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In this paper we revisit the problem of optimal design of quantum tomographic experiments. In contrast to
previous approaches where an optimal set of measurements is decided in advance of the experiment, we allow
for measurements to be adaptively and efficiently reoptimized depending on data collected so far. We develop
an adaptive statistical framework based on Bayesian inference and Shannon’s information, and demonstrate
a significant reduction in the total number of measurements required as compared to nonadaptive methods,
including mutually unbiased bases.
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I. INTRODUCTION

Quantum tomography is a valuable tool in quantum in-
formation processing, being essential for characterization of
quantum states, gates, and measurement equipment. Quantum
state tomography (QST) aims to determine an unknown
quantum state from the outcome of measurements performed
on an ensemble of identically prepared systems. Measurements
in quantum systems are nondeterministic; hence QST is a clas-
sical statistical estimation problem. Full tomography is inher-
ently resource-intensive: even in moderately sized systems, the
number of measurements required is often prohibitive. There is
a need for methods that allow for shorter experiments. Optimal
experiment design (OED) aims to achieve this by selecting
cleverly which measurements to use during the experiment.

Most existing approaches to OED determine, prior to
collecting data, an optimal set of measurements to be used
throughout the experiment. In this sense, whenever they
exist, mutually unbiased bases (MUBs) are known to be
optimal [1,2]. Research since has focused mainly on proving
or disproving existence of and implementing MUBs in various
dimensions [2–4]. Other work [5,6] considered OED based on
the Cramér-Rao bound. Here we argue that these approaches,
including MUBs, provide only a partial solution to the problem
of optimal experiment design inasmuch as they do not take par-
tial data into account. If we are allowed to revise our choice of
measurements during the experiment based on data collected
so far, we may be in a better position to reduce redundancy.
This strategy is generally known as active learning or adaptive
sampling; such adaptive experimental design has been applied
in a number of other fields, such as clinical trails [7], cognitive
science [8], and computer vision [9]. In physics, this approach
has been referred to as self-learning measurements [10,11].
However, due to the expensive computations that are involved,
these methods have been restricted to two-dimensional pure
quantum states, or very few measurements. Recently, advances
in Bayesian methods allow us to build a fast, online algorithm
that allows self-learning in arbitrary dimensions with many
measurements.

Here we propose an algorithmic framework that we call
adaptive Bayesian quantum tomography (ABQT), that builds
on full Bayesian inference and Shannon information. To
achieve adaptivity in practice, we need a fast algorithm for
performing Bayesian state reconstruction from partial data
after each measurement. Current sampling methods such as

in [12] are inappropriate as their costs increase with the number
of measurement configurations tried so far. As a solution,
we present a sequential importance sampling scheme [13]
that does not suffer from this. We then use the developed
algorithm in conjunction with an information theoretic ob-
jective to adaptively optimize measurements. We assess the
relative performance of our adaptive method in Monte Carlo
simulations of qubit systems, and demonstrate a significant
reduction in the number of measurements needed for full
tomography of two-qubit pure states. We also investigate the
trade off between entangling and separable measurements in
multipartite systems. Our central finding is that via adaptive
tomography one can achieve, and even surpass, the statistical
efficiency of MUB tomography using only separable measure-
ments that require experimental apparatus that is substantially
easier to build using current technology.

II. QUANTUM STATE TOMOGRAPHY

Quantum state tomography involves determining from
experimental data the quantum state, ρ, of a system by
performing measurements on several identical copies. For a
D-dimensional system (D = 2m for m-qubit systems), ρ is a
D × D complex-valued density matrix. ρ has to be Hermitian
and have unit trace, so D2 − 1 real degrees of freedom must be
estimated. The apparatus for a tomographic experiment may
be configured in several different ways; we use α ∈ A to index
all accessible configurations. Each measurement configuration
α is characterized by a positive operator-valued measure
(POVM). For each configuration, a measurement results in
observing one of a finite number, �, of distinguishable
outcomes. A POVM is defined by a set, Mα , of Hermitian
operators Mαγ , indexed by possible outcomes γ ∈ {1, . . . ,�},
satisfying

∑�
γ=1 Mαγ = I . These POVMs jointly constitute

our tomographic model M = {Mα : α ∈ A} and determine
the probability of observing outcome γ in configuration α

when the measured system is in state ρ via Born’s rule:

P (γ |ρ,α;M) = tr{Mαγ ρ}.

State reconstruction has been approached with several
methods, the most popular being maximum likelihood estima-
tion (MLE). MLE finds a physically feasible state ρ that is most
likely to have produced the observed data, D, by maximizing
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the likelihood:

L(ρ;D) =
N∏

n=1

P (γn|ρ,αn) =
∏

α∈A
nα!

�∏

γ=1

tr{Mαγ ρ}nαγ

nαγ !
, (1)

where nα is the number of times configuration α was used
and nαγ is the number of times outcome γ was observed in
configuration α. All probabilities are conditional on M; for
brevity this is omitted. A well-known drawback of MLE is that
it often yields rank-deficient estimates, and thus assigns zero
predictive probability to certain observations [12]. This seems
an unreasonable conclusion on the basis of a finite sample.
Additionally, MLE provides no measure of uncertainty in its
point estimate.

More sophisticated methods for quantum tomography use
Bayesian inference and suffer from neither of these problems
[12], and references therein]. In Bayesian inference a prior
probability density, p(ρ), over feasible states is specified. This
prior is then augmented with the likelihood from Eq. (1) using
Bayes’ rule to yield a posterior distribution:

p(ρ|D) ∝ L(ρ;D)p(ρ). (2)

Should we want a point estimate, we may report, say,
the Bayesian mean estimate, which is known to maximize
expected operational divergences [12,14]. But, importantly,
Bayesian inference also provides error bars, and more: the
posterior captures richly our remaining uncertainty in the true
state having seen the data D.

For Bayesian inference one has to provide the prior p(ρ),
which is typically chosen to be noninformative or uniform.
Here we adopt the representation and prior introduced in
[12] that treats our original system of interest as part of a
larger, (D × K)-dimensional bipartite system. Our prior over
the mixed state ρ is then defined as the measure induced
by the uniform (Haar) measure over pure states in D × K

dimensions. It is easy to see that tracing out the K dimensional
ancillary part leaves us with a rank-K mixed state ρ. Thus, by
tuning this parameter, we can trade off between computational
efficiency and estimation accuracy, in a similar manner to
compressed sensing [15].

III. INFERENCE VIA SEQUENTIAL MONTE CARLO

Unfortunately, normalization of the posterior distribution
[Eq. (2)] becomes analytically intractable, and therefore we
have to approximate it, usually via Markov chain Monte Carlo
(MCMC) methods. Several MCMC approaches have been
suggested in this context [12], and references therein]. These
methods require evaulation of the full likelihood (1), which has
O(n) cost with the number of different configurations used
so far. This is undesirable for adaptive tomography, where
inference has to be performed after each measurement. To ad-
dress this problem we developed a fast sequential importance
sampling (SIS) algorithm, with O(1) likelihood evaluation
cost. As we are not aware of this approach being used in the
context of QST, we briefly explain the basic version below. The
interested reader is referred to [13] for a thorough overview.

In SIS, one keeps track of a number of samples, often
called particles, ρs (s = 1, . . . ,S) and corresponding weights
ws (

∑
s ws = 1) which are updated sequentially, every time a

new measurement is made. Assume that after n measurements,
having observed data Dn, the particles and weights w(n)

s

constitute an approximation to the posterior:

p(ρ|Dn) ≈
S∑

s=1

w(n)
s δ(ρ − ρs). (3)

Using this approximation, and Bayes’ rule, one can derive
an approximation to the next posterior, after observing a new
outcome γn+1 in configuration αn+1, as

p(ρ|αn+1,γn+1,Dn)

= P (γn+1|ρ,αn+1)p(ρ|Dn)∫
P (γn+1|ρ,αn+1)p(ρ|Dn)dρ

≈
S∑

s=1

P (γn+1|ρs,αn+1)w(n)
s∑S

r=1 P (γn+1|ρr,αn+1)w(n)
r︸ ︷︷ ︸

w
(n+1)
s

δ(ρ − ρs). (4)

The new weights w(n+1)
s are the renormalized product

of our current weights w(n)
s and observation probabilities

P (γn+1|ρs,αn+1). This update is fast, and only requires
computing one term of the full likelihood; thus its complexity
is independent of how many configurations have been tried
before. This computational efficiency comes at a price; as
time progresses, several weights decay to almost zero, and
thus the quality of our approximation drops. This issue can be
detected and handled by monitoring the effective sample size
and resampling appropriately [13].

IV. OPTIMAL EXPERIMENT DESIGN

Having discussed our method for estimating the state based
on partial data, we now turn to the problem of optimal
experiment design. Different state determination schemes have
different OED strategies associated with them. Maximum
likelihood methods usually use some form of the Cramér-
Rao bound [5,6]. Bayesian experiment design, on the other
hand, is based on Shannon information [1,16]. The posterior
characterizes our remaining uncertainty in the parameter, and
this uncertainty can be quantified using Shannon’s entropy. A
sensible aim is to pick an experimental configuration α, such
that after observing the outcome γ , the entropy H of the new
posterior is reduced the most:

argmax
α∈A

{H[p(ρ|D)] − Ep(γ |α,D)[H[p(ρ|γ,α,D)]]}. (5)

The expectation with respect to γ is needed as the mea-
surement outcome is unknown a priori. Previously, Shannon’s
entropy was used as a criterion to precompute a single best
set of measurements to be uniformly sampled throughout the
experiment [1,16]. In that nonadaptive framework mutually
unbiased bases (MUBs) are optimal, whenever they exist. Here
we use Shannon’s entropy to address the following question:
“Having seen the outcome of the first few measurements D,
which measurement α should we carry out next?” We exploit
the dependence of Eq. (5) on past observationsD, and allow for
measurements to be reoptimized adaptively as the experiment
progresses. As we will see, once we allow for adaptivity, the
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optimal measurement sequences go beyond mutually unbiased
bases.

However, Eq. (5) is impractical to work with directly, as it
involves computing entropies of high-dimensional intractable
posterior densities. Recall that we approximate our posterior
by samples, with which it is notoriously hard to estimate
differential entropies. Furthermore, in Eq. (5) it looks as though
the posterior had to be re-computed for every possible outcome
γ . Therefore, instead of working with Eq. (5) directly, we
propose to use an equivalent reformulation thereof in terms of
predictive distributions [16]:

argmax
α∈A

{H[P (γ |α,D)] − Ep(ρ|D)[H[P (γ |α,ρ)]]}, (6)

where P (γ |α,D) = ∫
P (γ |α,ρ)p(ρ|D)dρ is the average pre-

dictive probability of outcome γ . The equivalence between
Eqs. (5) and (6) becomes clear realizing that they both express
the conditional mutual information between ρ and γ . Equation
(6) offers computational advantages over Eq. (5): it only
involves computing discrete entropies H[P (γ |α,ρ)] and ex-
pectations of these under the posterior. This objective function
is generally nonconvex in α, but its value—and derivatives
with respect to α—can now be efficiently computed using our
weighted posterior samples from Eq. (3), allowing us to find
the most informative α by direct numerical optimization.

Criterion (6) also admits an intuitive interpretation. The first
term favors measurements whose outcome is very uncertain, in
other words hard to predict, given our current knowledge D.
The second term favors measurements such that under each
probable explanation ρ, the outcome is well predicted and
the uncertainty H[P (γ |α,ρ)] is small. Thus the two terms are
jointly optimized when the probable hypotheses ρ disagree
maximally as to what the outcome of the measurement will be.
This is why related strategies are often referred to as maximum
disagreement sampling.

Within the Bayesian framework, one could use other
objectives and measures of uncertainty about the quantum
state to guide the selection of measurements. In previous
studies [10] adaptive sequential experiment design was con-
sidered using maximum uncertainty sampling, whereby the
experimenter always selects a measurement, the outcome of
which is hardest to predict given previous data D. We note
that this strategy can be thought of as an approximation to
Eq. (6), but with the second term ignored. This arguably
leads to suboptimal selection behavior; the experimenter’s
uncertainty may be confounded with inherent uncertainty of
quantum measurements. Such strategies are prone to stuck with
measurements, whose outcome is always perfectly random
because they are unbiased with respect to the true state of the
system.

We note that minimizing the Shannon entropy [Eq. (5)] is
equivalent to minimization of the Bayes risk when one uses the
log loss to evaluate probabilistic estimate of the state [17]. One
could generalize our approach along those lines to construct a
number of other objective functions—one proposed algorithm
in [10] also seeks to minimize the Bayes risk, but using
fidelity as the loss function. Although these generalizations are
theoretically attractive, only the log loss allows the particular
analytic reformulation to Eq. (6) that permits efficient online
computations. Other loss functions typically require one

full posterior update for every possible outcome for each
measurement under consideration; ABQT requires only one
posterior update per complete cycle. Therefore, if one does not
use log loss online computation is generally infeasible. In [11],
experimental designs for all 2N possible experimental outcome
successions are precomputed; they are therefore limited to very
short experiments (<20 measurements). Combining Eq. (6)
with our SIS Bayesian update scheme allows for fast online
experimental design, which can be used feasibly in long
experiments.

In summary, we propose the following algorithm, called
adaptive Bayesian quantum tomography. After each single
measurement, ABQT updates its approximate posterior us-
ing Eq. (4), then chooses the next measurement by direct
numerical maximization of the information theoretic objective
in Eq. (6).

V. EXPERIMENTS

EX 1: single qubit tomography. In our first simulated
experiments we study tomography of single qubits (D = 2).
Mixed state qubits have three real degrees of freedom; ρ

(a)

|H〉|V 〉

|D〉

|A〉

(b)

(c) (d)

FIG. 1. (Color online) Adaptive selection of measurements based
of partial data. Scatter plots show 400 samples from current posterior.
Shaded circles around the “Bloch disk” show relative value of the
objective in Eq. (6) for different measurement directions (lighter is
higher). Pairs of arrows show the most informative next measure-
ment. Circular histograms show the number of times measurement
directions have been used. (a) Initially, no observations are made;
samples shown are from the uniform prior. All measurements are
equally informative; we chose to start with {|H 〉,|V 〉}. (b) After one
measurement, the posterior is updated; the next best measurement is
mutually unbiased with respect to the first one. It is now {|D〉,|A〉}.
(c) After two observations, the next best measurement is equally
biased to the first two bases. (d) Posterior after 1000 observations
concentrates around true state. The method tries a range of measure-
ments, with a tendency to point toward the solution.
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FIG. 2. (Color online) One qubit tomography using projective
measurements. (a) Improvement of mean posterior fidelity as the ex-
periment progresses. Results are shown for uniformly sampled mea-
surements ( ), uniformly sampled Pauli measurements ( ),
ABQT selecting adaptively among the three Pauli measurements
( ), and ABQT picking general measurements ( ). Adaptive
optimization of measurements allows for an almost n−1 rate of
convergence, while other methods are more consistent with a n− 1

2

rate. (b) Final value of the mean posterior infidelity after 6000
measurements using the four methods as before, shown as a function
of purity of the state to be estimated. The advantage of ABQT is
greatest for states with higher purity.

is represented as a point in a unit ball, called the Bloch
sphere. For illustration purposes we first omit the third
component, and only infer two remaining parameters, which
will lie in a unit (Bloch) disk. This corresponds to, e.g.,
determining linear polarization of a photon, assuming that
the circular polarization is zero. We allow for arbitrary
projective measurements with binary (� = 2) outcomes. These
are represented by pairs of antipodal points on the perimeter
of the Bloch disk. Now α ∈ [0,π ) codes for the orientation.
Figure 1 shows the progression of measurement bases chosen
by ABQT. The first two measurements are mutually unbiased;
however, the third measurement is equally biased with respect
to both previous bases, demonstrating that using a fixed MUB
set is suboptimal in the adaptive framework. Throughout the
rest of the experiment the algorithm explores a wide range of
measurements.

Figure 2 shows that the posterior mean fidelity—this time
inferring all three coordinates in the full Bloch sphere—

improves at a faster rate when measurements are adaptively
optimized. We quantify performance as mean posterior fidelity,
rather than the fidelity of the Bayesian mean estimate, as the
latter gives no indication of the confidence in our estimate.
The rate is more consistent with a n−1 law rather than n− 1

2 as
predicted for nonadaptive methods [2, and references therein].
Figure 2(b) shows a larger advantage for states of high purity
(defined as sum of squared eigenvalues).

EX 2: Separable vs MUB tomography of two qubits. In
multipartite systems, such as m-qubit registers, there are
two fundamentally different classes of measurements one
can apply: separable or entangling. Separable tomographic
experiments are straightforward and cheap to implement,
while entangling measurements are statistically more pow-
erful. Notably, entanglement is required for implementing
MUBs. These differences are discussed extensively in [2]. To
investigate this tradeoff in the light of adaptive tomography,
we reproduce and extend the experiments in [2]. Results are
shown in Fig. 3. Notably, all substantial differences between
MUB and standard separable tomography (SSQT) vanish
as we allow for adaptivity [Figs. 3(a)–3(c)]. Furthermore,
for random pure states, in one experiment we are able to
realize a substantial, tenfold improvement over MUBs when
using flexible separable measurements [Fig. 3(d)]. The results
indicate that allowing for adaptivity with an imperfect, but
flexible set of measurements offers greater advantages than
using a fixed set of MUBs. l

VI. SUMMARY AND CONCLUSIONS

We have presented an adaptive optimal experimental design
framework and method based on Bayesian inference and
Shannon’s information. We showed that mutually unbiased
bases, widely accepted as the optimal measurements, represent
only a partial solution and are suboptimal in the adaptive
framework. Moreover, the adaptive framework applies regard-
less of dimensionality, and can be applied to spaces where
MUBs do not even exist [3,16]. This motivates a shift in
experimental focus from implementing complex entangling
measurements to implementing quickly reconfigurable simpler
measurements. In quantum optics, this could be feasibly
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FIG. 3. (Color online) Two qubit QST with uniformly chosen amongst MUB ( ) or SSQT bases ( ) and ABQT picking from the
same set of MUBs ( ), SSQT bases ( ) or a more flexible set of 81 separable bases ( ). Cases (a)–(c) are the same as those in [2];
(d) shows average results over 20 randomly generated entangled pure states. (a) As expected, for the maximally mixed state the choice of
measurement strategy has little effect. (b) On the entangled state (|HH 〉 + |V V 〉)/√2 MUB outperforms SSQT when uniformly sampled,
but by allowing for adaptivity we can close the performance gap. (c) SSQT outperforms MUBs on the separable state |HV 〉, but again,
picking measurements adaptively the two sets perform similarly. (d) For random pure states a large improvement in performance is made when
performing ABQT with the flexible set of separable measurements. Using this set, ABQT only needs 104 measurements to achieve ≈98.7%
mean fidelity for which MUB needs 105.
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achieved via mechanically or electronically controlled liquid
crystal wave plates.

Although our algorithm demonstrated a substantial leap
forward in terms of empirical performance, it is important
to keep in mind that it still does not resolve the curse of
dimensionality: the size of the parameter space still scales
exponentially with the number of qubits in question. Other
successful approaches address the question of dimensionality
by restricting the search space. Compressed sensing [15]
constrains estimation onto a lower-dimensional manifold of
rank-deficient states. It is even possible to carry out quantum
homodyne tomography in infinite dimensional spaces,

assuming the Wigner function is infinitely differentiable and
falls into a particular smoothness class [18]. These simplifying
assumptions and smoothness constraints can be incorporated
into a Bayesian framework via priors.
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