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Entanglement dynamics via semiclassical propagators in systems of two spins
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We analyze the dynamical generation of entanglement in systems of two interacting spins initially prepared
in a product of spin coherent states. For arbitrary time-independent Hamiltonians, we derive a semiclassical
expression for the purity of the reduced density matrix as a function of time. The final formula, subsidiary to
the linear entropy, shows that the short-time dynamics of entanglement depends exclusively on the stability of
trajectories governed by the underlying classical Hamiltonian. In addition, this semiclassical measure is shown
to reproduce the general properties of its quantum counterpart and give the expected result in the large spin limit.
The accuracy of the semiclassical formula is further illustrated in a problem of phase exchange for two particles
of spin j .
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I. INTRODUCTION

When two initially separated quantum systems are led to
interact with each other they lose their individuality. This
means that it is no longer possible to express the state of
one of the systems separately from the other (i.e., they have
got entangled). The relevance of these quantum correlations,
which was recognized already in the early days of the
Quantum Theory, nowadays dispenses with further highlights.
Entanglement has definitely achieved a prominent place within
the quantum phenomenology [1,2].

In a less consensual scenario, foundational questions have
been posed which try to decipher if and how entanglement
manifests in the classical limit. Surprisingly, even though
it is hard to conceive a classical image of entanglement at
first sight, there exists a number of works reporting on the
persistence of entanglement in semiclassical regime. Although
these works agree on this essential point, their approaches are
clearly different in methodology, interpretation, and even on
the very notion of semiclassical limit.

In a seminal work [3], Furuya and co-authors have nu-
merically shown that in the short-time regime entanglement
behaves in accordance with the underlying classical dynamics,
with accentuated differences between chaotic and regular
initial conditions. A key ingredient in this approach is the use of
coherent states, which are used as initial states for the dynamics
as well as to furnish, through a well-defined prescription,
the corresponding classical structure. The approaches of
Refs. [4,5] follow the same essence, though the last one focuses
on systems of two spins. References [6–10], on the other hand,
propose to link entanglement with entropic measures defined
within classical-statistical theories. Still, some authors have
investigated the semiclassical limit of entanglement (and of
decoherence) by applying time-dependent perturbation theory
and diagonal approximations [11–13].

The present work lies in the context delineated by
Refs. [14–16]. Basically, these papers employ semiclassi-
cal propagators to analyze the entanglement dynamics of
bipartite quantum systems. In Jacquod’s approach [14,15],
the approximation is performed using momentum and space
representations simultaneously, while in our previous article
[16] we adopt the coherent-state representation. Although
both calculations yield the same basic results, ours has the

advantage of having been naturally structured to accommodate
spin degrees of freedom. The aim of this contribution is to
carry on this program, providing a semiclassical expression
for entanglement dynamics of two-spin systems.

This paper is organized as follows. We start Sec. II by
reviewing the main elements of the formal structure associated
with the semiclassical spin-coherent-state propagator. We
then introduce the time-reversal propagator and unify the
formalism, this being the first contribution of this paper. With
the basic ingredients at hand, we present in Sec. III our
main result: a semiclassical expression for the entanglement
dynamics. The formula is analyzed in Sec. IV as follows. First,
the canonical result [16] is shown to be exactly reproduced
in an appropriate limit. Second, we test the accuracy of our
semiclassical result in describing the entanglement dynamics
for the problem of phase coupling between two spins j . In
Sec. V, we present our final remarks.

II. SEMICLASSICAL PROPAGATOR IN THE
SPIN-COHERENT-STATE REPRESENTATION

The development of semiclassical approximations for
the quantum propagator in the coherent-state representation
has a long history. It started about 30 years ago with
Klauder’s approach [17] on the one-dimensional canonical-
coherent-state propagator, K(zη,zμ,T ) ≡ 〈zη|e−iĤT /h̄|zμ〉.
Subsequently, other works [18–20] substantially contributed to
the understanding of the semiclassical version of K(zη,zμ,T ).
In particular, Ref. [20] consists of a very detailed study of
the subject and will be, therefore, the main support to our
approach. Moreover, extensions of the semiclassical formula
to further canonical degrees of freedom can be found in
Refs. [21,22], while derivations for spin variables are given
in Refs. [23–27]. In addition, it is worth mentioning a result
on the two-dimensional semiclassical propagator for the case
where one variable is a spin and the other is canonical [28] and
a recent derivation for SU(n) coherent states [29].

Despite this vast literature on semiclassical propagators,
only recently a result has been reported [16], providing
a semiclassical approximation for time-reversal propagators
using the canonical states. In what follows, we extend this
result by deriving a unified formula for the two-dimensional
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semiclassical propagator in the spin-coherent-state representa-
tion, an expression which is considered as the first contribution
of this paper. However, before presenting it, for the sake
of completeness, we briefly review some elements of the
spin-coherent-state formalism.

A. Spin coherent states

Spin coherent states were introduced by Radcliffe [30] in
direct analogy to canonical coherent states. Since then, they
have become important tools in a variety of areas of physics
(see Refs. [31–34] for examples and further details).

The spin coherent state associated with a particle of spin j

is defined as

|s〉 ≡ exp{sĴ+}
(1 + |s|2)j

|−j 〉, (1)

where the label s is a complex number, Ĵ+ is the raising
spin operator, and |−j 〉 is the lowest eigenstate of Ĵ3 with
eigenvalue −j . The notation adopted here is such that both
s and Ĵ+ are dimensionless quantities. That is, in this paper
the operator Ĵ denotes the usual angular momentum operator
divided by h̄, so that its components satisfy

[Ĵ1,Ĵ2] = iĴ3, (2)

plus cyclic commutation relations. In terms of these states, an
over-complete unity resolution can be written as∫

|s〉〈s| dν(s) ≡ 1s , dν(s) = 2j + 1

π

ds(R)ds(I )

(1 + |s|2)2
, (3)

where s(R) and s(I ) are, respectively, the real and the imaginary
parts of s, and the integral runs from −∞ to +∞. In addition,
spin coherent states are, in general, nonorthogonal as can be
seen in the overlap,

〈sη|sμ〉 = (1 + s∗
ηsμ)2j

(1 + |sη|2)j (1 + |sμ|2)j
. (4)

It can be shown that |s〉 saturates the uncertainty relation
〈�Â2〉〈�B̂2〉 � 1

4 |〈[Â,B̂]〉|2 + 1
4 |〈{�Â,�B̂}〉|2 [35] for an-

gular momentum operators, which implies that spin coherent
states are minimum uncertainty states.

B. Spin semiclassical propagator

Let the forward (ξ = +1) and backward (ξ = −1) quantum
propagator in the spin-coherent-state representation be written
as

Kξ (s∗
η,sμ,T ) ≡ 〈sηx,sηy |e−iξĤT /h̄|sμx,sμy〉.

Considering the limits j → ∞ and h̄ → 0 with the product h̄j

finite, we follow Refs. [16,20,28] to obtain the semiclassical
formula,

Kξ (s∗
η,sμ,T ) =

∑
c.t.

√
Pξ e

i
h̄

(Sξ +Gξ )−�. (5)

The indices x and y in |s〉 ≡ |sx〉 ⊗ |sy〉 refer to different
subsystems. We assume, for simplicity, that the spins have the
same magnitude j (i.e., both Hilbert spaces have dimension
2j + 1). The right-hand side of Eq. (5) depends only on
complex trajectories governed by a Hamiltonian function H̃

(see below). In terms of auxiliary variables u and v, the
Hamilton equations are

∂H̃

∂uk

= −2ijh̄v̇k

(1 + ukvk)2
and

∂H̃

∂vk

= 2ijh̄u̇k

(1 + ukvk)2
, (6)

where k = x,y and H̃ (u,v) = H̃ (s,s∗) ≡ 〈s|Ĥ |s〉. This equal-
ity implicitly defines the new variables through the replace-
ment of s and s∗ by u and v, respectively. Trajectories
contributing to Eq. (5) must satisfy the boundary conditions,

u′ = sμ and v′′ = s∗
η, for ξ = +1,

(7)
u′′ = sμ and v′ = s∗

η, for ξ = −1.

In our notation, single (double) prime stands for initial (final)
time. The sum in Eq. (5) runs over all trajectories governed by
Eqs. (6) and submitted to boundary conditions (7).

The complex action Sξ = Sξ (s∗
η,sμ,T ) and the function

Gξ = Gξ (s∗
η,sμ,T ), in Eq. (5), are explicitly written as

i

h̄
Sξ = ξ

∫ T

0

⎡
⎣j

∑
k=x,y

(
ukv̇k − vku̇k

1 + ukvk

)
− i

h̄
H̃

⎤
⎦ dt + �̃,

(8)
i

h̄
Gξ = −ξ

4

∫ T

0

∑
k=x,y

[
∂u̇k

∂uk

− ∂v̇k

∂vk

]
dt.

The factors � (accounting for the normalization) and �̃,
appearing in Eqs. (5) and (8), respectively, are given by

� = j
∑

k=x,y

ln[(1 + |sηk|2)(1 + |sμk|2)],

(9)
�̃ = j

∑
k=x,y

ln[(1 + u′
kv

′
k)(1 + u′′

kv
′′
k )].

At last, the prefactor of Eq. (5) can be written as

Pξ = det

(
i

h̄
S(ξ )

sμs∗
η

) ∏
k=x,y

(
(1 + u′′

kv
′′
k )(1 + u′

kv
′
k)

2j

)
, (10)

where

S(ξ )
sμs∗

η
=
⎛
⎝ ∂2Sξ

∂sμx∂s∗
ηx

∂2Sξ

∂sμx∂s∗
ηy

∂2Sξ

∂sμy∂s∗
ηx

∂2Sξ

∂sμy∂s∗
ηy

⎞
⎠ . (11)

We point out that the phase of Pξ plays a role similar to that
of the Maslov phase in the coordinate propagator. Because of
the square root in Eq. (5), we must track it over time and add,
after each complete turn, a phase −π to the propagator.

For future use, we differentiate Sξ to get

i

2jh̄

∂Sξ

∂sμk

=
⎧⎨
⎩

v′
k

1+u′
kv

′
k

, for ξ = +1,

v′′
k

1+u′′
k v

′′
k

, for ξ = −1,
(12)

and

i

2jh̄

∂Sξ

∂s∗
ηk

=
⎧⎨
⎩

u′′
k

1+u′′
k v

′′
k

, for ξ = +1,

v′
k

1+u′
kv

′
k

, for ξ = −1.
(13)

In addition, ∂Sξ /∂T = −ξH̃ (u′,v′) = −ξH̃ (u′′,v′′). As
shown in Appendix A, Eqs. (12) and (13) allow one to write
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second derivatives ofSξ in terms of the elements of the stability
matrix M, which is defined by(

δu′′

δv′′

)
≡ M

(
δu′

δv′

)
=
(

Muu Muv

Mvu Mvv

)(
δu′

δv′

)
. (14)

It follows that in terms of M the prefactor reduces to

Pξ =
∏

k=x,y

(
1 + u′′

kv
′′
k

1 + u′
kv

′
k

)
×
{

det M−1
vv , for ξ = +1

det M−1
uu , for ξ = −1

, (15)

which is clearly more appropriate for numerical purposes.
At this point, it is worth mentioning why trajectories

contributing to Eq. (5) are complex in general. As pointed out
after Eq. (6), s and s∗ were just replaced by the new variables
u and v, respectively. However, if one simply considers that
u = v∗, a seemingly natural assumption, one cannot generally
find contributing trajectories to Eq. (5). In fact, for both
values of ξ , this would impose an excessive number of
boundary conditions, since the evolution time T , and the
initial (u′,v′) and final (u′′,v′′) phase space points would be
completely determined. This over-constrained problem can
be circumvented by introducing the aforementioned complex
trajectories, which are obtained by extending the real and
imaginary parts of s to the complex plane. This procedure
is equivalent to assume that s∗ is no longer the complex
conjugate of s. Such a maneuver, whose formal support is
given in Ref. [20], justifies why s and s∗ are renamed u and v.1

Finally, it is also important to note that if, in a given instant
of time τ , a trajectory has only non-null real coordinates
[i.e., u(τ ) = [v(τ )]∗], then it will be always real. This can be
seen as follows. If Ĥ is Hermitian, then 〈s|Ĥ |s〉 = (〈s|Ĥ |s〉)∗,
implying that H̃ can be written as a power series of the real and
imaginary parts of s, with real coefficients. Rewriting Eq. (6)
in terms of s(R) and s(I ), one may verify that real points in phase
space, namely, those for which Im{s(R)} = Im{s(I )} = 0, are
allowed to possess only real phase-space velocities. It follows
that the motion is constrained to the real phase space.

III. SEMICLASSICAL ENTANGLEMENT IN PURE
BIPARTITE SPIN SYSTEMS

The entanglement dynamics of a pure bipartite system
composed of subsystems x and y can be quantified by the
linear entropy of the reduced density matrix,

Slin(ρ̂x) = 1 − P (ρ̂x), (16)

where ρ̂x = Tryρ̂, ρ̂ = |ψ(T )〉〈ψ(T )|, and |ψ(T )〉 is the state
of the system in a given instant of time T . The purity of the

1A natural justification for the fact that s and s∗ are not complex
conjugate of each other can be stated as follows. In the present
formalism, the classical Hamiltonian H̃ (s,s∗) actually arises from
the discrete Hamiltonian H̃ (sk,s∗

k+1) when the continuous time limit
is taken. Here, sk and s∗

k+1 are indeed independent variables as they
refer to different instants of time: k refers to a given instant t , while
k + 1 refers to t + ε. Thus, although in the continuous time limit
(ε → 0) we simply apply the replacements sk → s and s∗

k+1 → s∗,
they should be still treated as independent variables.

reduced density matrix ρ̂x is given by

P (ρ̂x) ≡ Trx
{
ρ̂2

x

} = Trx{[Tryρ̂(T )]2}, (17)

a positive quantity lying on the interval [0,1]. For pure bipartite
systems P is symmetric [i.e., P (ρ̂x) = P (ρ̂y)], and keeps equal
to unity for noninteracting systems.

In what follows, we restrict our approach to situations in
which the initial state |ψ(0)〉 is a product of spin coherent
states, |s0〉 = |s0x〉 ⊗ |s0y〉, so that Slin(ρ̂x,y(0)) = 0. By doing
so, the matrix elements of the density operator in the spin-
coherent-state representation,

〈sη|ρ̂(T )|sμ〉 = 〈sη|e−iĤT /h̄|s0〉〈s0|eiĤT /h̄|sμ〉,
for a generic time-independent Hamiltonian Ĥ , become
kernels in Eq. (17). In terms of the notation of the previous
section, these elements can be semiclassically approached by

〈sη|ρ̂(T )|sμ〉semi ≡ K+(s∗
η,s0,T )K−(s∗

0,sμ,T ). (18)

Plugging this expression into Eq. (17) and taking the traces
in the spin-coherent-state representation, we readily obtain a
semiclassical version of the purity,

Psc(T ) ≡
∫

K+((w∗
x,s

∗
y ),s0,T )K−(s∗

0,(sx,sy),T )

×K+((s∗
x ,w

∗
y),s0,T )K−(s∗

0,(wx,wy),T )

× dν(sy)dν(wy)dν(sx)dν(wx). (19)

As seen by Eq. (3), this integral spans the whole eight-
dimensional real space composed of the real and imaginary
parts of sx , sy , wx , and wy .

Now, let us consider, for simplicity, that only one trajectory
contributes to each propagator. Then, the integrand depends
on four complex trajectories, each one contributing to its
respective propagator and obeying distinct, though correlated,
boundary conditions, namely,

u′ = s0 and v′′ = (w∗
x,s

∗
y ), for K+((w∗

x,s
∗
y ),s0,T ),

v′ = s∗
0 and u′′ = (sx,sy), for K−(s∗

0,(sx,sy),T ),
(20)

u′ = s0 and v′′ = (s∗
x ,w

∗
y), for K+((s∗

x ,w
∗
y),s0,T ),

v′ = s∗
0 and u′′ = (wx,wy), for K−(s∗

0,(wx,wy),T ).

Although integral (19) is rather unlikely to be analytically
solved for general Hamiltonians, its structure is proper for
the application of the saddle point approximation [36]. As
carefully discussed in Ref. [20], it is possible to analytically
extend integral (19) to a line integral over an eight-dimensional
complex space, which is obtained by the complex exten-
sion of the real and imaginary parts of sx , sy , wx , and
wy . This procedure is equivalent to working with the set
(sx,s

∗
x ,sy,s

∗
y ,wx,w

∗
x,wy,w

∗
y) of eight independent complex

variables. Obviously, such a change of variables implies that
[see Eq. (3)]

dν(s) = 2j + 1

π

ds(R)ds(I )

(1 + |s|2)2
= 2j + 1

2πi

ds ds∗

(1 + s s∗)2
. (21)

In this new scenario, the first step of the saddle point method
can be directly performed. It consists of looking for critical
points (s̄x ,s̄

∗
x ,s̄y,s̄

∗
y ,w̄x,w̄

∗
x,w̄y,w̄

∗
y) of the integration variables.
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Neglecting derivatives of the terms Gξ and Pξ , as justified in
Ref. [20], the saddle points are obtained from

∂

∂s̄∗
y

[
Ls̄y

+ i

h̄
S+((w̄∗

x,s̄
∗
y ),s0,T )

]

= ∂

∂s̄y

[
Ls̄y

+ i

h̄
S−(s∗

0,(s̄x ,s̄y),T )
]

= ∂

∂s̄∗
x

[
Ls̄x

+ i

h̄
S+((s̄∗

x ,w̄
∗
y),s0,T )

]

= ∂

∂s̄x

[
Ls̄x

+ i

h̄
S−(s∗

0,(s̄x ,s̄y),T )
]

= ∂

∂w̄∗
y

[
Lw̄y

+ i

h̄
S+((s̄∗

x ,w̄
∗
y),s0,T )

]

= ∂

∂w̄y

[
Lw̄y

+ i

h̄
S−(s∗

0,(w̄x,w̄y),T )
]

= ∂

∂w̄∗
x

[
Lw̄x

+ i

h̄
S+((w̄∗

x,s̄
∗
y ),s0,T )

]

= ∂

∂w̄x

[
Lw̄x

+ i

h̄
S−(s∗

0,(w̄x,w̄y),T )
]

= 0, (22)

where Lαk
= −2j ln(1 + αk α∗

k ), with αk assuming s̄x , s̄y , w̄x ,
or w̄y . Using Eqs. (12) and (13) one shows that Eq. (22) implies
that the four critical trajectories contributing to Eq. (19) should
obey the following additional boundary conditions:

ū′′
y = s̄y and ū′′

x = w̄x, for K+((w̄∗
x,s̄

∗
y ),s0,T ),

v̄′′
y = s̄∗

y and v̄′′
x = s̄∗

x , for K−(s∗
0,(s̄x ,s̄y),T ),

(23)
ū′′

y = w̄y and ū′′
x = s̄x , for K+((s̄∗

x ,w̄
∗
y),s0,T ),

v̄′′
y = w̄∗

y and v̄′′
x = w̄∗

x, for K−(s∗
0,(w̄x,w̄y),T ).

It follows from Eqs. (20) and (23) that the final boundary
conditions of the four critical trajectories must be real, namely,
ū′′ = (v̄′′)∗. Since this implies that these trajectories have to be
real for every instant of time, we conclude that the critical set is
necessarily composed of four real trajectories. Because of this
constraint, the initial boundary conditions of each trajectory
become completely determined and, moreover, turn out to be
the same. Therefore, there is no other option but to consider that
all critical trajectories actually correspond to the same solution
departing from ū′ = s0 and v̄′ = s∗

0. Clearly, this trajectory
simultaneously satisfies Eqs. (20) and (23).

Now, expanding Eq. (19) up to second order around the
four critical trajectories produces

Psc = T
det M̄uu det M̄vv

∫
e

1
2 δzT Aδzdν(z), (24)

where dν(z) ≡ dν(sy)dν(wy)dν(sx)dν(wx) and

δzT ≡ (δwx δwy δs∗
x δw∗

y δsx δsy δw∗
x δs∗

y ), (25)

with δβk = βk − β̄k . Here, β assumes w or s, or still their
complex conjugates, while k assumes x or y. In addition,

T ≡
∏

k=x,y

(1 + ū′′
k v̄

′′
k )2

(1 + s0k s∗
0k)2

, (26)

and the matrix A contains second derivatives of S̄± and Lαk
.

The Gaussian integral in Eq. (24) can be exactly solved, as
shown in Appendix B. Using the result (B1) one may rewrite
Eq. (24) as

Psc = T√
(d − d ′)2 − d ′′2

, (27)

where

d = det M̄uu det M̄vv + det M̄uv det M̄vu,

d ′ = det Ā det B̄ + det C̄ det D̄,

d ′′ = det Ā′ det B̄′ + det C̄′ det D̄′,

with the auxiliary matrices,

(
Ā D̄

C̄ B̄

)
≡

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠ M̄,

(28)

(
Ā′ D̄′
C̄′ B̄′

)
≡

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ M̄.

In writing Psc in terms of these auxiliary matrices, we have
used the relations,

M̄uvM̄−1
vv = 1

det M̄vv

(
det D̄ − det D̄′

det B̄′ det B̄

)
,

(29)

M̄vuM̄−1
uu = 1

det M̄uu

(
det C̄ det Ā′

−det C̄′ det Ā

)
,

which can be directly verified. Equation (27) can be further
simplified by noting that the determinant of matrix M̄ can be
written as

det M̄ = d − d ′ − d ′′, (30)

so that

Psc = T√
det M̄[det M̄ + 2d ′′]

=
[

1 + 2d ′′

T

]−1/2

. (31)

To derive the last equation we have used the result det M̄ = T ,
whose demonstration is left to Appendix C.

Equation (31) is the main result of this paper. It correctly
reproduces two important properties of the quantum purity
for pure bipartite systems. First, through the analysis of
the elements of M̄ one may readily verify that d ′′ = 0 for
noninteracting systems. In this case, Eq. (31) reduces to
Psc(T ) = 1 (and Slin(T ) = 0), as expected. Second, Eq. (31)
is symmetric, since it is invariant under the exchange of the
indices x and y. This can be shown by direct inspection of
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Eq. (C6) and the elements of d ′′,

det Ā′ = − (1 + ū′′
x v̄

′′
x )2

2ijh̄

∂2S̄−
∂ū′′

x∂ū′′
y

det M̄uu,

det B̄′ = − (1 + ū′′
y v̄

′′
y )2

2ijh̄

∂2S̄+
∂v̄′′

y∂v̄′′
x

det M̄vv,

(32)

det C̄′ = + (1 + ū′′
y v̄

′′
y )2

2ijh̄

∂2S̄−
∂ū′′

y∂ū′′
x

det M̄uu,

det D̄′ = + (1 + ū′′
x v̄

′′
x )2

2ijh̄

∂2S̄+
∂v̄′′

x∂v̄′′
y

det M̄vv,

which are obtained from the last of Eq. (A3) and the first of
Eq. (A6), combined with Eq. (29).

IV. ANALYSIS

In this section, further arguments are given which help
one to access the qualities and limitations of the semiclassical
formula (31) as a quantifier of entanglement dynamics.

We start by noting that Eq. (31) essentially contains correla-
tions among elements of the stability matrix. Remarkably, this
means that the onset of entanglement is exclusively determined
by the stability of a trajectory departing from the center of |s0〉.
This trajectory, which is selected by rigid boundary conditions
imposed by the approximation method, is the solution of a
classical structure defined by equations of motion (6) and
Hamiltonian H̃ = 〈s|Ĥ |s〉. This result is in total agreement
with those reported in Refs. [14–16] for canonical degrees of
freedom and, to the best of our knowledge, is the first of this
nature for systems of spins.

Also noticeable is the fact that Psc does not depend on h̄ or j

separately, except through H̃ . A direct inspection of equations
of motion (6)—the building blocks of M̄ and hence of Psc—
reveals an explicit dependence only on the product h̄j , which
keeps finite in the semiclassical regime. As a consequence, we
expect our result to remain valid even in the strict classical
limit, as defined by h̄ = 0, j = ∞, and h̄j finite. Moreover,
one may regard this as a formal proof that entanglement must
survive in the classical limit of closed pure systems.

A careful inspection of the semiclassical propagators
reveals that the exclusive dependence on h̄j derives from the
fact that all four contributing trajectories coalesce to a single
solution. As a consequence, contributions emerging from the
exponentials, which contain, separately, terms on h̄ and j ,
cancel out identically as evidenced in Eq. (24). While this
simplifies the calculation, since that all functions turn out to
be expanded around a single trajectory, the validity of our result
gets restricted. Indeed, it seems that semiclassical approaches
containing just one contributing trajectory do not contemplate
more complex behaviors, as oscillations and revivals, or
even longer evolution times. Usually, such features are well
described in semiclassical physics only when more trajectories
are considered [37–39]. Then we expect that, in general, our
derivation be valid just for short values of time, a region where
just one trajectory is able to reproduce quantum results. We
point out that our program here was just to keep the standard
steps of the saddle point method arriving at a first formula,
leaving improvements on the formalism to a future work.

Finally, although the derivation of Eq. (5) demands the
limit j → ∞, as discussed in Refs. [25,26,28] this kind of
approximation also applies for systems with spin j = 1/2.
Basically, it works because second-order expansions, the
essence of the approximations performed, are enough to
describe correctly the dynamics of spin- 1

2 systems. We then
expect that Eq. (31) may be also applied to this class of
problems.

A. The canonical limit

A further interesting test for our result concerns the
canonical limit. According to Refs. [32,34], canonical coherent
states can be obtained from spin coherent states through
a contraction process, which is implemented as follows.
Introducing scaled quantities s = z/

√
2j and Ĵ+ = √

2j â†,
one takes the limit j → ∞ to get

|s〉 −→ exp{zâ†}(
1 + |z|2/2

j

)j |−j 〉 ≈ ezâ†− 1
2 |z|2 |0〉 = |z〉,

|z〉 being the well-known canonical coherent state. In addition,
discarding terms smaller than j−1, it immediately follows that

j
sṡ∗ − ṡs∗

1 + ss∗ −→ 1

2
(zż∗ − żz∗),

(1 + sηs
∗
μ)j −→ exp

{
1

2
zηz

∗
μ

}
, (33)

∂ṡ

∂s
+ ∂ṡ∗

∂s∗ −→ −2
i

h̄

∂2H̃

∂z∂z∗ ,

and

det S(ξ )
sμs∗

η

∏
k=x,y

(1 + u′′
kv

′′
k )(1 + u′

kv
′
k)

2j
−→ det S(ξ )

zμz∗
η
. (34)

With these expressions, we convert the formalism presented in
the previous section to that of the canonical case. In addition,
we should be still able to recover the semiclassical purity
derived in Ref. [16], which is given by

P (can)
sc = Ẽ−1/2 det M̄uu det M̄vv, (35)

where

Ẽ = Ẽ ′ + [(det M̄uu det M̄vv − det Ā det B̄)

× (det M̄uu det M̄vv − det C̄ det D̄) − Ẽ ′′]2,

Ẽ ′ = −4(det M̄uu det M̄vv det Ā′ det B̄′)2,

Ẽ ′′ = (det Ā′)2 det B̄ det D̄ − (det Ā′ det B̄′)2

+ (det B̄′)2 det Ā det C̄.

In order to prove the equivalence between Eqs. (27) and (35),
we use Eq. (32) in the limit considered to show that√

−Ẽ ′

det M̄uu det M̄vv
= det Ā′ det B̄′ + det Ā′ det B̄′

= det Ā′ det B̄′ + det C̄′ det D̄′

= d ′′,
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and √
Ẽ − Ẽ ′

det M̄uu det M̄vv
= det M̄uu det M̄vv

− (det Ā det B̄ + det C̄ det D̄)

+ (det Ā′2 − det Ā det C̄)

det M̄uu

× (det B̄′2 − det B̄ det D̄)

det M̄vv

= d − d ′,

where the last equality was obtained by using the determinant
of Eq. (29),

−det M̄uu det M̄vu = det Ā′2 − det Ā det C̄,
(36)

−det M̄vv det M̄uv = det B̄′2 − det B̄ det D̄.

Since T → 1 in the considered limit, simple manipulations on
the above expressions complete the proof of equivalence.

Another interesting byproduct of our approach emerges by
taking the canonical limit in only one of the subsystems. This
procedure automatically adapts our formalism—after minor
modifications on Eqs. (33) and (34)—to describe, for instance,
spin-boson systems.

B. Case study: phase coupling

Let us consider two particles, x and y, both with spins
j , coupled to the time-independent classical magnetic field
B = (0,0,B3). The f ree Hamiltonian may be written as Ĥ0 =
Ĥ

(x)
0 + Ĥ

(y)
0 , where Ĥ

(k)
0 = B3Ĵ

(k)
3 , for k = x,y. Suppose that

the spins interact with each other via the coupling,

Ĥ = λh̄
[
Ĵ

(x)
3 ⊗ Ĵ

(y)
3

]
, (37)

where λ is the coupling parameter. The Heisenberg equation
ih̄(dĤ

(k)
0 /dt) = [Ĥ (k)

0 ,Ĥ0 + Ĥ ] = 0 implies that there is no
energy exchange between the spins. This is why Hamiltonian
(37) is said to describe a phase coupling.

Since the entanglement dynamics cannot be influenced
by local terms, hereafter we work only with the interaction
Hamiltonian (37) instead of the total Hamiltonian Ĥ + Ĥ0.
In addition, we assume that the initial state is given by
|ψ(0)〉 = |s0x〉 ⊗ |s0y〉, with

|s0k〉 = 1

(1 + |s0k|2)j

2j∑
nk=0

(
2j

nk

)1/2

s
nk

0k |−j + nk〉. (38)

Setting N = (1 + |s0x |2)j (1 + |s0y |2)j and applying conven-
tional techniques of the quantum formalism it is straightfor-
ward to show that

P (ρ̂x(T )) = 1

N4

∑(
2j

nx

)(
2j

n′
x

)(
2j

ny

)(
2j

n′
y

)

× |s0x |2σx |s0y |2σy e−iλ T δx δy , (39)

where δk ≡ nk − n′
k , σk ≡ nk + n′

k , and the sum is over
nx,ny,n

′
x,n

′
y , running from 0 to ∞. This result equals P (ρ̂y(T ))

since it is clearly invariant by the exchange of the indices x

and y.

In order to establish contact with the semiclassical result,
we compute the short-time expression for the entanglement
generation. By expanding the result (39) up to second order in
time we obtain

Slin(T ) ∼=
[ √

8 |s0x | |s0y | jλ T

(1 + |s0x |2)(1 + |s0y |2)

]2

. (40)

As anticipated by the discussion of Sec. IV A, we expect this
result to reproduce the canonical one under the parametrization
s0k = z0k/

√
2j followed by the limit j → ∞. Evaluating the

above expression in these terms, we obtain

lim
j→∞

Slin(T ) ∼= 2 |z0x |2 |z0y |2 (λT )2, (41)

which indeed yields a result equivalent in structure to that
obtained in Ref. [16] for a system of two oscillators.

To apply the semiclassical formalism to this system, we
first find the classical Hamiltonian associated with Eq. (37):

H̃ (u,v) = 〈v|λh̄[Ĵ (x)
3 ⊗ Ĵ

(y)
3

]|u〉

= λh̄j 2

(
1 − uxvx

1 + uxvx

)(
1 − uyvy

1 + uyvy

)
. (42)

Equations of motion (6) result in⎛
⎜⎜⎜⎝

u̇x

u̇y

v̇x

v̇y

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

λx 0 0 0

0 λy 0 0

0 0 −λx 0

0 0 0 −λy

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ux

uy

vx

vy

⎞
⎟⎟⎟⎠ , (43)

where λx = iλj ( 1−uyvy

1+uyvy
) and λy = iλj ( 1−uxvx

1+uxvx
). It is clear that

both uxvx and uyvy are constants of motion. Then trajectories
are readily obtained in terms of their initial conditions,

ux(t) = u′
xe

λx t , uy(t) = u′
ye

λy t ,
(44)

vx(t) = v′
xe

−λx t , vy(t) = v′
ye

−λy t .

From them, and remembering that λx = λx(u′
y,v

′
y) and λy =

λy(u′
x,v

′
x), the stability matrix is straightforwardly written as

M = M1M2, where

M1 = 2t

⎛
⎜⎜⎜⎝

λxe
λx t 0 0 0

0 λye
λy t 0 0

0 0 λxe
−λx t 0

0 0 0 λye
−λy t

⎞
⎟⎟⎟⎠ ,

and

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2λx t

−u′
xv

′
y

1−u′
y

2v′
y

2 0
−u′

xu
′
y

1−u′
y

2v′
y

2

−u′
yv

′
x

1−u′
x

2v′
x

2
1

2λy t

−u′
yu

′
x

1−u′
x

2v′
x

2 0

0
v′

xv
′
y

1−u′
y

2v′
y

2
1

2λx t

v′
xu

′
y

1−u′
y

2v′
y

2

v′
yv

′
x

1−u′
x

2v′
x

2 0
v′

yu
′
x

1−u′
x

2v′
x

2
1

2λy t

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then, as for this system T amounts to 1, and

det A′ = 2v′
xv

′
yλxt

1 − u′
y

2v′
y

2 , det B′ = −2u′
xu

′
yλyt

1 − u′
x

2v′
x

2 ,

(45)

det C′ = −2v′
yv

′
xλyt

1 − u′
x

2v′
x

2 , det D′ = 2u′
xu

′
yλxt

1 − u′
y

2v′
y

2 ,
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we finally find that

Psc(T ) = [1 + 2d ′′]−1/2

=
[

1 − 16u′
xv

′
xu

′
yv

′
yλxλyT

2(
1 − u′

x
2v′

x
2
)(

1 − u′
y

2v′
y

2
)
]−1/2

≈ 1 −
[ √

8 |s0x | |s0y | j λ T

(1 + |s0x |2)(1 + |s0y |2)

]2

, (46)

which agrees with the quantum result (40).
This case study highlights the major difficulty of our

approach: The semiclassical formula applies accurately only
in the short-time regime. Nevertheless, this is not really
surprising. As pointed out above, it is well known that quantum
phenomena can be well described semiclassically only via
many contributing trajectories. As we have seen, this is not
the case here. Actually, this turns out to be one of the next
challenging questions in the context drawn so far: how to
improve the semiclassical formula so as to correctly describe
the entanglement dynamics for longer times.

V. FINAL REMARKS

In summary, this paper is concerned with autonomous
systems of two spins j prepared in a product of spin coherent
states. We looked at the entanglement dynamics as quantified
by the linear entropy—or its kernel, the quantum purity—
as a function of time. A semiclassical approximation for
the purity was derived by replacing exact propagators by
their semiclassical versions. The calculation, which employed
the saddle point method to analytically solve the integrals,
produced the semiclassical expression (31), the main result
of this paper. This formula allows one to express the onset
of entanglement in terms of a classical structure, defined
by a Hamiltonian function, equations of motions, and a set
of boundary conditions involving the initial conditions. The
semiclassical time-reversal spin-coherent-state propagator (5)
is another original derivation of this work.

The adequacy of our results was illustrated by some
important analytical tests. First, the semiclassical purity was
shown to be symmetric. This property, which is not trivially
reproduced by classical entropic measures [6,9], indicates that
our formula does capture the quantum essence of entangle-
ment. Interestingly, however, the resulting structure is shown
not to importantly depend on h̄ or j separately. This constitutes
a symptom of the fact that the semiclassical result should be
accurate only in the short-time regime. Second, it was shown
that the semiclassical purity correctly recovers the canonical
result [16] in the large-spin limit. We concluded the tests with a
case study which confirmed the accuracy of our semiclassical
result in the regime of short times.

Finally, it is worth noting that our results and conclusions
are in consonance with many others reported for canonical
degrees of freedom [3,4,14,16], especially in what regards
the link between entanglement dynamics and stability of
underlying classical structures. A natural continuation of this
paper includes the improvement of the semiclassical formula
so as to reproduce the exact entanglement dynamics in regimes
of longer values of time. Work on this topic is now in progress.
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APPENDIX A: ELEMENTS OF THE STABILITY MATRIX
AND SECOND DERIVATIVES OF THE ACTION

In this Appendix we derive relations between elements
of the stability matrix M, defined by Eq. (14), and second
derivatives of the complex action Sξ , defined by Eq. (8). We
start by performing variations on both sides of Eqs. (12) and
(13). Dealing first with ξ = +1, we get

[
�+ +

(
A+ 0

0 C+

)](
δu′

δv′′

)
=
(

0 B+
D+ 0

)(
δu′′

δv′

)
,

(A1)

where

�+ ≡
(

S(+)
u′u′ S(+)

u′v′′

S(+)
v′′u′ S(+)

v′′v′′

)
, S(+)

ab ≡
⎛
⎝ ∂2S+

∂ax∂bx

∂2S+
∂ax∂by

∂2S+
∂ay∂bx

∂2S+
∂ay∂by

⎞
⎠ ,

with a and b assuming u′ or v′′, and

A+ ≡ −2ijh̄

⎛
⎝ v′

x
2

(1+u′
xv

′
x )2 0

0
v′

y
2

(1+u′
yv

′
y )2

⎞
⎠ ,

B+ ≡ −2ijh̄

(
1

(1+u′
xv

′
x )2 0

0 1
(1+u′

yv
′
y )2

)
,

C+ ≡ −2ijh̄

⎛
⎝ u′′

x
2

(1+u′′
xv

′′
x )2 0

0
u′′

y
2

(1+u′′
yv

′′
y )2

⎞
⎠ ,

D+ ≡ −2ijh̄

(
1

(1+u′′
xv

′′
x )2 0

0 1
(1+u′′

yv
′′
y )2

)
.

Rearranging Eq. (A1), so as to write the final displacements
δu′′ and δv′′ as a function of the initial ones δu′ and δv′, and
comparing it with Eq. (14) lead to

Muu = D−1
+ {S(+)

v′′u′ − C̃+[S(+)
u′v′′ ]−1Ã+},

Muv = D−1
+ C̃+[S(+)

u′v′′ ]−1B+, (A2)

Mvu = −[S(+)
u′v′′ ]−1Ã+, Mvv = [S(+)

u′v′′ ]−1B+,

where Ã+ ≡ S(+)
u′u′ + A+ and C̃+ ≡ S(+)

v′′v′′ + C+. Inverting
these relations, one shows that

S(+)
u′u′ = −B+M−1

vv Mvu − A+, S(+)
u′v′′ = B+M−1

vv ,

S(+)
v′′u′ = D+

[
Muu − MuvM−1

vv Mvu
]
, (A3)

S(+)
v′′v′′ = D+MuvM−1

vv − C+.
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Analogous relations can be found for ξ = −1. Differenti-
ating Eqs. (12) and (13), we find that

[
�− +

(
A− 0

0 C−

)](
δu′′

δv′

)
=
(

0 B−
D− 0

)(
δu′

δv′′

)
,

(A4)

where

�− ≡
(

S(−)
u′′u′′ S(−)

u′′v′

S(−)
v′u′′ S(−)

v′v′

)
, S(−)

ab ≡
⎛
⎝ ∂2S−

∂ax∂bx

∂2S−
∂ax∂by

∂2S−
∂ay∂bx

∂2S−
∂ay∂by

⎞
⎠ ,

with a and b now assuming u′′ or v′, and

A− ≡ −2ijh̄

⎛
⎝ v′′

x
2

(1+u′′
xv

′′
x )2 0

0
v′′

y
2

(1+u′′
yv

′′
y )2

⎞
⎠ ,

B− ≡ −2ijh̄

(
1

(1+u′′
xv

′′
x )2 0

0 1
(1+u′′

yv
′′
y )2

)
,

C− ≡ −2ijh̄

⎛
⎝ u′

x
2

(1+u′
xv

′
x )2 0

0
u′

y
2

(1+u′
yv

′
y )2

⎞
⎠ ,

D− ≡ −2ijh̄

(
1

(1+u′
xv

′
x )2 0

0 1
(1+u′

yv
′
y )2

)
.

Manipulating Eq. (A4) in a convenient way, we get

Muu = [S(−)
v′u′′]−1D−, Muv = −[S(−)

v′u′′]−1C̃−,

Mvu = B−1
− Ã−[S(−)

v′u′′ ]−1D−, (A5)

Mvv = B−1
− {S(−)

u′′v′ − Ã−[S(−)
v′u′′ ]−1C̃−},

where Ã− ≡ S(−)
u′′u′′ + A− and C̃− ≡ S(−)

v′v′ + C−. Inverting them
leads to

S(−)
u′′u′′ = B−MvuM−1

uu − A−,

S(−)
u′′v′ = B−

[
Mvv − MvuM−1

uu Muv
]
, (A6)

S(−)
v′u′′ = D−M−1

uu , S(−)
v′v′ = −D−M−1

uu Muv − C−.

Equations (A2), (A3), (A5), and (A6) establish the intended
connection between elements of the stability matrix and
second derivatives of the action. In particular, they prove the
equivalence between Eqs. (10) and (15), provided that we
identify det S(+)

sμs∗
η

and det S(−)
sμs∗

η
with det S(+)

u′v′′ and det S(−)
v′u′′ =

det S(−)
u′′v′ , respectively.

APPENDIX B: GAUSSIAN INTEGRAL

In this Appendix we solve the Gaussian integral,

I ≡
∫

e
1
2 δzT A δz dν(z),

which the semiclassical purity Psc depends on, as shown in
Eq. (24). While δz and dν(z) are defined in the main text, the

8 × 8 matrix A is composed of the following 4 × 4 blocks:

A11 ≡
(

Cw̄∗ + i
h̄

S̄(−)
u′′u′′ Bw̄y

Bw̄y
Cs̄ + i

h̄
S̄(+)

v′′v′′

)
,

A22 ≡
(

Cs̄∗ + i
h̄

S̄(−)
u′′u′′ Bs̄y

Bs̄y
Cw̄ + i

h̄
S̄(+)

v′′v′′

)
,

A12 ≡
(

0 Bw̄x

Bs̄x
0

)
, and A21 ≡

(
0 Bs̄x

Bw̄x
0

)
,

where Cᾱ = −ᾱ2
xBᾱx

− ᾱ2
yBᾱy

,

Bᾱx
≡
( −2j

(1+ᾱx ᾱ∗
x )2 0

0 0

)
and Bᾱy

≡
(

0 0

0 −2j

(1+ᾱy ᾱ∗
y )2

)
,

with α assuming s, s∗, w, and w∗. In Appendix A, second
derivatives of the actionsS± are written in terms of the stability
matrix M of the pertinent trajectory. Using Eqs. (A3) and (A6),
and recalling that the trajectory associated to S̄+ is identical to
that associated to S̄−, we rewrite the above matrices as

A11 = A22 =
(−S M̄vuM̄−1

uu S Ry

S Ry −S M̄uvM̄−1
vv

)
,

A12 = A21 =
(

0 S Rx

S Rx 0

)
,

where

Rx =
(

1 0

0 0

)
, Ry =

(
0 0

0 1

)
, and

S =
( −2j

(1+ū′′
x v̄

′′
x )2 0

0 −2j

(1+ū′′
y v̄

′′
y )2

)
.

With these arrangements, the determinant of A can be
straightforwardly calculated, resulting that

det A = (det S)4
[
a2

1 − a2
2

]
,

where

a1 = 1 + det M̄vu det M̄−1
uu det M̄uv det M̄−1

vv

− hT
x M̄vu M̄−1

uu hx hT
x M̄uv M̄−1

vv hx

− hT
y M̄vu M̄−1

uu hy hT
y M̄uv M̄−1

vv hy ,

a2 = hT
x M̄vu M̄−1

uu hy hT
y M̄uv M̄−1

vv hx

+ hT
y M̄vu M̄−1

uu hx hT
x M̄uv M̄−1

vv hy,

with hT
x ≡ (1,0) and hT

y ≡ (0,1). Using Eq. (21) and 2j+1
2j

≈ 1,
which becomes exact in the limit considered, we finally find
that

I = (2j + 1)4 (det A)−1/2

(1 + ū′′
x v̄

′′
x )4(1 + ū′′

y v̄
′′
y )4

≈
√

1

a2
1 − a2

2

. (B1)

APPENDIX C: DETERMINANT OF THE STABILITY
MATRIX

Here we derive an expression for the determinant of M
[Eq. (14)], the stability matrix associated with the classical
trajectory involved in the calculation of Psc. Because of the
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symplectic structure of canonical Hamilton’s equations, the
determinant of the stability matrix is constant and equals to 1
(see, for instance, Ref. [40]). However, for the spin equations
of motion (6), the above no longer holds. Our strategy to
compute det M consists of introducing a new set of canonical
variables qx, px, qy , and py [41,42], for which det Mcan = 1.
Then, from the relation between the two set of variables, det M
can be determined.

Assuming that uk = uk(qk,pk) and vk = vk(qk,pk), for k =
x,y, implies that

δw = Tδr, (C1)

where we have defined δwT ≡ (δux δuy δvx δvy) and δrT ≡
(δqx δqy δpx δpy). Non-null elements of T are given by the
relations,

t11 ≡ ∂ux

∂qx

= Jx

∂px

∂vx

, t13 ≡ ∂ux

∂px

= −Jx

∂qx

∂vx

,

t22 ≡ ∂uy

∂qy

= Jy

∂py

∂vy

, t24 ≡ ∂uy

∂py

= −Jy

∂qy

∂vy

,

(C2)

t31 ≡ ∂vx

∂qx

= −Jx

∂px

∂ux

, t33 ≡ ∂vx

∂px

= Jx

∂qx

∂ux

,

t42 ≡ ∂vy

∂qy

= −Jy

∂py

∂uy

, t44 ≡ ∂vy

∂py

= Jy

∂qy

∂uy

,

where Jx ≡ t11t33 − t13t31, Jy ≡ t22t44 − t24t42, and the
last term of each equation is obtained by inverting
Eq. (C1).

By demanding qk and pk to be canonical coordinates, one
must require that

q̇k = ∂qk

∂uk

u̇k + ∂qk

∂vk

v̇k = (1 + ukvk)2

2ijh̄
{qk,H̃ }uk,vk

= (1 + ukvk)2

2ijh̄
{qk,pk}uk,vk

∂H̃

∂pk

= ∂H̃

∂pk

,

ṗk = ∂pk

∂uk

u̇k + ∂pk

∂vk

v̇k = (1 + ukvk)2

2ijh̄
{pk,H̃ }uk,vk

= (1 + ukvk)2

2ijh̄
{qk,pk}vk,uk

∂H̃

∂qk

= − ∂H̃

∂qk

, (C3)

where Eq. (6) was used to eliminate the time derivative. In
these relations, H̃(qx,qy,px,py) amounts to

H̃ [ux(qx,px),uy(qy,py),vx(qx,px),vy(qy,py)].

Last equalities of Eq. (C3) imply that

{qk,pk}uk,vk
= J−1

k = 2ijh̄/(1 + ukvk)2. (C4)

Since the stability matrix Mcan in the new set of variables is
defined by

δr′′ = Mcanδr′, (C5)

one can use Eq. (C1) to find that M = T′′ Mcan(T′)−1. It follows
that

det M = det T′′

det T′ det Mcan = J ′′
x J ′′

y

J ′
xJ

′
y

= T , (C6)

where T is given by Eq. (26).
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