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Spin dynamics in tunneling decay of a metastable state
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We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit
coupling. We find that the spin polarization at short-time scale is affected by the initial state, while at long-time
scale both the probability and the spin density exhibit diffraction-in-time phenomenon. We find that in addition
to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length.
Although the tunneling length is independent of the spin-orbit coupling, it can be accessed by the spin rotation
measurement.
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I. INTRODUCTION

Spin-orbit (SO) coupling, interaction of particle spin or
pseudospin with the orbital motion, provides an efficient way
to control and manipulate spin, charge, and mass transport.
Two different kinds of SO coupled systems attract a great deal
of interest due to the known and yet unexplored variety of
phenomena they can demonstrate and due to their possible
applications in quantum technologies. One class of systems,
investigated for more than five decades by now, is semicon-
ductors and semiconductor-based nanostructures [1–7]. The
other class, lavished attention only recently, is cold atoms
and Bose-Einstein condensates, where by engineering external
optical fields one can couple orbital motion to the pseudospin
degree of freedom [8–12] and cause Dresselhaus and Rashba
types of SO coupling similar to that in solids.

In quantum systems of interest the tunneling plays an
important role and either completely determines or strongly
influences the particle dynamics. At certain conditions the
tunneling rate depends on the spin of the particle [2,3,13,14].
The understanding of the tunneling is the key for the
understanding of the transient processes in a broad variety
of systems, including, e.g., charge transport in molecular
nanostructures [15]. One of the key issues in the tunneling
theory is the evaluation of the time spent by the particle in the
classically forbidden regions. Similar to the scattering problem
of propagating wave packets, the question of the tunneling
time for the decay of a metastable system [16–20] may also
be posed. The spin-dependent effects based on the Larmor
clock concept for potential barriers [21,22], Hartman effect in
graphene [23], and effective exchange fields in semiconductors
[24] can provide a measure of this time. In classically forbidden
regions there is not only precession but also a rotation of the
magnetic moment into the magnetic field direction and the
time of the interaction with the barrier is closely related to this
rotation [25,26]. The effects of SO coupling on the tunneling
through semiconductor quantum-well structures with a lateral
potential barrier [27,28] provide another tool to utilize electron
spin modifying the charge transport in nonmagnetic systems.

Here we investigate the spin-dependent tunneling of a state
initially localized in the potential at short and long compared
to the state lifetime time scales [29]. This paper is organized
as follows. In Sec. II we introduce the model Hamiltonian
and formulate the physical observables of interest. We use

the SU(2) spin rotation to gauge out spin-orbit coupling and
restore its effects in the calculation of the observables by
inverse transformation. In Sec. III we study the dynamics at
short time scale, concentrating on spin oscillations, decay,
and escape from the localizing potential. In Sec. IV we study
long-term dynamics in the far-field zone. The diffraction in
time in spin density is observed at a large distance, where
SO coupling forms a precursor in the propagating density.
We show that the tunneling can be characterized not only
by time, but also by a certain length parameter, which can
be accessed by detecting the spin precession due to the SO
coupling. Conclusions summarize the results.

II. MODEL FOR SPIN-DEPENDENT TUNNELING

As a model we consider shown in Fig. 1 time-dependent
potential U (x,t), infinite at x < 0, with the time dependence:

U (x,t) = U1(x) (t < 0), U (x,t) = U2(x) (t > 0). (1)

At t � 0 the potential holds bound states with wave functions
ϕj (x) and energy Ej ; it changes at t > 0 from a step to a
barrier to allow the tunneling. Such time-dependent potential
can be produced by a recently developed technique [30] where
a moving laser beam “paints” a broad variety of coordinate-
and time-dependent potentials.

With SO coupling taken into account, the total one-
dimensional Hamiltonian is

Ĥ = 1

2m
(h̄k̂x + Âx)2 + U (x) − p2

so

2m
, (2)

with k̂x = −i∂/∂x, the vector potential Âx = psoσ̂x , pso ≡
mα/h̄, where α is the Dresselhaus SO coupling constant, and
σ̂x is the corresponding Pauli matrix. The spatial scale of
spin precession is characterized by the length 2ξ = h̄/pso.
The typical values of ξ for different systems with SO
coupling can be of interest. For (i) electrons in semiconductor
GaAs nanostructures [1] with m ≈ 6 × 10−29 g, α/h̄ ∼ 0.5 ×
106 cm/s, (ii) for 6Li atoms [9] with m ≈ 10−23 g, α/h̄ ∼ 10
cm/s, and (iii) for 87Rb atoms [12] with m ≈ 1.5 × 10−22

g, α/h̄ ∼ 0.3 cm/s, we obtain ξ ∼ 10−5 cm. It is interesting
to mention that although masses and coupling constants for
electrons in nanostructures and cold atoms in optical fields
are very different, the resulting precession length is on the
same order of magnitude for all these systems. Since typical
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FIG. 1. Time-dependent potential U (x): U1(x) at t < 0 and U2(x)
when t > 0. U1(x) is a step in the positive half plane, that is zero
from x = 0 to x = a1 and U0 from x = a1 to infinity, while U2(x)
is a barrier of the height U0 extended from x = a1 to x = a2. The
potential is always infinite in the negative half plane. The barrier
width is defined as d ≡ a2 − a1. The initial wave function is ϕ(x).

localization scale of electrons in nanostructures a1 is on the
order of 10−6 cm, they are in the weak-coupling regime with
ξ/a1 � 1. Cold atoms, however, are localized on the scale of
the order visible light wavelength, that is of 10−4 cm, and the
strong SO coupling regime with ξ < a1 can be achieved there.
The characteristic time scale corresponding to the particle
motion inside the potential, ma2

1/h̄, is on the order of 0.1–1 ps
for electrons in nanostructures and 0.1–1 ms for cold atoms.

From now on we use the system of units with h̄ ≡ 1 and par-
ticle effective mass m ≡ 1. The wave function corresponding
to Ĥ is ψ(x,t) with the initial state set as

ψ(x,0) = χϕj (x), (3)

and the spinor χ = [1,0]T corresponds to the z-axis orienta-
tion. Such a function can be produced by applying a magnetic
field along the z axis for an electron or by a special design
of optical field in the case of a neutral bosonic atom [12]. At
t > 0, neither the orbital wave function ϕj is the eigenstate, nor
χ is the eigenspinor of Hamiltonian Ĥ . The initial state begins
to evolve at t > 0 with spin precession and the probability to
find the particle inside the potential decreases simultaneously.

We use a gauge transformation ˆ̃H = SĤ S−1 with a unitary
matrix S = exp(iσ̂xx/2ξ ) to gauge away the SO coupling.
The gauge transformation shifts k̂x by σ̂x/2ξ and turns SO
coupling into a constant, with the wave function evolving in
time transformed as

ψ̃(x,t) = Sψ(x,t) =
[

ψ̃1(x,t)

ψ̃−1(x,t)

]
, (4)

with the upper and lower components

ψ̃σ (x,t) =
∫ ∞

0
Gσ (k)φk(x) exp

(
− ik2t

2

)
dk, (5)

and the coefficients are

Gσ (k) =
∫ ∞

0
ψ̃σ (x,0)φk(x)dx. (6)

Here, φk(x) is the eigenstate of the Hamiltonian corresponding
to U2(x):

φk(x) =

⎧⎪⎨
⎪⎩

C(k) sin(kx) (0 < x < a1),

D(k)e−κkx + F (k)eκkx (a1 < x < a2),√
2/π sin[kx + θ (k)] (x > a2),

(7)

normalized as 〈φk′ |φk〉 = δ(k − k′). The coefficients C(k),
D(k), F (k) and the phase θ (k) satisfy the boundary conditions

of the potential U2(x), and κk =
√

2U0 − k2. In the tunneling
regime k <

√
2U0, while in the propagating regime k >√

2U0, and iκk is substituted by q =
√

k2 − 2U0.

The initial wave function corresponding to Hamiltonian ˆ̃H
can be expressed as

ψ̃(x,0) = ϕj (x)

[
cos(x/2ξ )

i sin(x/2ξ )

]
. (8)

The coefficients Gσ (k) become

G1(k) =
∫ ∞

0
cos(x/2ξ )ϕj (x)φk(x)dx, (9)

G−1(k) = i

∫ ∞

0
sin(x/2ξ )ϕj (x)φk(x)dx. (10)

In what follows, we investigate the particle motion by cal-
culating the physical observables such as probability density,
spin density, and spin polarization defined as

ρ(x,t) = ψ†(x,t)ψ(x,t), (11)

σi(x,t) = ψ(x,t)†σ̂iψ(x,t), (12)

pi(x,t) = σ̂i(x,t)

ρ(x,t)
, (13)

respectively. As the spin rotates around the effective SO
coupling field along the x direction, the integral of σx(x,t)
component over the x > 0 half axis is conserved. For this
reason, we investigate spin density and spin polarization in the
more informative y component.

III. SPIN DYNAMICS AT SHORT TIMES

To address the short-term dynamics on the time less than the
lifetime of the initial bound state [29], we study two relevant
quantities. The first quantity is σy(a2,t), the spin density at the
exit of the barrier a2. The other one, p[w]

y (t), defined as

p[w]
y (t) =

∫ a1

0 ψ†(x,t)σyψ(x,t)dx∫ a1

0 ψ†(x,t)ψ(x,t)dx
, (14)

being the spin polarization y component in the potential,
represents the integrated spin dynamics inside the potential.
The denominator of Eq. (14) is the probability to find the
particle inside the potential, which decays to 1/e of its initial
value at the lifetime of the metastable state.

We consider the evolution of three initial orbital states, as
shown in Fig. 2 for the spin component at the edge. We choose
U0 = 16 so that there are two bound states, the ground state
ϕ0 and the first excited state ϕ1, and use dimensionless a1 ≡ 1.
Here, the initial state has a strong impact on the time-dependent
σy(a2,t). It is demonstrated in Fig. 2 that it takes a very short
time for σy(a2,t) to develop into the minimum from zero,
irrespective of the initial state. This behavior is similar to the
fast development of a plateau in the outgoing flux after the
potential change [29]. However, spin density with ϕ1 decays
faster than that with ϕ0. The linear combination of these two
bound states ϕcom = (ϕ0 + ϕ1)/

√
2 shows strong oscillations

due to the interference between them. As both spin density
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FIG. 2. (Color online) Comparison of time evolution of σy(a2,t)
at the right edge of the barrier a2 with different initial states, the
ground state ϕ0 (solid), the first excited state ϕ1 (dashed), and the
linear combination ϕcom = (ϕ0 + ϕ1)/

√
2 (dot-dashed), provided by

the barrier d = 0.4, U0 = 16, and ξ = 0.5. Negative σy(a2,t) is
related to the direction of spin precession determined by the sign
of coupling constant α.

and probability density in the potential decay with time, spin
polarization tends to a constant at large time.

The tunneling resulted from various initial states has a
strong effect on spin polarization, especially in short-time
scales, as shown in Fig. 3. Spin polarization inside the potential

0

0.02

0.04

0.06

p y[w
] (t

)

0

0.1

0.2

p y[w
] (t

)

0 2 4 6 8
 t

-0.6

-0.4

-0.2

0

p y[w
] (t

)

ϕ0
(a)

(b) ϕ1

(c) ϕcom

FIG. 3. (Color online) Time evolution of p[w]
y (t) in the potential

from 0 to a1, caused by SO coupling with ξ = 0.5 (solid) and ξ = 1
(dashed), with different initial coordinate states: (a) ϕ0, (b) ϕ1, and
(c) ϕcom = (ϕ0 + ϕ1)/

√
2, provided by the same barrier as in Fig. 2.
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FIG. 4. (Color online) Spin density (y component) in the potential
vs time and position for ξ = 0.5 and ψ(x,t = 0) = χϕ0. The
parameters of the barrier are the same as in Fig. 2.

oscillates between boundaries. The oscillation rate is fast and
determined by the energy difference of the initially bound
states. With the time, the contribution of the excited state
rapidly decays due to the fast tunneling and over-the-barrier
motion, and the spin remains in the state achieved by the time
of the decay of the upper bound state. The amplitude of reso-
nances for ϕ1 is larger than ϕ0, as the former possesses larger
momentum. As for the linear combination of these two bound
states, the spin polarization is greatly enhanced because of in-
terference. On the other hand, strength of SO coupling strongly
influences the spin polarization in the potential as illustrated
by making comparisons for ξ = 0.5 and ξ = 1 parameters.

Having illustrated the evolution of spin density at the
boundary, σy(a2,t), and averaged spin polarization, we can
address the details of the spin distribution inside the potential.
As shown in Fig. 4, this distribution oscillates due to the
interferences between the ground state and other eigenstates.
The amplitude of oscillations becomes weaker with time as
the state decays.

IV. SPIN DYNAMICS IN THE FAR-FIELD ZONE

Here we investigate the long-term spin dynamics, by
considering the probability density ρ and y component of
spin density σy(X,t) which can be detected at a given large
distance X � 1. The density evolution for ρ(X,t) at X = 10π

is shown in Fig. 5 for different SO coupling strength. Under
different ξ , the time evolutions of probability density show
a strong sharp peak followed by oscillations due to the
diffraction-in-time [31–33]. However, unlike the case without
SO coupling [29,34], for strong couplings (small ξ ), there exist
some oscillations before the sharp peak, where the interference
of two velocities of spin-up and spin-down components are
remarkable. A very interesting feature is the precursor of the
main peak corresponding to the opposite spin. The precursor
becomes stronger with the increase in the SO coupling. The
time dependence of σy(X,t) at X = 10π is shown in Fig. 6.
Different values of ξ result in different spin rotation angles and
corresponding spin density, provided that σy(x,t) is detected
at the same position.

Spin precession in the (y,z) plane is described by the
classical precession angle, β

[so]
0 = �t , where the precession
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FIG. 5. (Color online) Time-dependent density at the observa-
tion point X = 10π . (a) System parameter U0 = 16,d = 0.4, and
ξ = 0.5. Inset shows the precursor dynamics on a shorter time
scale. Dashed line corresponds to U0 = 16,d = 0.4, and ξ = 1.
(b) Solid line corresponds to U0 = 16,d = 0.4, and ξ = 0.5; dot-
dashed line corresponds to U0 = 8,d = 0.4, and ξ = 0.5. Inset shows
the precursor dynamics on a shorter time scale.

frequency is � ≈ 2αk0 = k0/ξ , and the wave packet is
detected at the position X at the time instant X/v, the
velocity v = k0. Therefore, the rotation angle is β

[so]
0 = X/ξ ,

independent on time t , provided that the wave packet is
considered classically. Ideally, for a free particle propagating
from the origin x(t = 0) = 0, spin polarizations components
are px = 0, py = − sin β

[so]
0 , and pz = cos β

[so]
0 . As a result,

at X = nπξ , the classical spin polarization should be py = 0.

However, in the tunneling problem we consider, the value of
py is not zero even at X = nπξ .
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σ

FIG. 6. Spin density in the observation point X = 10π for U0 =
16,d = 0.4, ψ(x,t = 0) = χϕ0, and ξ = 0.5. The precursor is made
by the contribution of the opposite spin. Other parameters are the
same as in Fig. 2.

0.5 1 1.5 2 2.5 3

d

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

xδ

κ
FIG. 7. (Color online) Parameter of additional displacement δx

(tunneling length) as the function of the barrier transparency. Filled
circles correspond to U0 = 16 and variable width d , the squares
correspond to d = 0.4 with variable U0, and ξ = 10 for both plots.

For the weak SO coupling ξ � 1, where |ψ−1/ψ1| � 1,
the spin polarization can be calculated as

py ≈ − sin
x

ξ
+ 2 cos

x

ξ
Im

ψ−1

ψ1
. (15)

The second term in Eq. (15) can be viewed as a re-
sult of a correction to the particle displacement in the
form py = − sin(x/ξ + δx/ξ ), where, according to Eqs. (9)
and (10),

δx = −2 lim
ξ→∞

ξ Im

∫ ∞
0 G−1(k) exp(−ik2t/2)φk(x)dk∫ ∞
0 G1(k) exp(−ik2t/2)φk(x)dk

. (16)

This deviation of py from zero at X = nπξ demonstrates
that the real precession angle is β[so] = β

[so]
0 + δβ[so], with the

correction δβ[so] viewed as a result of additional displacement
of the particle δx with δx ≡ ξδβ[so]. From Eq. (16), we
can see that δx is independent of the SO coupling, while
the parameters of the barrier play an important role, as the
eigenfunctions φk(x) and G1(k), G−1(k) strongly depend on
them. Numerical results also show that δx is independent
of coordinate and time if measured at distance X � a2 at
times t > X/v. The tunneling length δx is presented in
Fig. 7. This figure demonstrates a clear crossover from the
classical (transparent barrier) to the tunneling (opaque barrier)
regimes, where δx saturates, and the additional displacement
is universal. The saturation of the tunneling length for opaque
barriers seems similar to the Hartman effect [35] on the group
delay in a scattering case [36], where initial and final states
are free propagating wave packets. However, after making
comparisons of δt ≡ δx/v and calculated group delay for a
single barrier with parameters presented in Fig. 7, we cannot
draw the unambiguous conclusion on the relevance of these
two quantities.

V. CONCLUSIONS

We investigated the spin dynamics of a tunneling particle
initially localized in a potential in the presence of SO coupling.
It is shown that at short-time scales initial states play an
important role in spin polarization, while the spin density and
probability density possess diffraction-in-time phenomenon
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at long-time scale. We showed that, in addition to the time,
tunneling can be characterized by a characteristic length. We
use the rotation angle to identify the tunneling length in the
presence of weak coupling. The tunneling length depends
on the barrier parameters, being independent on the strength
of the spin-orbit coupling. These effects can be observed in
experiments with cold atoms, where the SO coupling is strong
enough to cause spin precession on a relatively short spatial
scale.
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