‖�η r‖2

and objective functional J are presented in Figs. 11 and 12.
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FIG. 8. (Color online) DPC + OCT fields Ch(ε0; t) producing a
Zπ operation, optimized using Cd(t) as the initial control for all values
of ε0 and tf = 1 scaled unit. Although distinct, note that Ch(0; t),
Ch(1; t), and Ch(2; t) appear nearly indistinguishable in this figure.
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FIG. 9. (Color online) Distance for the Zπ/2 operation as a
function of ε (with a resolution of 0.01 scaled units) for control
fields satisfying (a) �η r = 0 [red dashed line, which is very similar to
that for Ch(0; t)], (b) �η r ≈ 0 and � ≈ 0, optimized with a specified
value of ε0, and (c) results from Co(ε0; t) in Sec. IV (black dashed
lines, from Fig. 3).

In addition, Table IV contains information about some of the
properties of the DPC + OCT fields. For both Zφ operations,
when ε0 � 2, we note that ‖�η r‖2 > 10−4. However, since
the robustness criteria quantified by �η r were obtained from
a perturbative analysis about ε0 = 0, it remains an open
question whether, a priori, control fields satisfying �η r = 0
for ε0 > 0 will be robust to fluctuations about ε0. However, as
we present in this section, control solutions obtained from the
DPC + OCT protocol have some desirable properties, even
when ε0 > 0. It is interesting to explore the results of the
DPC + OCT protocol when the distance is relatively large
(i.e., � > 10−3) and the sensitivity to changes in ε is small
(e.g., as illustrated in Fig. 6).

Despite their unique gate-distance dependence of these
control solutions on ε, as shown in Figs. 9 and 10 over the
interval 0 � ε � 6 (with a numerical resolution of 0.01 scaled
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fields satisfying (a) �η r = 0 [red dashed line, which is very similar to
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TABLE IV. Performance of the DPC + OCT controls Ch(ε0; t) for one-qubit Zφ operations. Here, max |Ch|, θ , �[C] := ∫ tf
0 C2(ε0; t)dt ,

�, ‖�η r‖2, and Rφ are the maximum control-field amplitude, angle of controlled z axis rotation, control-field fluence, gate distance, constraint
vector norm, and gate robustness, respectively, in the corresponding scaled units described in Sec. II C.

Target operation: Zπ/2

ε0 0 1 2 3 4 5

max |Ch| 29.5 29.5 29.3 29.2 29.4 29.6
θ (tf ; Ch) π/2 π/2 1.5704 1.5690 1.5695 1.5792
�[Ch] 335.5 334.6 332.8 337.4 356.5 370.5
�(Zπ/2,Utf ) 3.65 × 10−8 1.21 × 10−6 8.23 × 10−6 1.86 × 10−5 4.08 × 10−6 2.55 × 10−6

‖�η r(tf ; Ch)‖2 3.21 × 10−8 4.74 × 10−4 2.13 × 10−3 4.21 × 10−3 4.12 × 10−3 2.45 × 10−3

Rπ/2[Ch,ε0,0.5] 2.84 × 10−6 9.47 × 10−5 3.55 × 10−4 6.46 × 10−4 5.72 × 10−4 9.20 × 10−4

Target operation: Zπ

ε0 0 1 2 3 4 5

max |Ch| 28.8 28.8 28.6 28.4 28.4 28.9
θ (tf ; Ch) π π 3.1411 3.1392 3.1343 3.1320
�[Ch] 264.8 264.0 261.8 259.1 260.0 280.7
�(Zπ,Utf ) 2.36 × 10−8 6.57 × 10−7 1.67 × 10−5 1.74 × 10−5 2.79 × 10−8 1.10 × 10−6

‖�η r(tf ; Ch)‖2 3.55 × 10−9 9.93 × 10−5 4.90 × 10−4 1.10 × 10−3 6.49 × 10−3 2.10 × 10−2

Rφ[Ch,ε0,0.5] 1.83 × 10−5 3.11 × 10−4 1.18 × 10−3 2.59 × 10−3 4.23 × 10−3 4.92 × 10−3

units), the converged DPC + OCT fields for ε0 ∈ {0,1,2,3}
are very similar to each other and the originated DP for
each target unitary operation. This supports the observation in
Sec. IV that this simple system can effectively discriminate
between very similar control fields [i.e., as measured by
the gate distance � in Eq. (4)], the qubit system is quite
sensitive to these relatively small control-field variations. For
example, although maxt ‖Ch(1; t) − Ch(2; t)‖ < 0.2 scaled
units of energy for both operations, and the mean relative
difference is approximately 1.5% and 1.3% for the Zπ/2 and
Zπ operations, respectively, the corresponding gate distances
(presented in Figs. 9 and 10) do not coincide significantly
when 0 � ε � 3.

Interestingly, the DPC + OCT control field for the Zπ oper-
ation when ε0 = 5 has some distinguishing features compared
to the fields for the other values of ε0. Based on the relatively
large distance � of the corresponding Cd(t) control used for the
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FIG. 11. (Color online) ‖�η r‖2 and objective functional J for the
Zπ/2 operation and each value of ε0 considered, as a function of the
number of DPC + OCT algorithm iterations.

initial iterate in the DPC + OCT protocol (� = 6.75 × 10−2),
this value of ε0 is not within the perturbative limit of the
analysis that produced the vector constraint �η r = 0. With such
a large distance at ε0 = 5, the DPC + OCT routine improves
the distance by a factor larger than 104 and simultaneously
improves the robustness Rπ for 4.5 � ε � 5.5 by a factor
larger than 10, compared to the corresponding results for Cd(t)
presented in Table III.

Figures 9 and 10 compare the distance of Cd(t) and Ch(ε0; t)
control fields for both Zφ operations. Compared to Cd(t), all
control fields Ch(ε0; t) for ε0 � 0 exhibit improved robustness
to ε uncertainties in an interval around the nominal value ε0

used in the DPC + OCT algorithm. This result demonstrates
the utility of combining so-called “predesign” methods, which
are based on mathematically analyzing general models [e.g.,
Eq. (14)], such as the DPC developed by Pasini et al. [15], with
numerical OCT procedures and simple estimates of system
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FIG. 13. (Color online) Distance for the Zπ/2 operation as a
function of ε for Co(2; t), Cd(t), and Ch(2; t) controls in a unit
interval centered at ε0 = 2 (with a resolution of 0.01 scaled units).
Note that for ε � 0.7, �[Zπ,U (tf ; Cd)] � �[Zπ,U (tf ; Ch)]; that is,
Ch(1; t) outperforms Cd(t).

parameters (e.g., estimates of ε0), especially when capabilities
for shaping control fields are available. By combining these
QCPs, we have developed a form of hybrid quantum control;
estimates of system parameters can be directly incorporated
into simulations to generate improved quantum operations for
information processing and memory.

Figures 11 and 12 compare the vector-constraint norm
‖�η r‖2 and objective functional J as a function of the
optimization iteration for both Zφ operations. Overall, ‖�η r‖2

increases as J decreases, which is consistent with the notion
of minimizing ‖�η r‖2 and J as potentially competing control
objectives. Even though components of ∇J that are parallel to
all gradients ∇ηi are removed at each iteration, ‖�η r‖2 increases
during the optimization for (at least) two reasons: (a) Eq. (21)
removes components of ∇ηi (where elements ηi are nonlinear
functions of the control) using an iterative linear projection
method and (b) convergence of the DPC + OCT routine does
not depend on ‖�η r‖2.

To aid in the comparative analysis of results from OCT,
DPC, and the DPC + OCT procedures, OC gate-distance data
from Figs. 3 and 4 are also presented in Figs. 9 and 10,
respectively. Although the OC fields Co(ε0; t) all outperform
the DPC + OCT fields Ch(ε0; t) at ε0, these OCs do not have
the robustness of the DPs or DPC + OCT fields. To emphasize
this feature, Figs. 13 and 14 present Zπ/2 and Zπ gate distances
for Co(2; t), Cd(t), and Ch(2; t) controls over a unit interval
centered at ε0 = 2. For both gates, Co(2; t) is very sensitive to
variations in ε; for example, when ε changes from 2 to 2 ± 0.01
(a change corresponding to approximately 1.3 × 10−5 T for
the GaAs DQD example), the Zπ/2 gate distance increases
(approximately) from 10−7 to 10−4, while the Zπ gate distance
increases from 10−8 to 10−4, approaching the fault-tolerant
threshold. However, for Ch(2; t) for both gates, as ε varies
from ε0, the increase in gate distance is much more gradual.
Figures 13 and 14 contain some useful information to help
understand the benefit of the hybrid DPC + OCT protocol.
By combining DPC, OCT, a DP that satisfies �η r = 0 for the
initial GrA iteration, and an estimate of the value of ε0, the
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FIG. 14. (Color online) Distance for the Zπ operation as a
function of ε for Co(2; t), Cd(t), and Ch(2; t) controls in a unit
interval centered at ε0 = 2 (with a resolution of 0.01 scaled units).
Note that for ε � 1.5, �[Zπ,U (tf ; Cd)] � �[Zπ,U (tf ; Ch)]; that is,
Ch(1; t) outperforms Cd(t).

gate distance is decreased compared to the gate distance of
the original DP for the entire unit interval centered at ε0.
Depending on the uncertainty magnitude of ε, this benefit
could yield a potentially substantial decrease in the required
concatenation or encoding resources necessary for QECCs,
which depend on gate errors.

As a final illustrative example, consider the Zπ operation
applied to the initial state |σ+

x 〉, implemented with the
corresponding controls Co(2; t), Cd(t), and Ch(2; t), which are
applied to an ensemble of systems described by the Hamil-
tonian in Eq. (1) and the interval 1.5 � ε � 2.5 (numerically
distributed over 20 equal increments of 0.05 scaled units).
The target state is |σ−

x 〉 = Zπ |σ+
x 〉, where σx |σ±

x 〉 = ±|σ±
x 〉,

and the ensemble of final states for a given control is
denoted by {|ψi〉}. This state-based example clarifies the gate
improvement obtained from Ch(2; t), compared to Co(2; t) and
Cd(t). To quantify the fidelity of the controls, we use the
Uhlmann state fidelity for pure states [79,80]:

Fu (|ψ1〉,|ψ2〉) := |〈ψ1|ψ2〉| , (25)

where |ψ1〉 and |ψ2〉 are normalized vectors in H. For a
given control, we denote the resulting minimum, maximum,
and average state fidelity, and the standard deviation of the
fidelity of the ensemble as min|ψi 〉 Fu, max|ψi 〉 Fu, F̄u, and σFu ,
respectively, which are presented in Table V for Co(2; t), Cd(t),
and Ch(2; t). Comparing the respective quantities, Ch(2; t) has
the largest average and minimum fidelity and the smallest
standard deviation of fidelity of the ensemble (by nearly a
factor of 10). The final-time ensembles are also illustrated in
Fig. 15, which contains a plot of resulting final states for each
control, along with the target state |σ−

x 〉, all in the Bloch vector
coordinates y and z. Because −1 � x < −0.995 for all final
states, it is not included in this figure. Unlike the Bloch vector
components corresponding to the final states produced from
Co(2; t) and Cd(t), the Bloch vector components produced
from Ch(2; t) are tightly distributed around the target state,
with most of the error distributed uniformly along the z axis,
centered at the target state |σ−

x 〉. Very similar results are
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TABLE V. Properties of state fidelity for the transition |σ−
x 〉 = Zπ |σ+

x 〉 driven by controls Co(2; t), Cd(t), and Ch(2; t). Here, min|ψi 〉 Fu,
max|ψi 〉 Fu, F̄u, and σFu denote the minimum, maximum, and average fidelity and the standard deviation of the fidelity, respectively, of the
ensemble of final states {|ψi〉} compared to the target state |σ−

x 〉.

Target state: |σ−
x 〉 = Zπ |σ+

x 〉
min
|ψi 〉

Fu

[|σ−
x 〉,|ψi〉

]
max
|ψi 〉

Fu

[|σ−
x 〉,|ψi〉

]
F̄u σFu

Co(2; t) 0.996197 1.0 0.998871 1.082 × 10−3

Cd(t) 0.999678 0.999985 0.999884 9.398 × 10−5

Ch(2; t) 0.999958 1.0 0.999991 1.129 × 10−5

obtained for the Zπ/2 operation implemented with Co(2; t),
Cd(t), and Ch(2; t), applied to an ensemble of systems where
1.5 � ε � 2.5.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

Combining OCT with the DPC established by Pasini et al.
introduces improvements to the control of quantum systems for
information processing. Given a reasonable characterization
of the angular frequency ε/h̄ of a persistent, but somewhat
uncertain rotation about the x axis, a near-optimal fidelity can
be achieved for ε � 0. Furthermore, the resulting DPC + OCT
controls exhibit improved robustness to uncertainty in ε,
compared to the original DPs. The systematic integration
of general DPC and control-field shaping methods from
OCT, therefore, promises considerable improvement over DPC
or OCT strategies alone. We have provided a quantitative
illustration for a logical qubit based on a DQD system, with
continuous controls that possess reasonable magnitudes [64],
based on the scaled-to-SI unit mapping.

We are currently investigating the benefits of these DPC +
OCT π/2 and π pulses for memory and information processing
in the presence of a decohering spin bath. It will be useful to
determine how these pulses extend spin echoes and improve
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FIG. 15. (Color online) Final state in the Bloch vector coordinates
y and z for the Zπ operation, implemented with the corresponding
controls Co(2; t), Cd(t), and Ch(2; t) applied to an ensemble of
systems described by the Hamiltonian in Eq. (1) and the interval 1.5 �
ε � 2.5 (distributed over 20 equal increments of 0.05 scaled units).
The target state is |σ−

x 〉 = Zπ |σ+
x 〉. Because −1 � x < −0.995 for

all final states, it is not included in this figure.

general DD and dynamically corrected gate pulse sequences,
such as those described in Refs. [3,4,17,81–85]. Future
work involves an exploration of unitary control sensitivity
to fluctuations in the control field itself (e.g., control noise).
Postfacto analysis of both the OCT and DPC + OCT results
presented in this article for the general qubit model suggests
that these fluctuations may contribute just as significantly
to gate errors as corresponding system and environment
fluctuations. However, our optimization criteria does not
include robustness to control-field noise; such robustness may
be sacrificed in favor of the actual criteria. Given the ubiquity
of noise in classical controls and quantum mechanical systems,
constructing controls and systems that are robust to their own
noise is crucial for practical fault-tolerant QC.

Extensions of the original analysis by Pasini et al. are also
being considered. We are interested in generalizing their results
to include (a) arbitrary angle rotations and axes, (b) closed-
system perturbative expansions about any value of ε, rather
than only ε = 0, and (c) ε as a stochastic time-dependent
variable or operator, which is relevant to previous research
on decoherence control (see, e.g., [86]). In addition, direct
minimization of Rφ [Eq. (13)] or

L[C] :=
∫ ε2

ε1

(
c1

∥∥∥∥dUtf (C)

dε

∥∥∥∥
HS

+ c2

∥∥∥∥d2Utf (C)

dε2

∥∥∥∥
HS

)
dε

(26)

over J −1(0), where c1, c2 ∈ R weight the relative significance
of the two norms, are purely OCT means to improve robustness
to variations in ε about any fixed interval [ε1,ε2], which we
are also investigating.
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