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Modeling of low- and high-frequency noise by slow and fast fluctuators
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We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency
noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a
noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective
random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we
reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in
a superconducting flux qubit and we compare our theoretical results with the available experimental data. We
demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to
many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where
the effects of interaction with the environment are essential.
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I. INTRODUCTION

Decoherence is one of the main obstacles for building
useful quantum devices. Understanding the mechanisms of
decoherence and achieving long decoherence times is crucial
for many fields of science and applications including quantum
computation and quantum information [1], protein dynamics
[2–4], dynamics of excitons and charge separation in biological
complexes [5–9], and the new and rapidly growing fields of
NMR and MRI with ultrasmall (microtesla) magnetic fields
[10–12]. In the latter case, the Larmor frequencies of the
spin precession become relatively small (in the kHz region),
causing the effects of 1/f noise to become so important that
noise suppression must be used.

In many situations the influence of noise can be mod-
eled by an ensemble of two-level systems or fluctuators
[13–19]. Depending on the distribution of parameters of
the fluctuators, such as amplitudes and switching rates, and
coupling constants, this model can describe both Gaussian and
non-Gaussian effects of noise [13–15]. Recent experiments
with Josephson qubits [20–22], on the quantum dynamics
of excitons in light-harvesting antennas in photosynthetic
complexes [5–9] demonstrated these important contributions
of noise and thermal fluctuations to decoherence, relaxation
processes, and quantum coherence effects.

In this paper, we study relaxation and dephasing processes
using a spin-fluctuator model [13,14]. In the spin-fluctuator
model, fluctuations are described by a random telegraph
process (RTP) produced by N fluctuators. Each fluctuator is
characterized by two parameters: its amplitude and switching
rate. Depending on the distribution function of fluctuators over
amplitudes and switching rates, the RTP can describe noise for
a broad range of frequencies using spectral characteristics that
include both low- and high-frequency noise.
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We consider the noisy environment produced by a large
number of fluctuators, N � 1. In the limit N → ∞, we obtain
an effective random process (ERP) described by a continuous
distribution of fluctuators. We derive a closed system of
integrodifferential equations for functions averaged over the
ERP. Even though this system of equations is closed, it is still
very complicated for direct analysis and even for numerical
solutions.

We study two approximations in which these equations
are reduced to a system of differential equations. The first
one we call the Gaussian approximation, because, as we
demonstrate, in the simplest case of a two-level system
(qubit) under the influence of an ERP, it yields the relation
〈exp(iϕ)〉 = exp(−〈ϕ2/2〉), where ϕ is the random angle of
the Bloch vector. This Gaussian approximation is widely
used in theoretical and experimental research to describe the
influence of noise on quantum systems [15,18,23–28]. In many
situations, this approximation is very useful because (i) it
captures some important properties of noisy dynamics and
(ii) it is simple to apply. However, the Gaussian approximation
does not describe different “non-Gaussian” effects which can
play a significant role.

Our second approximation is based on two effective
fluctuators which include both low- and high-frequency noisy
components. We show that this approximation goes beyond
the Gaussian approach and better describes the experimental
results for a superconducting flux qubit in a noisy environ-
ment [23].

A. Our main results

(a) We create a different model based on an effective random
process (ERP) that includes both slow (low-frequency) and
fast (high-frequency) fluctuators. This model can describe the
influence of noise on a quantum system over a wide frequency
range.

(b) For the functions averaged over the ERP, we obtain
an integrodifferential master equation which we reduce to a
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closed system of differential equations in two approximations:
(i) a Gaussian approximation and (ii) an approximation of two-
effective fluctuators. Both of these approximations describe, to
some extent, the contributions from low- and high-frequency
noise.

(c) We demonstrate that the two-effective-fluctuator ap-
proximation accurately models “non-Gaussian” effects ob-
served in experiments with superconducting flux qubits [23].

(d) We show that the two-effective-fluctuator model better
describes the suppression of 1/f noise in experiments involv-
ing echo decay in superconducting flux qubits [23].

This paper is organized as follows. In Sec. II, a general
model of noise based on ERP is introduced that describes both
low-frequency (1/f ) and high-frequency noise. In Sec. III,
we use the reduced density-matrix approach to describe the
interaction of a quantum system with its environment by a
master equation. For two cases, (i) the Gaussian approximation
and (ii) the two effective-fluctuator model, we reduce the
system of integrodifferential equations to a closed system of
differential equations. In Sec. IV, the general method devel-
oped in Secs. II and III is applied to describe the decoherence of
a superconducting flux qubit for free-induction decay and for
echo decay experiments. In the same Sec. IV, we compare our
theoretical predictions with available experimental data and
demonstrate a good agreement with experiments. We conclude
in Sec. V with a discussion of our results. In the Appendixes
we present some technical details.

II. DESCRIPTION OF NOISE USING A RANDOM
TELEGRAPH PROCESS

To describe noise we use the spin-fluctuator model devel-
oped in Refs. [13,14]. In this model, noise is described by
a sum of N uncorrelated fluctuators, ξN = ∑N

i=1 ζi(t), where
ζi(t) is a random telegraph process (RTP). The variable ζi(t)
takes the values −ai or ai . Consequently, ζ 2

i (t) = a2
i = const.

The RTP obeys the following relations [13,29–31]:

〈ζi(t)〉 = 0, (1)

〈ζi(t)ζj (t ′)〉 = δij a
2
i e

−2γi |t−t ′|. (2)

The amplitude ai together with the switching rate γi com-
pletely characterize the ith fluctuator. The correlation function
related to ξN (t) is defined as χN (|t − t ′|) = 〈ξN (t)ξN (t ′)〉.
Using Eqs. (1) and (2), we obtain

χN (|t − t ′|) =
N∑

i=1

a2
i e

−2γi |t−t ′|. (3)

Further, assuming N � 1, we consider continuous distribu-
tions of amplitudes and switching rates. The corresponding
correlation function, χ (t) = limN→∞ χN (t), can be written as

χ (|t − t ′|) =
∫∫

dw(σ,γ )σ 2e−2γ |t−t ′ |, (4)

where σ 2 = limN→∞ Na2, and dw(σ,γ ) depends on the spe-
cific distributions of amplitudes and switching rates. The ran-
dom process described by the function ξ (t) = limN→∞ ξN (t)
we call an effective random process (ERP).

In order to model the characteristic behavior of the
spectral density of noise in different frequency domains, we
introduce a family of random variables and distributions,
{ξn(t),dwn(σ,γ )}. In particular, n = 1 corresponds to
low-frequency (1/f ) noise, and n = 2 corresponds to the
Lorentzian spectrum for high frequencies (see Appendix C
for details).

Accordingly, we introduce the ERP as ξ (t) = ∑
n ξn(t),

where each ξn(t) is an independent source of noise. This
implies 〈ξm(t)ξn(t ′)〉 = 0 (m �= n). As shown in Appendix
A, the corresponding spectral density Sn(ω) behaves as
Sn(ω) ∼ 1/ωn in some region of frequencies. The total cor-
relation function is a sum of the partial correlation functions,
χ (|t − t ′|) = ∑

n χn(|t − t ′|), where

χn(|t − t ′|) =
∫∫

dwn(σ,γ )σ 2e−2γ |t−t ′ |. (5)

In this paper, we adopt the simple model introduced in
Ref. [13] for uncorrelated σ and γ . We define the distribution
function as

dwn(σ,γ ) = δ(σ − σn)Pn(γ )dσdγ, (6)

where σn is a typical value of the amplitude and

Pn(γ )dγ = An

(
γcn

− γ
)



(
γ − γmn

)dγ

γ n
. (7)

Here, 
(x) is a step function, and γmn
and γcn

are the lower
and upper switching rates, respectively. The normalization
constant An, is

An =

⎧⎪⎨
⎪⎩

1
ln(γc1 /γm1 ) , n = 1,

(n−1)γ n−1
mn(

1−γ n−1
mn /γ n−1

cn

) , n �= 1.
(8)

In the following, we restrict ourselves to two important
cases: n = 1 and n = 2, which are related to 1/f noise and to
high-frequency noise with the corresponding spectral densi-
ties. (The case for arbitrary n is analyzed in Appendix C.) We
denote γm = γm1 , γc = γc1 , and γ0 = γc2 . For the distribution
functions, P1(γ ) and P2(γ ), we impose conditions at the point
γ = γc, so that γm2 = γc1 = γc (γm < γc < γ0).

Using Eq. (C6) (Appendix C), we obtain

χ1(τ ) = σ 2
1 A1[E1(2γmτ ) − E1(2γcτ )], (9)

χ2(τ ) = σ 2
2 A2

(
E2(2γcτ )

γc

− E2(2γ0τ )

γ0

)
. (10)

Computation of the spectral density,

Sn(ω) = 1

π

∫ ∞

0
χn(τ ) cos(ωτ )dτ, (11)

yields

S1(ω) = σ 2
1 A1

πω

[
arctan

(
ω

2γm

)
− arctan

(
ω

2γc

)]
, (12)

S2(ω) = σ 2
2 A2

πω2
ln

(
1 + ω2/4γ 2

c

1 + ω2/4γ 2
0

)
, (13)

where A1 = 1/ ln(γc/γm) and A2 = γc/(1 − γc/γ0).
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FIG. 1. (Color online) Spectral density of noise (2γm = 1 s−1,
2γc = 1 μs−1, 2γ0 = 10 μs−1, σ1 = σ2 = 1, ω = 2πf ). Lower green
line: Contribution of the slow fluctuators described by S1(f ). Dotted
black line: Spectral density of 1/f noise, S1/f (f ) = A/(2πf ). Middle
red line: Contribution of the fast fluctuators described by S2(f ).
Dashed blue line: Total spectral density, S(f ) = S1(f ) + S2(f ).
Upper blue line: Lorentzian spectrum, SL(f ) ∼ 1/f 2.

From Eqs. (12) and (13) it follows that, in the interval γm <

ω < γc, the spectral density S1(ω) describes 1/f noise. Indeed,
in this interval S1(ω) ≈ A/ω, where A = σ 2

1 /[2 ln(γc/γm)],
and γm and γc are related to the infrared, ωm = 2γm, and
the ultraviolet, ωc = 2γc, frequency cutoffs, respectively (Ap-
pendix C). For S2(ω), we obtain the following asymptotic be-
havior: S2(ω) ∼ 1/ω2 (ω � ωc). Thus, asymptotically S2(ω)
has a Lorentzian spectrum.

To estimate the relative contributions of different processes
for low- and high-frequency noise, we evaluate the relation
S2(ω)/S1(ω) at frequencies ω ≈ 0 and ω ≈ ωc. A simple
computation yields the following rough estimate:

S2(ω)

S1(ω)
∼

⎧⎨
⎩

σ 2
2

σ 2
1

γm ln(γc/γm)
γc

, ω ≈ 0,

σ 2
2

σ 2
1

ln(γc/γm), ω ≈ ωc.
(14)

Taking values typical for superconducting qubits, 2γm ≈ 1 s−1

and 2γc ≈ 1 μs−1, we obtain

S2(ω)

S1(ω)
∼

{
10−5σ 2

2

/
σ 2

1 , ω ≈ 0,

10 σ 2
2

/
σ 2

1 , ω ≈ ωc.
(15)

Thus, for low-frequency noise the main contribution near ω =
0 is provided by slow fluctuators (SFs) with the switching rates
γ being in the interval (γm,γc). However, for high frequencies,
ω � ωc, the contribution of fast fluctuators (FFs) with γ � γc

dominates (see Fig. 1).

III. MASTER EQUATION FOR AVERAGED
DENSITY MATRIX

We consider a quantum system governed by the Hamilto-
nian H(t) (generally time dependent), depending on control
parameters λi (external flux, biased current, critical current,
etc.). The noise associated with fluctuations of these parame-
ters is described by random functions, δλi(t). For simplicity,

we restrict ourselves to only one fluctuating parameter, δλ(t),
denoting it as ξ (t). Generalization for many parameters is
straightforward. Expanding the Hamiltonian to first order in
ξ (t), we obtain

H(t) = H0(t) + V(t)ξ (t). (16)

To include the effects of a thermal bath, we use the reduced
density-matrix approach leading to the master equation:

dρ

dt
= −i[H(t),ρ] + Lρ, (17)

where the superoperator L describes coupling to the bath.
Using (16), one can recast Eq. (17) as

dρ(t)

dt
= −i[H0(t),ρ(t)] + Lρ(t) − i[ξ (t)V(t),ρ(t)]. (18)

For the average density matrix, this yields

d〈ρ(t)〉
dt

= −i[H0(t),〈ρ(t)〉] + L〈ρ(t)〉 − i[V(t),〈X(t)〉],
(19)

where 〈X(t)〉 = 〈ξ (t)ρ(t)〉, and the average 〈 〉 is taken over
the random process describing the noise.

As before, we assume that fluctuations are produced by
the ERP, so that ξ (t) = ∑

n ξn(t), and the correlation function
can be written as a sum of the partial correlation functions,
χ (|t − t ′|) = ∑

n χn(|t − t ′|) [see Eq. (5)].
Equation (19), an integrodifferential equation, is rather

complicated. However, in two important cases (the Gaussian
approximation and the approximation by effective fluctuators)
we obtain a closed system of first-order differential equations
(Appendix B). Below we summarize our results for ξ (t) =
ξ1(t) + ξ2(t), where ξ1(t) is related to slow fluctuators leading
to 1/f noise, and ξ2(t) is related to fast fluctuators leading to
high-frequency noise.

The Gaussian approximation. Applying the method de-
scribed in Appendix B, we find that, in the Gaussian approxi-
mation, the master equation can be recast as follows:

d〈ρ(t)〉
dt

= − i[H0(t),〈ρ(t)〉] + L〈ρ(t)〉
− [V(t),[K(t),〈ρ(t)〉]] + O(‖V ‖4), (20)

where K(t) = ∫ t

0 dt ′χ (t − t ′)U †(t)Ṽ(t ′)U (t). We denote
Ṽ(t) = U (t)V(t)U †(t), and

U (t) = T
(
ei

∫ t

0 H0(t ′)dt ′). (21)

The approximation by two effective fluctuators. In the ap-
proximation by two effective fluctuators, the set of slow, ξ1(t),
and fast, ξ2(t), fluctuators is approximated by two effective
fluctuators: one for SFs and the other for FFs. The total
correlation function, χ (|t − t ′|) = χ1(|t − t ′|) + χ2(|t − t ′|),
is approximated as

χn(|t − t ′|) ≈ a∗
n

2
e−2γ ∗

n |t−t ′|, n = 1,2, (22)

where a∗
n and γ ∗

n (the effective amplitude and switching rate)
are defined as follows: a∗

n
2 = χn(0) and γ ∗

n = −(1/2)d ln χ (t)/
dt |t=0 (for details, see Appendix B).

Applying the method developed in Appendix B for an
arbitrary system of stochastic first-order ordinary differential
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equations, we obtain from Eq. (19) the following closed system
of ordinary differential equations:

d

dt
〈ρ(t)〉 = −i[H0(t),〈ρ〉] + L〈ρ〉

− i[V(t),〈X1(t)〉] − i[V(t),〈X2(t)〉], (23)

d

dt
〈X1(t)〉 = −2γ ∗

1 〈X1(t)〉 − i[H0(t),〈X1(t)〉] + L〈X1(t)〉
− ia∗

1
2[V(t),〈ρ(t)〉] − i[V(t),〈X12(t)〉], (24)

d

dt
〈X2(t)〉 = −2γ ∗

2 〈X2(t)〉 − i[H0(t),〈X1(t)〉] + L〈X2(t)〉
− ia∗

2
2[V(t),〈ρ(t)〉] − i[V(t),〈X12(t)〉], (25)

d

dt
〈X12(t)〉 = −2(γ ∗

1 + γ ∗
2 )〈X12(t)〉 − i[H0(t),〈X12(t)〉]

+L〈X12(t)〉 − ia∗
1

2[V(t),〈X2(t)〉]
− ia∗

2
2[V(t),〈X1(t)〉], (26)

where 〈X1(t)〉 = 〈ξ1(t)ρ(t)〉, 〈X2(t)〉 = 〈ξ2(t)ρ(t)〉 and
〈X12(t)〉 = 〈ξ1(t)ξ2(t)ρ(t)〉.

IV. NON-GAUSSIAN NOISE AND DECOHERENCE
IN A SUPERCONDUCTING PHASE QUBIT

In this section, the general method developed in Secs. II and
III is applied to describe relaxation effects in a superconducting
qubit. The effective Hamiltonian for a superconducting qubit
can be written as [23] (see also references therein)

H(t) = − 1
2�(t) · σ , (27)

where σ denotes the Pauli matrices. We assume that H(t)
depends on the control parameters λi of the system, including
external flux, biased current, critical current, etc. Limiting
ourselves to a single fluctuating parameter λ and expanding
the Hamiltonian in Eq. (27) to first order in the fluctuations
δλ(t), we obtain

H(t) = −1

2
� · σ − 1

2
δλ(t)

∂�

∂λ
· σ , (28)

where, for simplicity, we assume that � does not depend on
t . In the eigenbasis of the unperturbed Hamiltonian, Eq. (29)
takes the form

H(t) = − 1
2�σz − 1

2Dλ,zδλ(t)σz − 1
2Dλ,⊥δλ(t)σ⊥, (29)

where Dλ,z = ∂�/∂λ and σ⊥ denotes the transverse spin
components, either σx or σy . (We adopt the notation of
Ref. [18].)

Below, in the framework of the ERP model, we obtain the
relaxation rates, and compare our results with the results which
follow from the well-known Bloch-Redfield (BR) theory
[33,34] applied to the external noise [18]. Before proceeding,
we present here some important results of the BR approach.

In BR theory, the dynamics of a two-level system is
described by two rates: the longitudinal relaxation rate, �1 =
T −1

1 , and the transverse relaxation rate, �2 = T −1
2 . BR theory

is valid if T1,T2 � τc, where τc is the fluctuation correlation
time. The transverse relaxation rate �2 is a combination of �1

and the so-called “pure dephasing” rate �ϕ ,

�2 = 1
2�1 + �ϕ. (30)

In terms of the spectral density of noise, Sλ(ω), these rates are
defined as follows [18]:

�1 = πD2
λ,⊥Sλ(�), (31)

�ϕ = πD2
λ,zSλ(0). (32)

In our approach, fluctuations of the parameter λ are
described by an ERP. Thus δλ(t) = ∑

n ξn(t). Further, we
restrict ourselves to consideration only the case n = 1,2. Then,
δλ(t) = ξ1(t) + ξ2(t), where ξ1(t) describes the contribution
to the ERP of SFs, and ξ2(t) describes the contribution of
FFs. The spectral density of noise can be written as Sλ(ω) =
S1(ω) + S2(ω).

Since only FFs have small correlation times and satisfy the
conditions of applicability of BR theory, we use the spectral
density of FFs given by Eq. (13) to calculate the relaxation and
dephasing rates provided by the BR theory. We obtain

�1 = πD2
λ,⊥S2(�)

= D2
λ,⊥

σ 2
2 γc

�2(1 − γc

/
γ0)

ln

(
1 + �2

/
4γ 2

c

1 + �2
/

4γ 2
0

)
, (33)

�ϕ = πD2
λ,zS2(0) = D2

λ,z

σ 2
2

4γc

(
1 + γc

γ0

)
. (34)

Note that the validity of the BR theory is restricted by the
condition �1τ2,�2τ2 � 1, where τ2 = (1/2γc)(1 + γc/γ0) is
the effective correlation time of the FF.

The above effective rates can also be obtained directly from
the averaged expressions for the partial rates,

�1 = D2
λ,⊥

∫ γ0

γc

σ 2
2 γ

4γ 2 + �2
dw2(γ ), (35)

�ϕ = D2
λ,z

∫ γ0

γc

σ 2
2

2γ
dw2(γ ). (36)

A. Pure decoherence

Let us consider the Hamiltonian (29) for a pure decoherence
case. Then Dλ,⊥ = 0, and the Hamiltonian H(t) takes the form

H(t) = − 1
2�(t)σz − 1

2Dλ,zδλ(t)σz, (37)

where Dλ,z = ∂�/∂λ. The equation of motion for the density
matrix, iρ̇ = [H(t),ρ], reduces to only one component:

d

dt
ρ01 = i�(t)ρ01 + iDλ,zδλ(t)ρ01. (38)

The matrix elements, ρ00 and ρ11, are constant.
Setting ρ01(t) = ρ̃01(t)eiϕ0(t), where ϕ0(t) = ∫ t

0 �dt is a
regular phase, we find that ρ̃01(t) satisfies the following
differential equation:

d

dt
ρ̃01(t) = iDλ,zδλ(t)ρ̃01(t). (39)

Its solution can be written as

ρ̃01(t) = eiϕ(t)ρ01(0), (40)
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where ϕ(t) = ∫ t

0 Dλ,zδλ(t)dt is a random phase. After av-
eraging over the random process, we obtain 〈ρ̃01(t)〉 =
〈eiϕ(t)〉ρ01(0). This yields 〈ρ01(t)〉 = eiϕ0(t)〈eiϕ(t)〉ρ01(0). Thus,
the problem of obtaining exact solution of Eq. (38) reduces to
the computation of the generating functional, 〈eiϕ(t)〉. Return-
ing to Eq. (38), one can see that, for averaged components of
the density matrix, it takes the form

d

dt
〈ρ01(t)〉 = i�(t)〈ρ01(t)〉 + iDλ,z〈δλ(t)ρ01(t)〉. (41)

In what follows, we obtain solutions of Eq. (41) in the
Gaussian approximation and in the two-effective-fluctuator ap-
proximation. We apply these solutions to describe two widely
used experimental protocols: (i) free-induction decay and
(ii) echo decay. We compare our theoretical predictions with
the experimental data [23], and demonstrate that the experi-
mental results (i) are described by the Gaussian approximation
and (ii) that the details of the dynamics of the signal decay can
be understood by using slow and fast effective fluctuators.
We also demonstrate that the approach based on two effective
fluctuators allows one to fit the experimental data better.

1. Gaussian approximation

In the Gaussian approximation Eq. (41) can be presented in
the form
d

dt
〈ρ01(t)〉

= i�(t)〈ρ01(t)〉 − D2
λ,z

( ∫ t

0
χ (t − t ′)dt ′

)
〈ρ01(t)〉, (42)

where χ (t − t ′) = 〈δλ(t)λ(t ′)〉. Its solution can be written as

〈ρ01(t)〉 = eiϕ0(t)e−(1/2)〈ϕ2(t)〉〈ρ01(0)〉, (43)

where ϕ0(t) = ∫ t

0 �(τ )dτ is a regular phase, ϕ(t) =
Dλ,z

∫ t

0 δλ(t ′)dt ′ is the random phase accumulated during the
time t , and

〈ϕ2(t)〉 = D2
λ,z

∫ t

0

∫ t

0
χ (|t ′ − t ′′|)dt ′dt ′′ (44)

is the variance of ϕ(t).
Thus, in the Gaussian approximation, the random phase of

the free-induction decay is Gaussian distributed, and we obtain
the well-known result for the generating functional,

〈eiϕ(t)〉 = e−(1/2)〈ϕ2(t)〉. (45)

Using the spectral function of noise, Sλ(ω), one can rewrite
(45) as [13,18]

〈eiϕ(t)〉 = exp

(
− t2

2
D2

λ,z

∫ ∞

−∞
dωSλ(ω)sinc2 ωt

2

)
, (46)

where sinc x = sin x/x.
In the echo experiments, the total phase ψ(t) is defined as

the difference between two free evolutions, so that [13,18]

ψ(t) = Dλ,z

( ∫ t/2

0
δλ(t ′)dt ′ −

∫ t

t/2
δλ(t ′)dt ′

)
. (47)

In the Gaussian approximation, we obtain

〈eiψ(t)〉 = e−(1/2)〈ψ2(t)〉, (48)

where

〈ψ2(t)〉 = D2
λ,z

∫ t

0

∫ t

0
dt ′dt ′′χ (|t ′ − t ′′|)

− 4D2
λ,z

∫ t/2

0
dt ′

∫ t

t/2
dt ′′χ (|t ′ − t ′′|). (49)

In terms of the spectral density, the echo decay can be
written as [13,18]

〈eiψ(t)〉 = exp

(
− t2

2
D2

λ,z

∫ ∞

−∞
dωSλ(ω) sin2 ωt

4
sinc2 ωt

4

)
.

(50)

In Appendix C, we obtain explicit expressions for 〈ϕ2(t)〉 and
〈ψ2(t)〉.

Using the asymptotic formulas for the exponential integrals
En(z) [32], we find that, for γmt � 1 (γct < 1), the free-
induction decay produced by SFs is given by

〈eiϕ(t)〉 = exp

[
−t2D2

λ,zA

(
ln

1

2γmt
+ O(1)

)]
, (51)

where A = σ 2
ξ1
/[2 ln(γc/γm)]. Substituting ωm = 2γm, we find

that (51) is exactly the same expression that is used in the
literature for estimating the quasistatic contribution of 1/f

noise to the free-induction decay [18]. In the same limit, for
the echo decay we obtain

〈eiψ(t)〉 = exp
( −t2D2

λ,zA ln 2
)
, (52)

which coincides with the corresponding formula obtained from
Eq. (50) for ωmt � 1 [35].

The contribution of low frequencies, ωt � 1, in Eq. (45)
obtained in the limit γmt,γct � 1 is

〈eiϕ(t)〉 = exp

(
− t2

2
D2

λ,zσ
2
ξ1

)
. (53)

This coincides with the corresponding expression widely used
in the literature [18].

2. Two-effective-fluctuator model

In this section, the SFs and FFs introduced above are
approximately described by two effective fluctuators with the
following correlation functions (see Appendix B):

χn(|t − t ′|) ≈ σ 2
n e−2γn|t−t ′| (n = 1,2), (54)

where

γn = −1

2

∂ ln[χn(τ )]

∂τ

∣∣∣∣
τ=0

, (55)

the effective amplitude and switching rate being σn and γn.
Computation yields

γ1 = γc − γm

ln(γc/γm)
, (56)

γ2 = γc ln(γ0/γc)

1 − γc/γ0
. (57)

For the averaged functions, 〈ρ01(t)〉, 〈X1(t)〉 =
〈ξ1(t)ρ01(t)〉, 〈X2(t)〉 = 〈ξ2(t)ρ01(t)〉, and 〈X12(t)〉 =
〈ξ1(t)ξ2(t)ρ01(t)〉, we obtain the following closed system of
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first-order differential equations:
d

dt
〈ρ01(t)〉 = i�(t)〈ρ01(t)〉 + iDλ,z[〈X1(t)〉 + 〈X2(t)〉], (58)

d

dt
〈X1(t)〉 = −2γ1〈X1(t)〉 + i�(t)〈X1(t)〉

+ iDλ,z

[〈X12(t)〉 + a2
1〈ρ01(t)〉], (59)

d

dt
〈X2(t)〉 = −2γ2〈X1(t)〉 + i�(t)〈X2(t)〉

+ iDλ,z

[〈X12(t)〉 + a2
2〈ρ01(t)〉], (60)

d

dt
〈X12(t)〉 = −2(γ1 + γ2)〈X12(t)〉 + i�(t)〈X12(t)〉

+ iDλ,z

[
a2

2〈X1(t)〉 + a2
1〈X2(t)〉]. (61)

The solution of Eqs. (58)–(61) can be written as

〈ρ01(t)〉 = eiϕ0(t)�1(t)�2(t)ρ01(0), (62)

iDλ,z〈X1(t)〉 = eiϕ0(t)�̇1(t)�2(t)ρ01(0), (63)

iDλ,z〈X2(t)〉 = eiϕ0(t)�1(t)�̇2(t)ρ01(0), (64)

D2
λ,z〈X12(t)〉 = −eiϕ0(t)�̇1(t)�̇2(t)ρ01(0), (65)

where ϕ0(t) = ∫ t

0 �(t ′)dt ′. We denote by �i(t) (i = 1,2) the
generating functional of the RTP [29–31],

�i(t) =
〈

exp

{
i

∫ t

0
dτξi(τ )vi

}〉
, (66)

where v2
i = D2

λ,za
2
i . The generating functional satisfies the

second-order differential equation [29–31],

d2�i

dt2
+ 2γi

d�i

dt
+ v2

i �i = 0, (67)

with the initial conditions being �i(0) = 1 and d�i(0)/
dt = 0.

Free induction and echo decay solutions for a single
fluctuator. In the following, we consider solutions of Eq. (67)
corresponding to free-induction signal and echo signal exper-
iments. Previously Eq. (67) was studied in Refs. [13,36,37].

(a) The solution corresponding to the decay of the free
induction signal is given by [13,37,38]

�
f

i (t) = e−γi t

μi

sinh(γiμit) + e−γi t cosh(γiμit), (68)

where μi =
√

1 − vi
2/γ 2

i .
(b) In the echo experiments, the π pulse with duration, τ1,

is applied at time τ = t/2 to switch the two states of qubit.
It is assumed that τ1 � τ . The corresponding solution for the
functional �e

i (t), with the initial conditions �e
i (0) = 1 and

d�e
i (0)/dt = 0, is written as [13]

�e
i (t) = e−γi t

μ2
i

[
μi sinh(γiμit) + cosh(γiμit) + μ2

i − 1
]
. (69)

B. Comparison with experiment

In this section, we compare our theoretical predictions with
the experimental data obtained in Ref. [23] and the theoretical

results of the model [39]. The measurement of the decoherence
due to 1/f noise was done for the flux qubit described by the
effective Hamiltonian [23],

H0 = −ε

2
σz − �

2
σx, (70)

with the energy difference between two eigenstates E01 =√
ε2 + �2.
The diagonalized Hamiltonian, with the fluctuations only

of E01, can be written as

H = −E01

2
σz − 1

2

∑
a

Dλa,zδλa(t) σz, (71)

where Dλa,z = ∂E01/∂λa , and the term δλa(t) describes the
fluctuations of λa in the Hamiltonian. In the experiments [23],
the authors studied the decoherence due to fluctuations of
(i) the normalized external flux, nφ = �ex/�0, where �0

is the flux quantum, and (ii) the superconducting quantum
interference device (SQUID) bias current Ib. The contributions
from different decoherence sources were separated, so that the
fluctuations of nφ and Ib were observed independently. We
consider two approximations: (i) the two-effective fluctuator
approximation and (ii) the Gaussian approximation.

1. Two-effective-fluctuator approximation

In the approximation of two effective fluctuators, δλ(t) =
ξ1(t) + ξ2(t), and

〈ξi(t)ξj (t ′)〉 = δijσ
2
i e−2γi t , i = 1,2. (72)

Our task is to determine the fitting parameters, (v1,γ1,v2,γ2),
where v2

i = D2
λ,zσ

2
i , and

γ1 = γc(1 − γm/γc)

ln(γc/γm)
, γ2 = γc ln(γ0/γc)

1 − γc/γ0
. (73)

The switching rates, γm and γc, are chosen according to
the available experimental data for the spectral behavior of
1/f noise, namely, γm ∼ 1 s−1 and γc ∼ 1 μs−1. Then, the
only two free fitting parameters are γ0 and v2. Their values
are chosen from the best fit of theoretical results to the
experimental data.

To fix the value of v1, we use the experimental data for echo
decay fitted to the Gaussian decay, exp{−[�g

ϕE(λ)t]2}, using
the relation from [23,35],

�
g

ϕE(λ) =
√

Aλ ln 2

∣∣∣∣∂E01

∂λ

∣∣∣∣. (74)

The constant Aλ is determined from the experimental data
describing the behavior of the spectral density of 1/f noise,
Sλ(ω) = Aλ/ω, at the frequency, f = 1 Hz [23].

Inserting Aλ = σ 2
1 /[2 ln(γc/γm)] into Eq. (74), we obtain

v1(λ) = �
g

ϕE(λ)

√
2 ln(γc/γm)

ln 2
. (75)

In Fig. 2, we compare our theoretical predictions with the
experimental data obtained for decoherence of a flux qubit with
fluctuations of the external normalized flux nφ (sample A from
[23]). To fit our theoretical results to the experimental curves,
we set two cutoffs for 1/f noise as γc = 0.5 μs−1 and γm =
0.5 s−1. Then, calculating the switching rate γ1, we obtain
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FIG. 2. (Color online) Sample A from [23]. Echo decay, �e(t) =
〈eiψ(t)〉. The solid blue line is fit by the two-fluctuator solution,
〈eiψ(t)〉 = �e

1(t)�e
2(t). The dashed green line is the theoretical

predictions of Ref. [39]. The dotted red line corresponds to the

Gaussian decay, 〈eiψ(t)〉 = e
−(�g

ϕE
t)2

. The experimental data (not
shown) are obtained for decoherence at value �nφ = 0.0009
[Fig. 4(a), Ref. [23]].

γ1 = 0.04 μs−1. From Fig. 4(c) (in Ref. [23]), describing the
echo dephasing rate �

g

ϕE vs �nφ , we extract �
g

ϕE = 0.8 μs−1,

and then, using (75), we obtain v1 =
√

v2
nφ

= 4.92 μs−1. The

parameters v2 and γ0 are chosen by best fitting our curve to
the experimental data. For the high-frequency noise we obtain
the upper cutoff as γ0 = 4.25 μs−1. For the switching rate
γ2 this yields γ2 = 1.2 μs−1. The amplitude v2 we choose as
v2 = 2.72 μs−1.

In Fig. 3, we compare our theoretical predictions with the
experimental data obtained for decoherence in a flux qubit
with fluctuations of the external flux nφ (sample B from [23]).
The fitting parameters obtained in the same way as for sample
A are γ1 = 0.04 μs−1, v1 = 21 μs−1, γ2 = 5.75 μs−1, v2 =
12.45 μs−1, and �

g

ϕE = 3.75 μs−1. In Figs. 2 and 3, the echo
decay of the two-fluctuator model (blue curves) resulted from
both low- and high-frequency fluctuators.

FIG. 3. (Color online) Sample B from [23]. Echo decay �e(t) =
〈eiψ(t)〉. The upper blue line is fit by the two-fluctuator solution.

The lower red line corresponds to the Gaussian decay e
−(�g

ϕE
t)2

. The
experimental data are obtained for decoherence for value �nφ =
−0.0008 [Fig. 4(d), Ref. [23]].

FIG. 4. (Color online) Suppression of 1/f noise in echo-decay
experiment in a flux qubit at fluctuations of the external flux. The
dashed blue line corresponds to sample A, and the red solid line
corresponds to sample B from Ref. [23].

In order to determine the contribution from only 1/f noise
to this echo decay, we present in Fig. 4 the decay (for samples
A and B) provided by only a slow effective fluctuator with the
same parameters, γ1 and v1, as those indicated in Figs. 2 and
3. One can see from Fig. 4 that in both cases, a suppression of
1/f noise is up to 95% in the time interval (0 − 1 μs).

In Fig. 5, we compare our theoretical results for echo
decay with the experimental data obtained for decoherence
in a flux qubit for fluctuations of SQUID bias currents Ib

(sample A from [23]). In all considered cases, we find that
our solutions based on two effective fluctuators better fit
the experimental data than the theoretical description of the
Gaussian approximation used in Ref. [23].

We consider also free-induction decay, and compare the
obtained effective decoherence rate �

g

ϕF with the experimental
data and theoretical results of the Gaussian model [18,23]. For

FIG. 5. (Color online) Echo decay, �e(t) = 〈eiψ(t)〉. The lower
blue line is fit by the solution of the two-effective-fluctuator
model, with the choice of γ1 = 0.04 MHz, v1 = 10.5 MHz, γ2 =
2 MHz and v2 = 50 MHz. The upper red line corresponds to the
exponential decay, e−�ϕEt with �ϕE = 1.7 MHz. The experimental
data are obtained for decoherence at value of SQUID bias current
Ib = −0.7 μA [sample A, Fig. 3(c), Ref. [23]].
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free-induction decay, the two-fluctuator solution is

〈eiϕ(t)〉 = �
f

1 (t)�f

2 (t), (76)

where �
f

i (t) (i = 1,2) are given by Eq. (68).
Expanding (76) into a Taylor series, we obtain

〈eiϕ(t)〉 = 1 − 1
2

(
v2

1 + v2
2

)
t2 + · · · . (77)

Then, comparing with the Gaussian decay, e−(�g

ϕF t)2
, we obtain

�
g

ϕF =
√

1

2

(
v2

1 + v2
2

)
. (78)

Substituting v1 = 4.92 MHz and v2 = 2.72 MHz (sample A),
we find �

g

ϕF = 3.97 MHz.
Computation for the sample A of the the ratio, �

g

ϕF /�
g

ϕE ,
yields �

g

ϕF /�
g

ϕE ≈ 4.96. This is in good agreement with
the theoretical prediction, �

g

ϕF /�
g

ϕE � 5 [18], and with the
estimate from the experimental data yielding a ratio between
4.5 and 7.5 [23].

2. Gaussian approximation

In the Gaussian approximation, the free-induction signal
decay is described by

〈eiϕ(t)〉 = e−(1/2)〈ϕ2(t)〉, (79)

where 〈ϕ2(t)〉 = 〈ϕ2
1(t)〉 + 〈ϕ2

2(t)〉, and 〈ϕ2
n(t)〉 (n = 1,2) is

given by Eq. (C29).
In Fig. 6, we compare the Gaussian approximation (green

dashed line), the two-fluctuator solution (blue solid line)
and the Gaussian decay (red solid line). As one can see,
the Gaussian approximation and the Gaussian decay yield
practically the same results. However, the two-fluctuator
solution shows non-Gaussian oscillatory behavior.

FIG. 6. (Color online) Sample A from [23]. Free induction
signal decay, �f (t) = 〈eiϕ(t)〉. Lower blue line fits to the two-
fluctuator solution, �f (t) = �

f

1 (t)�f

2 (t). Red line corresponds to

the Gaussian decay, �f = e
−(�g

ϕF
t)2

with �
g

ϕF = 3.97 μs−1. Dashed
green line presents the Gaussian approximation for free decay,
〈eiϕ(t)〉 = e−(1/2)〈ϕ2(t)〉. (Data are taken from Ref. [23] for decoherence
at various flux biases nφ , sample A.)

FIG. 7. (Color online) Sample A [23]. Echo signal decay, �e(t) =
〈eiψ(t)〉. The dashed blue line is fit by the Gaussian approximation,
〈eiψ(t)〉 = e−(1/2)〈ψ2(t)〉. The green solid line: two-fluctuator solution,
〈eiψ(t)〉 = �e

1(t)�e
2(t). The dotted red line corresponds to Gaussian

decay, 〈eiψ(t)〉 = e
−(�g

ϕE
t)2

.

We also considered the echo decay signal for sample A. Our
theoretical results for echo decay follow from (48) and (49),

〈eiψ(t)〉 = e−(1/2)〈ψ2(t)〉, (80)

where 〈ψ2(t)〉 = 〈ψ2
1 (t)〉 + 〈ψ2

2 (t)〉, and 〈ψ2
n (t)〉 (n = 1,2) is

given by Eq. (C33).
In Fig. 7, we present theoretical results (sample A) for

echo decay for the two-effective-fluctuator model (solid green
curve), the Gaussian approximation (dashed blue curve), and
Gaussian decay used in Ref. [19] (dotted red curve). In
Fig. 8, we compare the theoretical results for suppression of
1/f noise by slow fluctuators in the two-effective-fluctuator
model and the Gaussian approximation. One can see that,
up to 1 μs, both descriptions give similar results. For times
larger the 1 ms, the Gaussian approximation does not describe
the suppression of 1/f noise, since fluctuators with γ ≈ γc

dominate.

FIG. 8. (Color online) Suppression of 1/f noise in echo decay
experiment. The upper blue line corresponds to the two-fluctuator
solution with only slow fluctuators. The lower red line corresponds
to the Gaussian approximation with slow fluctuators.
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V. CONCLUSIONS

The approach based on modeling of noisy environment
by an ensemble of two-level systems (fluctuators) is widely
used for quantum solid-state systems [13–16,18,19]. Recent
experiments with Josephson phase qubits [20–22] demon-
strated the importance of noise of all frequencies in de-
coherence processes and stimulated theoretical discussions
on the contributions of low- and high-frequency fluctuators
[18].

In this paper, we have discussed the SF model for
continuous distribution of fluctuators to describe both low-
and high-frequency noise. We considered two approxi-
mations of our model: the Gaussian approximation and
two-fluctuator approximation, and compared our theoretical
predictions with the experimental results for decoherence
of a superconducting flux qubit [23]. We showed a good
agreement between our theoretical model and experimental
results.

We should emphasize that the two-fluctuator approximation
leads to the non-Gaussian behavior in the signal decay. The
non-Gaussian effects, yielding contribution to a particular
behavior of the tail in the spin-echo signal, are very strong for
free-induction signal decay. The main problem is that available
experimental results on superconducting qubits (including
those reported in Ref. [23]) may not have a good enough
precision to distinguish Gaussian and non-Gaussian behavior.
However, it is no doubt that the non-Gaussian behavior is
relevant to many situations and can help us to understand
better the nature of noise and its action on the system under
consideration.
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APPENDIX A: SOME PROPERTIES
OF RANDOM PROCESSES

1. Random telegraph process

In this section, we derive some useful formulas for the ran-
dom telegraph process (RTP) defined by ξN (t) = ∑N

i=1 ζi(t)
with the correlation function, χN (|t − t ′|) = 〈ξN (t)ξN (t ′)〉,
given by

χN (|t − t ′|) =
N∑

i=1

a2
i e

−2γi |t−t ′|. (A1)

We assume that the RTP is described by N uncorrelated
fluctuators, ζi(t). Each fluctuator switches randomly be-
tween the values −1 and 1 with the probability 1/2, so
that ζ 2

i (t) = a2
i = const, and after averaging over the initial

states of each fluctuator, the following correlation relations

hold [29–31]:

〈ζi(t)〉 = 0, (A2)

〈ζi(t)ζj (t ′)〉 = δij a
2
i e

−2γi (t−t ′), t � t ′, (A3)

Mi
n(t1,t2, . . . ,tn) = a2

i e
−2γi |t1−t2|Mi

n−2(t3, . . . ,tn), (A4)

where

Mi
n(t1,t2, . . . ,tn) = 〈ζi(t1) . . . ζi(tn)〉, t1 � t2 � · · · � tn.

(A5)

From Eqs. (A2)–(A4), a recursive formula follows:

MN
n (t1,t2, . . . ,tn) = χN (t1 − t2)MN

n−2(t3, . . . ,tn), (A6)

where

MN
n (t1,t2, . . . ,tn) = 〈ξN (t1) . . . ξN (tn)〉, t1 � t2 � · · · � tn.

(A7)

The RTP is conveniently described by the generating
functional [31],

�N [t ; v(τ )] =
〈

exp

{
i

∫ t

0
dτξN (τ )v(τ )

}〉
. (A8)

Applying Eq. (A6) and using the Taylor expansion of Eq. (A8),
we obtain an exact integral equation for the generating
functional �N [t ; v]:

�N [t ; v(τ )]

= 1 −
∫ t

0
dt1

∫ t1

0
dt2χN (t1 − t2)v(t1)v(t2)�N [t2; v(τ )].

(A9)

One can transform this integral equation into the integrodif-
ferential equation,

d

dt
�N [t ; v(τ )] = −v(t)

∫ t

0
dt1χN (t − t1)v(t1)�N [t1; v(τ )].

(A10)

Let R[t ; ξN (τ )] be an arbitrary functional. Then, using
Eq. (A6) and a Taylor expansion in ξN (τ ), one can show that
the following correlation splitting formula holds:

〈ξN (t1)ξN (t2)R[t ; ξN (τ )]〉 = χN (t1 − t2)〈R[t ; ξN (τ )]〉,
t1 � t2 � τ. (A11)

To calculate the correlator 〈ξN (t)R[t ; ξN (τ )]〉 for τ � t we use
the following relations [31]:

〈ξN (t)R[t ; ξN (τ ) + η(τ )]〉
=

〈
ξN (t) exp

{ ∫ t

0
dτξN (τ )

δ

δη(τ )

}〉
R[t ; η(τ )], (A12)
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where η(τ ) is a deterministic function. With the help of
Eq. (A10), we obtain

〈ξN (t)R[t ; ξN (τ ) + η(τ )]〉
=

∫ t

0
dt1χN (t − t1)

〈
δ

δη(t1)
exp

{ ∫ t1

0
dτξN (τ )

δ

δη(τ )

}〉
×R[t ; η(τ )]

=
∫ t

0
dt1χN (t − t1)

〈
δ

δη(t1)
R[t ; η(τ ) + ξN (τ )
(t1 − τ )]

〉
.

(A13)

Taking the limit η → 0, we find

〈ξN (t)R[t ; ξN (τ )]〉
=

∫ t

0
dt1χN (t − t1)

〈
δ

δξN (τ )
R̃[t,t1; ξN (τ )]

〉
, (A14)

where

R̃[t,t1; ξN (τ )] = R[t ; ξN (τ )
(t1 − τ + 0)]. (A15)

By differentiating (A15) with respect to time t , we obtain

d

dt
〈ξN (t)R[t ; ξN (τ )]〉

−
∫ t

0
dt1

d

dt
χN (t − t1)

〈
δ

δξN (τ )
R̃[t,t1; ξN (τ )]

〉

=
〈
ξN (t)

d

dt
R[t ; ξN (τ )]

〉
. (A16)

This formula generalizes the differential formula [29–31]

(
d

dt
+ 2γ

)
〈ζ (t)R[t ; ζ (τ )]〉 =

〈
ζ (t)

d

dt
R[t ; ζ (τ )]

〉
, (A17)

taking place for the RTP described by ζ (t) with switching
rate γ .

Theorem 1. For the random telegraph process ξN (t), the
following relation holds:

〈ξN (t ′)R[t ; ξN (τ )]〉 = χN (t ′ − t)

χN (0)
〈ξN (t)R[t ; ξN (τ )]〉, t ′ � t,

(A18)

where R[t ; ξN (τ )] is an arbitrary functional.
Proof. Writing ξ 2

N (t) as

ξ 2
N (t) =

N∑
i=1

ζ 2
i (t) +

N∑
i �=j

ζ 2
i (t)ζ 2

j (t), (A19)

we can employ the fact that ζ 2
i (t) = const [29,30]. Next, using

the relation χN (0) = ∑N
i=1 ξ 2

i (t), we obtain

ξ 2
N (t)

χN (0)
− 1

χN (0)

N∑
i �=j

ζi(t)ζj (t) = 1. (A20)

Inserting (A20) into the left-hand side of Eq. (A18), we find

〈ξN (t ′)R[t ; ξN (τ )]〉
=

〈
ξN (t ′)

ξ 2
N (t)

χN (0)
R[t ; ξN (τ )]

〉

− 1

χN (0)

N∑
i �=j

〈ζi(t)ζj (t)ξN (t ′)R[t ; ξN (τ )]〉. (A21)

Then, applying (A6), we obtain

〈ξN (t ′)R[t ; ξN (τ )]〉
= χN (t ′ − t)

χN (0)
〈ξN (t)R[t ; ξN (τ )]〉

− 1

χN (0)

N∑
i �=j

〈ζi(t)ζj (t)〉〈ξN (t ′)R[t ; ξN (τ )]〉, t ′ � t.

(A22)

Since for i �= j , 〈ζi(t)ζj (t)〉 = 0, this yields

〈ξN (t ′)R[t ; ξN (τ )]〉 = χN (t ′ − t)

χN (0)
〈ξN (t)R[t ; ξN (τ )]〉, t ′ � t.

(A23)

Corollary. In the limit N → ∞, one has

〈ξ (t ′)R[t ; ξ (τ )]〉= χ (t ′ − t)

χ (0)
〈ξ (t)R[t ; ξ (τ )]〉, t ′ � t, (A24)

where χ (t ′ − t) = limN→∞ χN (t ′ − t).

2. Effective random process

We define the effective random telegraph process (ERP) for
N � 1, as ξ (t) = limN→∞ ξN (t), considering the continuous
distribution of amplitudes and switching rates. The correlation
function, χ (t) = limN→∞ χN (t), can be written as

χ (|t − t ′|) = lim
N→∞

N∑
i=1

a2
ie

−2γi |t−t ′| =
∫∫

dw(σ,γ )σ 2e−2γ |t−t ′ |,

(A25)

where σ 2 = limN→∞ Na2, and dw(σ,γ ) depends on the
specific distribution functions of fluctuators on the amplitudes
and switching rates. The main relations for the ERP can
be obtained from the previous section by taking the limit
N → ∞. Below we present the most important formulas.

The generating functional for the ERP being defined as

�[t ; v(τ )] =
〈

exp

{
i

∫ t

0
dτξ (τ )v(τ )

}〉
(A26)

satisfies the following integral equation:

�[t ; v(τ )]=1 −
∫ t

0
dt1

∫ t1

0
dt2χ (t1 − t2)v(t1)v(t2)�[t2; v(τ )].

(A27)
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One can transform Eq. (A27) into the integrodifferential
equation,

d

dt
�[t ; v(τ )] = −v(t)

∫ t

0
dt1χ (t − t1)v(t1)�[t1; v(τ )].

(A28)

For an arbitrary functional R[t ; ξ (τ )] the following corre-
lation splitting formula holds:

〈ξ (t1)ξ (t2)R[t ; ξ (τ )]〉=χ (t1 − t2)〈R[t ; ξ (τ )]〉, t1 � t2 � τ.

(A29)

Finally, the differentiation formula (A16) takes the form

d

dt
〈ξ (t)R[t ; ξ (τ )]〉

−
∫ t

0
dt1

d

dt
χ (t − t1)

〈
δ

δξ (τ )
R̃[t,t1; ξ (τ )]

〉

=
〈
ξ (t)

d

dt
R[t ; ξ (τ )]

〉
. (A30)

Relation to the Gaussian random process. We would like
to mention here an important consequence of the central limit
theorem concerning a relation between ERP and the Gaussian
random process. Assume that for individual fluctuators the
correlation relations are given by

〈ζi(t)〉 = 0, (A31)

〈ζi(t)ζj (t ′)〉 = σ 2

N
δij e

−2γ |t−t ′ |. (A32)

Then, for N → ∞, the ERP, defined by ξN (t), becomes a
Gaussian Markovian process with an exponential correlation
function [29,31],

〈ξ (t)ξ (t ′)〉 = σ 2e−2γ |t−t ′ |, (A33)

where ξ (t) = limN→∞ ξN (t). Thus, the N -fluctuator RTP, with
the same switching rates γ and the amplitudes σ 2/N for a
finite number N is an approximation of a Gaussian Markovian
process.

APPENDIX B: STOCHASTIC DIFFERENTIAL EQUATIONS

We consider a system of first-order stochastic differential
equations

d

dt
x(t) = Â(t)x(t) + ξ (t)B̂(t)x(t), x(0) = x0, (B1)

where ξ (t) describes ERP, so that 〈ξ (t)ξ (t ′)〉= χ (t − t ′) (t � t ′)
and

χ (|t − t ′|) =
∫

dw(σ,γ )σ 2e−2γ |t−t ′ |. (B2)

In what follows we study two approximations leading to a
closed system of differential equations for averaged variables:
(i) the effective fluctuator approximation and (ii) the Gaussian
approximation.

1. Gaussian approximation

In the interaction picture, we introduce the new variable
x̃(t) = U−1(t)x(t), where

U (t) = T
(
e
∫ t

0 Â(t ′)dt ′)x̃(t), (B3)

with a T -ordered exponential on the right-hand side. For x̃(t),
Eq. (B1) takes the form

d

dt
x̃(t) = iξ (t) ˆ̃B(t)x̃(t), x̃(0) = x0, (B4)

where we set i ˆ̃B(t) = U−1(t)B̂(t)U (t). Equation (B4) can be
recast as

d

dt
x̃(t) = i ˆ̃B(t)ξ (t)x̃(0) − ˆ̃B(t)

∫ t

0
ξ (t)ξ (t ′) ˆ̃B(t ′), x̃(t ′)dt ′.

(B5)

After averaging over ERP, we obtain the following integrodif-
ferential equation

d

dt
〈x̃(t)〉 = − ˆ̃B(t)

∫ t

0
χ (t − t ′) ˆ̃B(t ′)〈x̃(t ′)〉dt ′. (B6)

For practical purposes, Eq. (B6) is not very useful. However
for some reasonable assumptions, it can be simplified. First,
employing (B6) one can write

〈x̃(t ′)〉 = 〈x̃(t)〉 −
∫ t ′

t

dt ′ ˆ̃B(t ′)
∫ t ′′

0
χ (t ′ − t ′′) ˆ̃B(t ′′)〈x̃(t ′)〉dt ′′.

(B7)

Then, inserting (B7) into Eq. (B6) we obtain

d

dt
〈x̃(t)〉 = − ˆ̃B(t)

∫ t

0
χ (t − t ′) ˆ̃B(t ′)dt ′〈x̃(t)〉 + O(‖ ˆ̃B‖4).

(B8)

Considering the last term on the right-hand side of Eq. (B1) as
a perturbation, one can approximate Eq. (B6) as follows:

d

dt
〈x̃(t)〉 = − ˆ̃B(t)

∫ t

0
χ (t − t ′) ˆ̃B(t ′)dt ′〈x̃(t)〉. (B9)

Its formal solution can be written as

〈x̃(t)〉

= T

{
exp

(
−

∫ t

0

ˆ̃B(t ′)dt ′
∫ t ′

0
χ (t ′ − t ′′) ˆ̃B(t ′′)dt ′′

)}
〈x̃(0)〉

= T

{
exp

(
− 1

2

∫ t

0

∫ t

0

ˆ̃B(t ′)χ (t ′−t ′′) ˆ̃B(t ′′)dt ′dt ′′
)}

〈x̃(0)〉.
(B10)

As can be seen, it has the form of solution for the Gaussian
random process [29–31].

Returning to 〈x(t)〉, we obtain the first-order differential
equation,

d

dt
〈x(t)〉 = Â(t)〈x(t)〉 + B̂(t)V̂ (t)〈x(t)〉, (B11)

where

V̂ (t) = i

∫ t

0
dt ′χ (t − t ′)U (t) ˆ̃B(t ′)U−1(t). (B12)
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As an illustrative example, let us consider the following
stochastic differential equation:

d

dt
x(t) = iAx(t) + ivξ (t)x(t), (B13)

with A and v being const. Its solution can be written as follows:

〈x(t)〉 = eiϕ0(t)〈eiϕ(t)〉〈x(0)〉, (B14)

where ϕ0(t) = At is the regular part, and ϕ(t) = v
∫ t

0 χ (t −
t ′)dt ′ is the stochastic phase accumulated at time t .

In the Gaussian approximation, we find that the average
〈x(t)〉 satisfies the differential equation,

d

dt
〈x(t)〉 = iA〈x(t)〉 − v2

( ∫ t

0
χ (t − t ′)dt ′

)
〈x(t)〉. (B15)

The solution of Eq. (B15) is given by

〈x(t)〉 = 〈eiϕ0(t)〉e−κ(t)〈x(0)〉, (B16)

where

κ(t) = v2
∫ t

0
dt ′

∫ t ′

0
χ (t − t ′)dt ′′

= 1

2
v2

∫ t

0

∫ t

0
χ (|t − t ′|)dt ′dt ′′ = 1

2
〈ϕ2(t)〉. (B17)

From here and (B14), it follows that the decay law for 〈eiϕ(t)〉
is the Gaussian,

〈eiϕ(t)〉 = e−〈ϕ2(t)〉/2. (B18)

This agrees with the general conclusions made in this section.

2. Two-effective-fluctuator approximation

Averaging Eq. (B1) over the ERP, we obtain

d

dt
〈x(t)〉 = Â(t)〈x(t)〉 + B̂(t)〈Xξ (t)〉, (B19)

where 〈Xξ (t)〉 = 〈ξ (t)x(t)〉. Using (B1), and taking into
account that 〈Xξ (0)〉 = 0, we obtain

〈Xξ (t)〉 =
∫ t

0

χ (t − t ′)
χ (0)

Â(t ′)〈Xξ (t ′)〉dt ′

+
∫ t

0
χ (t − t ′)B̂(t ′)〈x(t ′)〉dt ′. (B20)

Taking the derivative on both sides of Eq. (B20), we obtain

d

dt
〈Xξ (t)〉

= Â(t)〈Xξ (t)〉 + χ (0)B̂(t)〈x(t)〉 + 1

χ (0)

∫ t

0

∂χ (t − t ′)
∂t

×[Â(t ′)〈Xξ (t ′)〉′ + χ (0)B̂(t ′)〈x(t ′)〉]dt ′. (B21)

Finally, we obtain the following closed system of integrodif-
ferential equations:

d

dt
〈x(t)〉 = Â(t)〈x(t)〉 + B̂(t)〈Xξ (t)〉, (B22)

d

dt
〈Xξ (t)〉

= Â(t)〈Xξ (t)〉 + χ (0)B̂(t)〈x(t)〉 + 1

χ (0)

∫ t

0

∂χ (t − t ′)
∂t

×[Â(t ′)〈Xξ (t ′)〉 + χ (0)B̂(t ′)〈x(t ′)〉]dt ′. (B23)

In this section, we consider the system of Eqs. (B22) and
(B23) in the approximation that the ERP can be approximated
by a random telegraph process with the correlation function,
χ∗(|t − t ′|),

χ (|t − t ′|) =
∫

dw(σ,γ )σ 2e−2γ |t−t ′ |

≈ χ∗(|t − t ′|) = a∗2
e−2γ ∗|t−t ′|, (B24)

where the time-independent parameters a∗ and γ ∗ (the
effective amplitude and the switching rate) are defined
by the following expressions: a∗2 = χ (0) and γ ∗ =
−(1/2)∂ ln χ (t)/∂t |t=0.

To proceed, consider Eq. (B23) rewritten as

d

dt
〈Xξ (t)〉 = Â(t)〈Xξ (t)〉 + χ (0)B̂(t)〈x(t)〉

+
∫ t

0

∂ ln χ (t − t ′)
∂t

χ (t − t ′)

×
(

1

χ (0)
Â(t ′)〈Xξ (t ′)〉 + B̂(t ′)〈x(t ′)〉

)
dt ′.

(B25)

Usually ln χ (t) is a slowly changing function. Then, replacing
∂ ln γ (t − t ′)/∂t by its value at time, t = t ′, one can approxi-
mate the integral on the right-hand side of Eq. (B25) as follows:

∫ t

0

∂ ln χ (t − t ′)
∂t

χ (t − t ′)

×
(

1

χ (0)
Â(t ′)〈Xξ (t ′)〉′ + B̂(t ′)〈x(t ′)〉

)
dt ′

≈ ∂ ln χ (t − t ′)
∂t

∣∣∣∣
t=t ′

∫ t

0
χ (t − t ′)

×
(

1

χ (0)
Â(t ′)〈Xξ (t ′)〉 + B̂(t ′)〈x(t ′)〉

)
dt ′. (B26)

Inserting (B26) into (B25), and employing (B20) we obtain

d

dt
〈Xξ (t)〉 = Â(t)〈Xξ (t)〉 − 2γ ∗〈Xξ (t)〉 + a∗2

B̂(t)〈x(t)〉,
(B27)

where γ ∗ = −(1/2)∂ ln χ (t)/∂t |t=0 and a∗2 = χ (0). Next,
combining (B19) and (B27), instead of a system of integrod-
ifferential equations, we obtain a closed system of first-order
differential equations,

d

dt
〈x(t)〉= Â(t)〈x(t)〉+ B̂(t)〈Xξ (t)〉, 〈x(0)〉= x(0), (B28)

d

dt
〈Xξ (t)〉 + 2γ ∗〈Xξ (t)〉
= Â(t)〈Xξ (t)〉 + a∗2

B̂(t)〈x(t)〉,〈Xξ (0)〉 = 0. (B29)
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FIG. 9. (Color online) Correlation functions χn(t) (upper blue line) and exponential correlation functions, χn(t) = exp(−2γnt) (lower red
line). Left panel: Low-frequency noise defined by χ1(t) (γm = 0.5 s−1, γc = 0.5 μs−1). There is good agreement up to ∼2 μs. Right panel:
High- frequency noise defined by χ2(t) (γc = 0.5 μs−1, γ0 = 2 μs−1). In all cases σ 2

n = 1 (n = 1,2).

This system of differential equations describes RTP with
the amplitude a∗, switching rate γ ∗, and the correlation
function [31]

χ∗(|t − t ′|) = a∗2
e−2γ ∗|t−t ′|. (B30)

In Fig. 9, we compare the exact correlation functions,

χ1(τ ) = σ 2
1 A1[E1(2γmτ ) − E1(2γcτ )], (B31)

χ2(τ ) = σ 2
2 A2

(
E2(2γcτ )

γc

− E2(2γ0τ )

γ0

)
, (B32)

with their approximated expressions, χn ≈ σ 2
n exp(−2γnt)

given by (54). The choice of parameters γm and γc was
motivated by the range of frequencies for 1/f noise. The
parameter γ0 was chosen to better fit both exact and ap-
proximate correlation functions. Note that the correlation
function in Eq. (54) which describes the low-frequency noise
χ1 is not very sensitive to variations of the parameter γm.
Further, when fitting the experimental data, the parameters
γm and γc were essentially the same as in Fig. 9. As can be
seen, the approximation (B24) describes the behavior of the
exact correlation functions reasonably well for the region of
parameters which we use.

The system of Eqs. (B28) and (B29) approximately
describes an ERP by RTP defined by a single fluctuator.
Below, we will describe a model with two effective (low- and
high-frequency) fluctuators. The advantage of this approach is
that we calculate in a straightforward way the coefficients a∗
and γ ∗.

a. Two-effective-fluctuator model

Let us consider the same system of first-order stochastic
differential equations as above,

d

dt
x(t) = Â(t)x(t) + ξ (t)B̂(t)x(t), x(0) = x0, (B33)

with the RTP described by two uncorrelated fluctuators ζ1(t)
and 2ζ2(t), so that ξ (t) = ζ2(t) + ζ2(t), and

〈ζi(t)〉 = 0, (B34)

〈ζi(t)ζj (t ′)〉 = δij a
2
i e

−2γi |t−t ′|, i = 1,2. (B35)

We set 〈X1(t)〉 = 〈ζ1(t)x(t)〉, 〈X2(t)〉 = 〈ζ2(t)x(t)〉, and
〈X12(t)〉 = 〈ζ1(t)ζ2(t)x(t)〉. Applying the formulas of differ-
entiation for an RTP [29–31], we obtain the following system
of differential equations for averaged variables:

d

dt
〈x(t)〉 = Â(t)〈x(t)〉 + B̂(t)[〈X1(t)〉 + 〈X2(t)〉],

d

dt
〈X1(t)〉 = −2γ1〈X1(t)〉 + Â(t)〈X1(t)〉

+ B̂(t)
[〈X12(t)〉 + a2

1〈x(t)〉],
d

dt
〈X2(t)〉 = −2γ2〈X1(t)〉 + Â(t)〈X2(t)〉 (B36)

+ B̂(t)
[〈X12(t)〉 + a2

2〈x(t)〉],
d

dt
〈X12(t)〉 = −2(γ1 + γ2)〈X12(t)〉 + Â(t)〈X12(t)〉

+ B̂(t)
[
a2

2〈X1(t)〉 + a2
1〈X2(t)〉].

APPENDIX C: PROPERTIES OF THE
CORRELATION FUNCTIONS

We consider a family of random variables and distributions,
{ξn(t),dwn(σ,γ )}, in which each ξn(t) describes an indepen-
dent ERP: 〈ξm(t)ξn(t ′)〉 = 0(m �= n). Then, the total correla-
tion function is a sum of the partial correlation functions and
χ (|t − t ′|) = ∑

n χn(|t − t ′|) can be written as

χ (|t − t ′|) =
∑

n

∫∫
dwn(σ,γ )σ 2e−2γ |t−t ′ |. (C1)

We define the distribution function dwn(σ,γ ) as

dwn(σ,γ ) = δ(σ − σn)Pn(γ )dσdγ, (C2)

where σn is some typical value of the amplitude, and

Pn(γ )dγ = An

(
γcn

− γ
)



(
γ − γmn

)dγ

γ n
, n = 1,2, . . . ;

(C3)

here, 
(x) denotes the step function, γmn
and γcn

are the lower
and upper switching rates, respectively. The normalization
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constant given by

An =

⎧⎪⎨
⎪⎩

1
ln(γc1 /γm1 ) , n = 1,

(n−1)γ n−1
mn(

1−γ n−1
mn /γ n−1

cn

) , n �= 1
(C4)

is obtained from the normalization condition,
∫

dwn(σ,γ ) = 1.
Inserting (C3) into (C1), we obtain

χn(|t − t ′|) = σ 2
n

∫
Pn(γ )dγ e−2γ |t−t ′ |. (C5)

From (C5) it follows that σ 2 = χ (0), and straightforward
computation yields

χn(τ ) = σ 2
n An

(
En

(
2γmn

τ
)

γ n−1
mn

− En

(
2γcn

τ
)

γ n−1
cn

)
, (C6)

where En(z) denotes the exponential integral [32].
It is convenient to describe each noise source by its spectral

density,

Sn(ω) = 1

π

∫ ∞

0
χn(τ ) cos(ωτ )dτ, (C7)

and, as it can be easily seen, σ 2
n = 2

∫ ∞
0 Sn(ω)dω. Employing

Eqs. (C1) and (C7)), one can obtain the following integral
representation for Sn(ω):

Sn(ω) = 1

π

∫
2γ σ 2

4γ 2 + ω2
dwn(σ,γ ), (C8)

where

SL(�) = 1

π

2γ σ 2

4γ 2 + ω2
(C9)

is the Lorentzian spectral density of the fluctuator with the
amplitude σ and switching rate γ [13].

Performing the integration in Eq. (C7), we obtain for n > 2

Sn(ω) = 1

π
σ 2

n An2n−1
[(n+1)/2]∑

k=1

(−1)k+1

(n − 2k)ω2k

(
1

bn−2k
n

− 1

cn−2k
n

)

(C10)

+ 1

πωn
Anσ

2
n 2n−1

⎧⎪⎨
⎪⎩

1
2 ln

( 1+(ω/bn)2

1+(ω/cn)2

)
, n = 2p,

arctan
(

ω
bn

) − arctan
(

ω
cn

)
, n = 2p + 1,

(C11)

where bn = 2γmn
and cn = 2γcn

. For n = 1,2, the computation
yields

S1(ω) = σ 2
1 A1

πω

[
arctan

(
ω

b1

)
− arctan

(
ω

c1

)]
, (C12)

S2(ω) = σ 2
2 A2

πω2
ln

(
1 + (ω/b2)2

1 + (ω/c2)2

)
. (C13)

We impose on the distribution functions P1(γ ) and
P2(γ ) boundary conditions at the point γ = γc, so
that γm2 = γc1 . Further, we denote γm = γm1 , γc = γc1 ,
and γ0 = γc2 (γm < γc < γ0). Using these notations, we

obtain

S1(ω) = σ 2
1 A1

πω

[
arctan

(
ω

2γm

)
− arctan

(
ω

2γc

)]
, (C14)

S2(ω) = σ 2
2 A2

πω2
ln

(
1 + ω2

/
4γ 2

c

1 + ω2
/

4γ 2
0

)
. (C15)

This yields the following asymptotic behavior of S1(ω) and
S2(ω):

S1(ω) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
1

2πγm ln(γc/γm)

(
1 − γm

γc

)
, ω � 2γm,

σ 2
1

2ω ln(γc/γm) , 2γm � ω � 2γc,

2σ 2
1 γc(1−γm/γc)

πω2 ln(γc/γm) , ω � 2γc,

(C16)

and

S2(ω) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 2
2

4πγc

(
1 + γc

γ0

)
, ω � 2γc < 2γ0,

2σ 2
2 γc

π(1−γc/γ0)ω2 ln
(

ω
2γc

)
, 2γc � ω � 2γ0,

2σ 2
2 γc

π(1−γc/γ0)ω2 ln
(

γ0

γc

)
, ω � 2γ0.

(C17)

S2(ω)

S1(ω)
≈

⎧⎪⎨
⎪⎩

σ 2
2

σ 2
1

γm ln(γc/γm)
2γc

(
1 + γc

γ0

)
, ω ≈ 0,

σ 2
2

σ 2
1

ln(γc/γm)
2(1−γc/γ0) ln

(
1+ω2/4γ 2

c

1+ω2/4γ 2
0

)
, ω � 2γc.

(C18)

From Eqs. (12) and (13), it follows that in the interval γm <

ω < γc the spectral density S1(ω) describes 1/f noise. Indeed,
in this interval S1(ω) ≈ A/ω, where A = σ 2

1 /[2 ln(γc/γm)].
For S2(ω) we obtain the following asymptotic behavior:
S2(ω) ∼ 1/ω2 (ω � ωc). Thus, asymptotically S2(ω) yields
the Lorentzian spectrum.

Writing the spectral density for 1/f noise as S1/f (ω) =
A
(ωc − ω)
(ω − ωm)/ω, where ωc and ωm are ultraviolet
and infrared cutoff, respectively, we obtain

σ 2
1 = 2

∫ ∞

0
S1(ω)dω ≈ 2

∫ ∞

0
S1/f (ω)dω

= 2A ln(ωc/ωm) = σ 2
1

ln(ωc/ωm)

ln(γc/γm)
. (C19)

From here it follows that γc/γm ≈ ωc/ωm. Thus, γm and γc

are related to the infrared and ultraviolet frequency cutoff,
respectively. Further we assume ωc = 2γc and ωm = 2γm.

As can be seen from Eq. (C11), our model covers
various asymptotic aspects of the spectral density, S(ω) =∑

n Sn(ω), including 1/f noise and the Lorentzian spectrum
as some particular cases. This allows us to include into
consideration the more complicated behaviors of the spectral
density.

Estimates of correlation times for superconducting qubits.
Following [29,31], we define the correlation time related to
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χn(τ ) as

τn = 1

χn(0)

∫ ∞

0
χn(τ )dτ. (C20)

From here, employing Eq. (C6), we obtain

τn =
{ 1−b1/c1

b1 ln(c1/b1) , n = 1,

(n−1)[1−(bn/cn)n]
nbn[1−(bn/cn)n−1] , n �= 1.

(C21)

For bn � cn, this yields

τn ≈
{ 1

b1 ln(c1/b1) , n = 1,

n−1
nbn

, n �= 1.
(C22)

Using Eq. (C20), we calculate the correlation time of 1/f

noise to be

τ1 = 1 − γm/γc

2γm ln(γc/γm)
. (C23)

For γm � γc, this yields

τ1 ≈ 1

2γm ln(γc/γm)
. (C24)

Computation of the correlation time τ2 yields

τ2 = 1

4γc

(
1 + γc

γ0

)
. (C25)

From Eqs. (C23) and (C25) we obtain

τ2

τ1
� γm

2γc

ln(γc/γm). (C26)

For superconducting qubits various experiments demon-
strate that the frequency interval of 1/f noise is f ∼
(1 Hz–1 MHz) [18]. Substituting 2γm = 1 s−1 and 2γc =
1 μs−1 into (C24), we obtain an estimate of the effective
correlation times as τ1 ∼ 0.01 s. The experimental data on
the ultraviolet cutoff of the spectral density are unknown, so
γ0 is an unknown parameter. Supposing γ0 � γc, one can
estimate the effective correlation time as τ2 ∼ 1/(4γc). Once
again, assuming that γc ∼ 0.5 μs−1, we obtain τ2 ∼ 0.5 μs.
So, the fluctuations due to ξ2(t) have shorter correlation times
than fluctuations related to 1/f noise, τ2 � τ1. Thus, indeed,
the SFs produce mainly noise with the spectrum ∼1/ω, and
the FFs lead to the spectrum ∼1/ω2.

1. Free-induction signal decay

For a superconducting qubit in the Gaussian approxi-
mation, free-induction signal decay is defined by 〈eiϕ(t)〉 =

e−(1/2)〈ϕ2(t)〉, where ϕ(t) = Dλ,z

∫ t

0 δλ(t ′)dt ′ is the random
phase accumulated at time t , and

〈ϕ2(t)〉 = D2
λ,z

∫ t

0

∫ t

0
χλ(|t ′ − t ′′|)dt ′dt ′′. (C27)

The correlation function χλ(τ ) of the ERP defined as δλ(t) =∑
n ξn(t) can be written as the sum of the partial correlation

functions, χλ(τ ) = ∑
n χn(τ ), and the overall accumulated

random phase ϕ(t) is given by ϕ(t) = ∑
n Dλ,z

∫ t

0 ξn(t ′)dt ′.
From this we obtain 〈ϕ2(t)〉 = ∑

n〈ϕ2
n(t)〉, where

〈
ϕ2

n(t)
〉 = D2

λ,z

∫ t

0

∫ t

0
χn(|t ′ − t ′′|)dt ′dt ′′. (C28)

Computation of 〈ϕ2
n(t)〉 yields

〈
ϕ2

n(t)
〉 = 2nD2

λ,zσ
2
n An

[
En+2(bnt)

bn+1
n

− En+2(cnt)

cn+1
n

+ 1

n+ 1

(
1

cn+1
n

− 1

bn+1
n

)
+ t

n

(
1

bn
n

− 1

cn
n

)]
. (C29)

2. Echo decay

In echo experiments, the total phase ψ(t) is defined as the
difference between two free evolutions [13,18],

ψ(t) = Dλ,z

∫ t/2

0
δλ(t ′)dt ′ − Dλ,z

∫ t

t/2
δλ(t ′)dt ′. (C30)

In the Gaussian approximation, one obtains 〈eiψ(t)〉 =
e−(1/2)〈ψ2(t)〉, where

〈ψ2(t)〉 = D2
λ,z

(∫ t

0

∫ t

0
dt ′dt ′′χλ(|t ′ − t ′′|)

− 4
∫ t/2

0
dt ′

∫ t

t/2
dt ′′χλ(|t ′ − t ′′|)

)
. (C31)

Inserting χλ(|t ′ − t ′′|) = ∑
n χn(|t ′ − t ′′|) into Eq. (C31), we

obtain 〈ψ2(t)〉 = ∑
n〈ψ2

n (t)〉, where

〈
ψ2

n (t)
〉 = D2

λ,z

(∫ t

0

∫ t

0
dt ′dt ′′χn(|t ′ − t ′′|)

− 4
∫ t/2

0
dt ′

∫ t

t/2
dt ′′χn(|t ′ − t ′′|)

)
. (C32)

Computation yields

〈
ψ2

n (t)
〉 = 2nD2

λ,zσ
2
n An

[
4
En+2(bnt/2)

bn+1
n

− 4
En+2(cnt/2)

cn+1
n

+En+2(cnt)

cn+1
n

− En+2(bnt)

bn+1
n

+ 3

n+ 1

(
1

cn+1
n

− 1

bn+1
n

)
+ t

n

(
1

bn
n

− 1

cn
n

)]
. (C33)
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