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Kind of entanglement that speeds up quantum evolution
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The “speed” of unitary quantum evolution was recently shown to be connected to entanglement in multipartite
quantum systems. Here, we discuss a tighter version of the Mandelstam-Tamm uncertainty relation that depends
on the Fisher information. The passage time is estimated by a lower bound that depends inversely proportional
to the square root of the Fisher information. This leads to a better understanding of the origin of a fast quantum
time-evolution of entangled states.
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I. INTRODUCTION

The nontrivial aspects of time evolution in quantum
mechanics have been fascinating and puzzling since the first
days of its discovery. An important question is how quickly a
quantum state evolves to a state that is distinguishable from
the initial one with certainty. In the following, we refer to this
concept as the “speed of quantum evolution” or “quantum
speed” for short. It is expressed by the so-called survival
probability wherein one uses the projection onto the initial
quantum state for the discrimination. Quite general answers to
this question have been found. These are not only interesting
for purely academic reasons but are important contributions
to practical issues like the possible speed of quantum gates in
modern quantum-computation architectures. Already in 1945,
Mandelstam and Tamm [1] showed that for a pure state, the
speed of quantum evolution is limited by the standard deviation
of the system Hamiltonian. This bound was rediscovered via
different reasoning by Fleming [2]. Given an initial pure
state ρ = |ψ〉〈ψ | and a unitary time evolution under the
time-independent Hamiltonian H , ρ(t) = e−iH t/h̄ρeiHt/h̄, and
the survival probability Pρ(t) := Tr [ρρ(t)] was shown to be
lower bounded by

Pρ(t) � cos2 (�H )ρ t

h̄
(1)

during the time interval (�H )ρ |t | /h̄ ∈ [0,π/2]. Here,

(�H )ρ =
√

Tr(H 2ρ) − Tr(Hρ)2 is the standard deviation of
H . The minimal time θ⊥ that passes before the initial state
evolves into an orthogonal state is called the orthogonalization
time or passage time. From Eq. (1), it trivially follows that

θ⊥ � πh̄

2 (�H )ρ
. (2)

Recently, other general bounds and restrictions on the time
evolution were established [3,4]. For instance, it was shown by
Margolus and Levitin [3] that the expectation value 〈H 〉ρ =
Tr (Hρ) also gives a speed limit on the quantum evolution.

Furthermore, it was recognized [5] that entanglement
can speed up time evolution in multipartite systems. If, for
instance, the Hamiltonian is a sum of local terms, certain
entangled states exhibit a passage time that is much shorter
than any product state could have. This insight was followed
by an intense study of the connection between the speed of
evolution and entanglement [6,7].

A topic which has, on first sight, little in common with
quantum speed is the theory of quantum metrology. The goal
is to estimate an unknown parameter ω through measurements
in an optimal way. The occurring error δω of the estimate
depends on how well we can distinguish two quantum states
that differ in the actual value of ω. This “distinguishability” is
measured by the so-called Fisher information F [8–12], which
gives rise to a lower bound on δω, called the Cramér-Rao
bound [8–11]. This bridges quantum metrology and quantum
speed if the parametrization is generated by the time evolution.

The relation between the two fields is accomplished by
general insights into the geometric structure of quantum
mechanics [13–15]. This leads to a better understanding of
the intrinsic structure of the Hilbert space and its relation
to the physical interpretation. In addition, new results were
established, e.g., the Margolus-Levitin bound [3] was used
to prove a new inequality for parameter-estimation protocols
[16].

In this paper, we reveal which kind of entanglement is useful
to speed up the unitary evolution of generally mixed states ρ.
To this end, we show that (�H )ρ in Eqs. (1) and (2) can be
replaced by the Fisher information h̄

√
F(ρ,H )/2 � (�H )ρ .

These findings give a clearer understanding of the role of
entanglement for a potentially fast time evolution since the
connection of the Fisher information to entanglement is much
more intimate than the relation between (�H )ρ and the
entanglement of ρ [7,17,18]. Note that the interplay among
quantum speed, Fisher information, and the geometrical inter-
pretation of Hilbert space has been discussed by other authors
[11,19,20]. However, explicit proofs and a clear discussion on
the implications for entanglement remain missing.

For the remainder of this section, we set the framework
to improve the Mandelstam-Tamm relations (1) and (2). In
particular, we introduce different generalizations of Pρ(t) for
mixed states and review the theory of quantum metrology. In
Sec. II, we give the proof of the new bound. We discuss the
consequences for the role of entanglement for time evolution in
Sec. III. In this section, we also extend a particular form of the
survival probability to more general projective measurements.

A. Survival probability for mixed states

Throughout this paper, we exclusively consider finite-
dimensional Hilbert spacesH. Furthermore, we restrict ourself
to time-independent Hamiltonians H . Given a time-evolved
state |ψ(t)〉 = e−iH t/h̄ |ψ〉 ∈ H, the transition probability
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Pρ(t) = |〈ψ |ψ(t)〉|2 ∈ [0,1] is a well-accepted measure to
quantify the speed with which a quantum state evolves away
from the initial state vector. The generalization to mixed states
is not unique. At least two possibilities have been discussed in
the literature. On the one hand [19,21], one can use the square
of the fidelity between the initial density operator ρ and the
time-evolved ρ(t) = e−iH t/h̄ρeiHt/h̄ as

Tρ(t) := [Tr
√√

ρρ(t)
√

ρ]2. (3)

For generic mixed states, Eq. (3) cannot be expressed as
an expectation value of a single observable. In contrast, the
orthogonal projection 	ρ onto the range of ρ is a realizable
observable. The definition for this version of the survival
probability

Eρ(t) := Tr[	ρρ(t)] (4)

was proposed in Ref. [22]. If ρ is of full rank, Eρ(t) =
1 for all times because 	ρ = 1 is the identity. To cir-
cumvent this drawback, we can chooses an observable
A that maximizes the difference

∣∣〈A〉ρ(t) − 〈A〉ρ
∣∣. This

leads to the trace distance d(ρ,σ ) = ‖ρ − σ‖1/2 [23] since
maxA Tr [A (ρ − σ )] = d(ρ,σ ) if the maximum is taken over
all observables with spectral radius 1/2 [24]. The correspond-
ing generalization of the survival probability reads

Dρ(t) := 1 − 1
4‖ρ(t) − ρ‖2

1. (5)

Note that Tρ(t) � Dρ(t) [24]. For this reason, lower bounds
on Tρ(t) directly apply to Dρ(t).

In the following, we call all three definitions (3)–(5) survival
probabilities. For a pure state ρ = |ψ〉〈ψ |, they coincide with
Pρ(t). The obvious generalization of Eq. (1) for Tρ(t) and
Eρ(t) was proved in Refs. [19,21,22], respectively. All three
approaches, therefore, have the common lower bound (2).

For general ρ, this bound is not very tight. An extreme
case is an incoherent sum of eigenstates of H . Then Tρ(t) =
Eρ(t) = 1 for all times whereas the bound (2) may suggest
a rather quick evolution. This observation was discussed in
Ref. [7] and motivates an improvement of Eqs. (1) and (2) in
the case of mixed states.

B. Quantum Fisher information

The last part of the introduction reviews the properties
of the Fisher information in relation to the problem of
distinguishing density operators. Suppose we want to estimate
an unknown parameter ω that is encoded in a system we have
access to. To reveal its value, we perform a measurement
with possible outcomes ai , which here are supposed to be
discrete. The relative frequencies of the outcomes depend on
ω and are associated with a probability distribution pi(ω)
on a probability space that is given through our choice of
measurement. From pi(ω) we try to estimate ω as accurately
as possible. The error δω we have to assume for a certain
estimator is not simple to calculate but, for an unbiased
estimate, can be bounded from below by the Cramér-Rao
bound [8,9] δω � 1/

√
nF (ω), where n is the number of

repetitions of the experiment and

F (ω) =
∑

i

pi(ω)

[
d

dω i
(ω)

]2

(6)

is the Fisher information, here also referred to as classical
Fisher information.

So far, the formalism of quantum mechanics was not used
explicitly. We now assume that a density operator ρ represents
the system under consideration. Hence, ρ depends on ω.
The probabilities are calculated from the expectation values
pi(ω) = Tr[Eiρ(ω)] of a chosen measurement {Ei}i . If we
vary our measurement to minimize the estimated error δω, we
end up with the so-called quantum Fisher information F(ω) =
max{Ei } F (ω). In addition to its importance in the theory of
quantum metrology, the quantum Fisher information also gives
insight into the structure of the space of density operators
as highlighted by Braunstein and Caves [12]. The different
values of ω parametrize a curve through this space. One can
define a “distinguishability” metric via ds = 1

2

√
Fdω. This

was shown [12,19] to be equivalent to the Bures distance [25]
between the two states ρ(ω) and ρ(ω + δω).

In our context, the parametrization through the space
of density operators is generated by a time-independent
Hamiltonian. The parameter is the elapsing time. Then one can
show [10,12] that the Fisher information is time independent,
and it has the form

F(ρ,H ) = 2
∑
i,j

(πi − πj )2

πi + πj

|〈i|H/h̄|j 〉|2, (7)

where we used the spectral decomposition of the initial density
operator

ρ =
∑

i

πi |i〉〈i|. (8)

Note that F(ρ,H ) can be further estimated as F(ρ,H ) �
4(�H )2

ρ/h̄
2 [12,19]. The equality holds if ρ is pure.

II. IMPROVED MANDELSTAM-TAMM BOUND

In this section, we prove a version of the Mandelstam-Tamm
inequality in which (�H )ρ in Eqs. (1) and (2) is replaced by
h̄
√
F(ρ,H )/2. The new relations are identical to the original

relations in the case of pure states but are generically tighter
for mixed states. We present proofs for both types of survival
probabilities Tρ(t) for Eq. (3) and Eρ(t) for Eq. (4) in the
following paragraphs.

A. Bound on Tρ(t) and Dρ(t)

We prove the following proposition. For the time interval
0 �

√
F(ρ,H )|t | � π , the transition probability Tρ(t) can be

bounded from below by

Tρ(t) � cos2
√
F(ρ,H )t/2. (9)

The proof of Eq. (9) can implicitly be found in Ref. [19]
and, due to its elegant simplicity, is sketched here. The two
density operators ρ and ρ(t) lie on a curve generated by the
Hamiltonian H . The length of this path γ between these states
is S = ∫

γ
ds. The metric we take here is the Bures metric [25].

We use ds = 1
2

√
F(ρ,H )dt and the time independence of

F(ρ,H ) to find S = ∫ t

0
1
2

√
F(ρ,H )dt ′ = 1

2

√
F(ρ,H )t . On

the other hand, we can express the distance S0 � S between
two density operators in terms of the angle arccos

√
Tρ(t) [26].
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This follows if we consider the purifications |φ〉 and |φ(t)〉
of ρ and ρ(t), respectively, that give the maximal overlap
|〈φ|φ(t)〉|. The distance between them is the geodesic arc
connecting |φ〉 and |φ(t)〉 on the unit sphere, whose length is
S0 = arccos |〈φ|φ(t)〉| = arccos

√
Tρ(t) [19]. So we find that

S � arccos
√

Tρ(t). For the time interval 0 �
√
F(ρ,H )|t | �

π , we can invert the relation and find Eq. (9).
Since Dρ(t) � Tρ(t), we have for the same time interval

0 �
√
F(ρ,H )|t | � π that

Dρ(t) � cos2
√
F(ρ,H )t/2. (10)

B. Bound on Eρ(t)

We now derive a differential inequality that allows us to
prove a tighter version of the Mandelstam-Tamm inequality for
Eρ(t). The system ρ(t) is measured by means of the orthogonal
projection 	ρ onto the range of ρ ≡ ρ(0). We calculate
the classical Fisher information of Eq. (6). The regarded
“parameter” is the time itself, ω ≡ t . With the two outcomes
p1 ≡ p = Tr[	ρρ(t)] = Eρ(t) and p2 = 1 − p, Eq. (6) has
the simple form

F (t) = [ṗ(t)]2

p(t)[1 − p(t)]
. (11)

Noting that with p(t)[1 − p(t)] = (�	ρ)2
ρ(t), one has |ṗ(t)| =√

F (t)(�	ρ)ρ(t). Next, the classical Fisher information is
estimated from above by the quantum version F , which is
time independent here. We, therefore, have∣∣∣∣ d

dt
Eρ(t)

∣∣∣∣ �
√
F(ρ,H )(�	ρ)ρ(t). (12)

Equation (12) states that the maximal rate with which Eρ(t)
can change is limited by the quantum Fisher information. The
attainability of this bound depends strongly on the observable
	ρ . The more suitable it is to distinguish two neighboring
states ρ(t) and ρ(t + dt), the tighter is bound Eq. (12).

The differential inequality (12) has to be contrasted to
the original inequality that leads to the Mandelstam-Tamm
relation (1). We directly calculate the time derivative of Eρ(t)
to get | d

dt
Eρ(t)| = |Tr([ρ(t),H/h̄]	ρ)| = 1/h̄|〈[H,	ρ]〉ρ(t)|.

With the help of the Heisenberg uncertainty relation [27], we
find ∣∣∣∣ d

dt
Eρ(t)

∣∣∣∣ � 2

h̄
(�H )ρ(�	ρ)ρ(t). (13)

Recalling that F(ρ,H ) � 4(�H )2
ρ/h̄

2, one can see that the
general inequality (12) constitutes an improvement of Eq. (13)
whereas they are identical for pure states.

From Eq. (12) we now deduce a general lower bound on
Eρ(t). Since both (�H )ρ and F(ρ,H ) are time independent,
Eq. (12) can be treated exactly in the same way as Eq. (13); for
a detailed discussion, see Ref. [22]. There, a slightly sharper
version of Eq. (1) was found. We formulate it here for the
Fisher information. It states that for the survival probability
Eρ(t), only one of the two cases:

(i) 0 <
√
F(ρ,H ) |t | � π :

Eρ(t) > cos2
√
F(ρ,H )t/2, (14a)

(ii) ∀ t ∈ R :

Eρ(t) = cos2
√
F(ρ,H )t/2, (14b)

is realized. This means that if for a time t > 0 we find situation
(i), Eρ(t) cannot come back to the bound cos2 √

F(ρ,H )t/2
because such a drastic change of Eρ(t) is forbiddenxbrk by
Eq. (12).

III. DISCUSSION

We see that independent of the specific form for the survival
probability we choose [cf. Eqs. (3)–(5)], the same lower bound
can be derived for all three versions. Hence, it directly follows
that the orthogonalization time for all three definitions can be
bounded from below by

θ⊥ � π√
F(ρ,H )

. (15)

This improved Mandelstam-Tamm uncertainty relation is very
similar to the aforementioned Cramér-Rao bound for the
error δω in the parameter-estimation theory. Although the
bounds differ in the specific meaning, their similarity alludes
to the relation between quantum metrology and survival
probability on the common ground of distinguishing density
operators.

We shortly address the question of the attainability of
Eq. (16). For pure states, it has been shown (e.g., by Refs.
[15,21,22]) that equality holds if and only if the initial state is
an equally weighted superposition of exactly two eigenstates
of H . For mixed states, a similar result can be proved. As in
Ref. [22], we explicitly write out Eρ(t) with respect to the
spectral decomposition of ρ of Eq. (8). We find

Eρ(t) =
∑

i

πiP|i〉〈i|(t) +
∑
i �=j

πi |〈j |e−iH t/h̄|i〉|2. (16)

Equality in Eqs. (2) and (15) hold if all terms in the second sum
of Eq. (16) vanish and, for all i, P|i〉〈i|(θ⊥) = 0 is simultane-
ously fulfilled. In these cases, F(ρ,H ) = 4 (�H )2

ρ /h̄2, which
is necessary, because Eq. (2) cannot be improved further. So
far, there are no examples known in which there is equality
in Eq. (15) but not in Eq. (2) except when ρ commutes with
H . Then F(ρ,H ) = 0, meaning that there is no finite passage
time.

A. Entanglement and quantum speed

We now discuss the importance of entanglement for the
speed of quantum evolution. Let us consider multipartite-qubit
states on the Hilbert space H = C2⊗N , where N is the
number of qubits. The Hamiltonian consists of a sum of
one-particle terms for which every term exhibits a constant
operator norm ε. While for general states there is no direct
connection between the entanglement between the particles
and (�H )ρ , the relation between entanglement and quantum
Fisher information is more stringent. One can show [17] that
if F(ρ,H ) > 4ε2N/h̄2, then ρ is entangled and in principle
is more useful for parameter estimation (in the sense of
Sec. I B) than any nonentangled state. Very recently, in
Ref. [18] a connection between F and the so-called k-
producible states has been established. Let us divide H into
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subsets of at most k � N qubits, in mathematical terms where
H = C2⊗k1 ⊗ · · · ⊗ C2⊗km with ki � k and

∑
i ki = N . A

pure state |ψ (k)〉 = |ψ1〉 ⊗ · · · ⊗ |ψm〉 with |ψi〉 ∈ C2⊗ki is
called k producible. A general state ρ(k) is k producible if
it is a mixture of k-producible pure states with respect to
different partitions {ki}i . The authors of Ref. [18] found that
for any H as a sum of one-particle terms, F[ρ(k),H/(2ε)] �
sk2 + (N − sk)2 with s = N

k
�. This means that the degree of

entanglement with respect to this classification gives a direct
upper bound on the speed of evolution

θ⊥ � πh̄

2ε
√

sk2 + (N − sk)2
. (17)

Note that the bound on the orthogonalization time is now
independent of the specific local H . These results imply that
entanglement measured by the Fisher information plays an
essential role for a potentially fast time evolution.

B. Explicit example

We examine Eqs. (9), (10), and (14) for two qubits, i.e.,
the Hilbert space is C4. We start with the parametrized
state ρ = (1 − x)|00〉〈00| + x|ψ+〉〈ψ+|, which was already
discussed in Ref. [7]. The two basis states |0〉 and |1〉 ∈ C2

are the eigenstates of the Pauli σz operator, and |ψ+〉 =
1√
2
(|01〉 + |10〉) is a maximally entangled state. We use the

parameter x ∈ [0,1] to mix |00〉 and |ψ+〉. The dynamics
are generated by the Hamiltonian H = 1

2h̄�(σ (1)
x + σ (2)

x ) and
σx = |0〉〈1| + |1〉〈0|. The standard deviation reads (�H )ρ =
h̄�

√
(1 + x)/2 while for the Fisher information (7), we

find F(ρ,H ) = 2�2(1 − 3x + 4x2). We see that F(ρ,H )
coincides with 4(�H )2

ρ/h̄
2 for x = 0,1—as it should. For

all other x, F(ρ,H ) is strictly smaller than 4(�H )2
ρ/h̄

2.

The maximal difference is attained for x = √
2 − 1. For

this value, we calculate Eρ(t), Fρ(t), and Dρ(t). Instead of
giving the lengthy analytical expressions, we show the plot
in Fig. 1 for a certain time interval. There, we compare
the quantities with the Mandelstam-Tamm bound (1) with
Eqs. (9), (10), and (14). We see that the improved bounds
are much tighter than those of Eq. (1).

0 1 2 3 4 5 6
Ω t

0.2

0.4

0.6

0.8

1.0

Tρ t

Dρ( )t

E ρ t( )

( )

FIG. 1. (Color online) The two-qubit example that is discussed
in Sec. III B is plotted for x = √

2 − 1. The solid curves from top
to bottom are Dρ(t), Eρ(t), and Tρ(t). The black, dotted curve
shows cos2 (�H )ρ t/h̄ from the Mandelstam-Tam inequality (1). The
orange, dashed curve above the shading represents the improved
version cos2

√
F(ρ,H )t/2 from Eqs. (9), (10), and (14), which are

clearly tighter than Eq. (1).

C. General projective measurement

We now consider other projective measurements than 	ρ

as observables for Eρ(t). This is motivated by the observation
that for initial states with high rank, the projection onto a
high-dimensional subspace often leads to survival probabilities
staying close to 1. If we encounter a spectrum of ρ with some
eigenvalues close to zero, we may use a projective measure-
ment that ignores the space spanned by the corresponding
eigenvectors. The derivation of Eq. (12) does not rely on
a certain structure of the measurement as long as it is an
orthogonal projection, which we simply denote by 	. What
changes in our reasoning is that we do have different initial
conditions 〈	〉ρ(0) = c ∈ [0,1]. One can easily verify that the
differential inequality

d

dt
Eρ(t) � −

√
F(ρ,H ) (�	)ρ(t) (18)

leads to

Eρ(t) � cos2[
√
F(ρ,H )t/2 + δ] (19)

for all t ∈ [0,(π − 2δ)/
√
F(ρ,H )] with δ = arccos

√
c. Sim-

ilarly, the inequality

d

dt
Eρ(t) �

√
F(ρ,H ) (�	)ρ(t) (20)

gives

Eρ(t) � sin2[
√
F(ρ,H )t/2 + δ′] (21)

for all t ∈ [0,(π − 2δ′)/
√
F(ρ,H )] with δ′ = arcsin

√
c.

We discuss an example for the generalized bounds (19)
and (21). Suppose we have a one-qubit system that is a mixture
of |0〉 and |1〉, ρ = (1 − x) |0〉〈0| + x |1〉〈1|, again with x ∈
[0,1]. The Hamiltonian is chosen to be H = h̄�σx/2. Any x

within the interval (0,1) results in 	ρ = 1. To see a nontrivial
time evolution, we choose 	 = |0〉〈0|. The time-dependent
quantity 〈	〉ρ(t) = Tr [	ρ(t)] is plotted for x = 3/4 in
Fig. 2(a). We see that due to the different time derivatives
of 〈	〉ρ(t) and its bounds at t = 0, the bounds are not very
tight. For the sake of completeness, we plot Tρ(t) and Dρ(t)

Tρ t
Dρ t=

0 1 2 3 4 5 6 7
Ω t

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

<∏>

( )
( )

Ω

FIG. 2. (Color online) Illustration of the example in Sec. IIIC. (a)
The expectation value 〈	〉ρ(t) with 	 = |0〉〈0| is plotted for x = 3/4.
The dashed, orange curves are the generalized lower and upper bounds
from Eqs. (19) and (21), respectively. These bounds can be compared
to similar bounds (black, dotted curve) on the basis of Eq. (13). (b) The
same example for the survival probabilities Tρ(t) and Dρ(t), which
coincide in this example. Again, we compare them to cos2 (�H )ρ t/h̄

from Eq. (1) (black, dotted curve) and cos2
√
F(ρ,H )t/2 from

Eq. (14) (orange, dashed curve). In contrast to (a), the latter bound is
tight for a small time interval.
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for the same value x in Fig. 2(b). They coincide in this
example.

IV. CONCLUSION

In summary, we have discussed an alternative Mandelstam-
Tamm inequality [cf. Eqs. (9), (10), and (14)] for different
notions of survival probabilities, giving a common upper
bound on the speed with which a quantum state can evolve.
The new bound is in general tighter than the original bound (1)
for mixed states. The Fisher information replaces the variance
of the energy, also meaning that the new bound is more difficult
to calculate. In return, one now understand better the role of
entanglement in the context of “quantum speed.” Not every
kind of entanglement is useful to accelerate the time evolution
compared to nonentangled states. It is necessary to exhibit
a high Fisher information to speed up the time evolution
compared to nonentangled states. With the upper bound [18]
on F for k-producible quantum states, we can directly connect
the survival probability with k.

In addition, the findings highlight the interplay of time
evolution, quantum metrology, and the geometry of quantum
mechanics. The orthogonalization (or passage) time is lower

bounded by the inverse of
√
F(ρ,H ). The form of this

uncertainty relation is very similar to the famous Cramér-Rao
bound. Furthermore, a different kind of uncertainty relation has
appeared in this context. Comparing Eq. (12) with the deriva-
tion of Eq. (13) gives |〈[H,	]〉ρ(t)| � h̄

√
F(ρ,H )(�	)ρ(t).

This is tighter than the Heisenberg uncertainty |〈[H,	]〉ρ(t)| �
2(�H )ρ(�	)ρ(t).

Finally, the study has been extended to arbitrary projective
measurements for Eρ(t), and we have seen that a different
choice of measurement can potentially reveal the dynamics of
ρ(t) if the projection onto the range of the initial state results
in a trivial time evolution.

An open question is the attainability of the bound (15) for
situations in which F(ρ,H ) < 4 (�H )2

ρ /h̄2.
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