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Wentzel-Kramers-Brillouin analysis of PT -symmetric Sturm-Liouville problems
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In a previous paper it was shown that a one-turning-point Wentzel-Kramers-Brillouin (WKB) approximation
gives an accurate picture of the spectrum of certain non-Hermitian PT -symmetric Hamiltonians on a finite
interval with Dirichlet boundary conditions. Potentials to which this analysis applies include the linear potential
V = igx and the sinusoidal potential V = ig sin(αx). However, the one-turning-point analysis fails to give the
full structure of the spectrum for the cubic potential V = igx3, and in particular, it fails to reproduce the critical
points at which two real eigenvalues merge and become a complex-conjugate pair. The present paper extends
the method to cases where the WKB path goes through a pair of turning points. The extended method gives an
extremely accurate approximation to the spectrum of V = igx3, and more generally it works for potentials of the
form V = igx2N+1. When applied to potentials with half-integral powers of x, the method again works well for
one sign of the coupling, namely, that for which the turning points lie on the first sheet in the lower-half plane.
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I. INTRODUCTION

The study ofPT -symmetric Hamiltonians [1–6] has largely
concentrated on eigenvalue problems in which the wave
function is required to vanish at infinity in various Stokes
wedges. However, some work has also been done on Sturm-
Liouville problems defined on a finite interval [7], where
the wave function is required to vanish at the end points.
Such problems, especially with the potential V (x) = igx,
are relevant to a number of physical situations [8–10]. In a
previous paper [11] we showed that for the imaginary linear
potential and for potentials of the form V (x) = ig sin(αx),
the Wentzel-Kramers-Brillouin (WKB) approximation with
the WKB path passing through a single turning point gives
a spectacularly good picture of the spectrum, even for low
energies. In particular, it correctly locates the critical points,
where pairs of real eigenvalues merge and become complex
conjugates of one other. However, for the potential V (x) =
igx3 the method failed to produce critical points, and the
question of whether a different WKB path could do so was not
addressed. For the igx3 potential there are three turning points,
and an alternative path passes through a pair ofPT -symmetric
turning points.

In the present paper we develop the formalism for such
a path and show in Sec. II that the two-turning-point WKB
approximation gives a surprisingly simple secular equation.
In Sec. III we demonstrate that this approximation accurately
reproduces the full structure of the spectrum for V (x) = igx3.
The method is also shown to give good results for higher-power
potentials of the form V (x) = igx2N+1, where N is integral.
When the method is applied to potentials with half-integral
powers of x, the double-valued nature of the potential must
be taken into account. We reproduce the spectrum when there
exists a simple path that passes through the turning points and
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remains on the first Riemann sheet. In Sec. IV we give some
brief concluding remarks.

II. WKB CALCULATION OF EIGENVALUES AND
CRITICAL POINTS

We consider the eigenvalue equation

−ψ ′′(x) + V (x)ψ(x) = λψ(x) (1)

defined on the interval [−L,L], with Dirichlet boundary
conditions ψ(±L) = 0. In what follows we take L = 1
without loss of generality because L = 1 can be obtained by
rescaling for the monomial potentials V (x) = −g(ix)M that
we consider. The equation and the boundary conditions are
PT symmetric, so we expect real eigenvalues when the PT
symmetry is unbroken; that is, when the wave functions are
themselvesPT symmetric. When thePT symmetry is broken,
the eigenvalues occur in complex-conjugate pairs.

With λ = ag the equation becomes

ψ ′′(x) + gQ(x)ψ(x) = 0, (2)

where Q(x) = a + (ix)M and a is considered as a fixed
parameter. For large g the WKB approximation to ψ(x) has
the form

ψ(x) ∼ 1

(gQ)1/4

[
A exp

(
i

∫ x

x0

ds
√

gQ(s)

)

+B exp

(
−i

∫ x

x0

ds
√

gQ(s)

) ]
. (3)

The path connecting −1 to +1 is not specified. If the path goes
directly from −1 to +1 without passing through a turning
point or crossing to a new Stokes region, then the asymptotic
approximation (3) to ψ(x) has the same form along the entire
path, with the same coefficients A and B. Then, by imposing
the boundary conditions ψ(±1) = 0, one obtains the standard
no-turning-point approximation

sin (IT ) = 0, (4)
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where IT ≡ ∫ 1
−1 ds

√
gQ(s). The eigenvalues are then obtained

from this secular equation, which turns out to give real
eigenvalues, with no degeneracies (critical points) in the
spectrum.

However, when the path goes through a single turning point
on the imaginary axis at x0 = ib, as it does in Ref. [11], the
wave function has different coefficients to the left and to the
right of the turning point. These coefficients are determined by
matching asymptotically the separate WKB approximations
to the Airy functions that approximate the solution to the
Schrödinger equation in the vicinity of the turning point. In
that case the resulting secular equation is found to be

sin (IT ) + 1
2e� = 0, (5)

where � = 2 Im I+ with I+ ≡ ∫ 1
x0

ds
√

gQ(s). Because of PT
symmetry, the total integral IT can be written as IT = 2 Re I+.

It is the presence of the second term in this new secular
equation that gives the interesting structure and critical points
of the spectrum. When λ is real, � is real and intrinsically
large in magnitude. When � is negative, the second term is
generically very small, so that the equation essentially reduces
to (4); when � is positive, the second term is generically large
and cannot be balanced by the first term unless λ becomes
complex. The critical points where this change of behavior
occurs are given by � � 1.

In the case of the potential V (x) = igx3 there are three
turning points at x = ib(1,ω,ω2), where b = a1/3 and ω =
e2iπ/3. Numerical calculations [11] show a series of critical
points, which the one-turning-point WKB approximation fails
to reproduce. We are therefore motivated to develop the
formalism for a two-turning-point approximation, where the
path of integration passes through the turning points xL = ibω

and xR = ibω2. In this case we need three different WKB
approximations to the wave function: ψL(x) for x between −1
and xL, ψM (x) for x between xL and xR , and ψR(x) for x

between xR and 1. These approximations take the form

ψL(x) ∼ 1

(gQ)1/4

[
L1 exp

(
i

∫ xL

x

ds
√

gQ(s)

)

+L2 exp

(
−i

∫ xL

x

ds
√

gQ(s)

) ]
,

ψM (x) ∼ 1

(gQ)1/4

[
M1 exp

(
i

∫ x

xL

ds
√

gQ(s)

)

+M2 exp

(
−i

∫ x

xL

ds
√

gQ(s)

)]
,

ψR(x) ∼ 1

(gQ)1/4

[
R1 exp

(
i

∫ x

xR

ds
√

gQ(s)

)

+R2 exp

(
−i

∫ x

xR

ds
√

gQ(s)

)]
. (6)

We will not need ψR(x) explicitly, as our tactic will be to work
with ψL(x) and ψM (x) in the left half-plane and to enforce
PT symmetry of the wave function on the imaginary axis.

The first constraint on the coefficients is that ψL(x) should
vanish at x = −1, which gives the equation

L1

L2
= −e−2iIL , (7)

where IL ≡ ∫ xL

−1 ds
√

gQ(s). The second constraint comes
from requiring that the wave function be PT symmetric,
namely, that ψ ′(x)/ψ(x) be pure imaginary at an arbitrary
point x = −iα on the imaginary axis. After some algebra this
leads to the equation

M1M
∗
2

M2M
∗
1

= e−2iIM , (8)

where IM ≡ ∫ xR

xL
ds

√
gQ(s).

Finally, we match the two WKB approximations to the
superposition of Airy functions

ψA(x) = K1 Ai(y) + K2 Ai(ω2y), (9)

with y = (x − xL)/c, that approximates the solution to the
Schrödinger equation in the vicinity of xL. The coefficient c is
given by c = γ e−iθ/3, where γ = (3gb2)−1/3 and θ = 5π/6.
Because g is large, c is small. Hence, y is large, and the Airy
functions have two distinct asymptotic behaviors depending
on the argument of y, namely,

Ai(y) ∼ 1

2
√

πy1/4
e−(2/3)y3/2

(|arg y| < π ),

(10)

Ai(y) ∼ 1

2
√

πy1/4

(
e−(2/3)y3/2 + ie(2/3)y3/2)

(|arg y| = π ).

In the neighborhood of xL the two WKB approximations can
be further approximated as

ψL(x) ∝ 1

y1/4

(
L1e

−(2/3)y3/2 + L2e
(2/3)y3/2)

,

(11)

ψM (x) ∝ 1

y1/4

(
M1e

(2/3)y3/2 + M2e
−(2/3)y3/2)

.

In the complex-y plane the matches must be made along
the Stokes lines where the wave function is purely oscillatory.
These Stokes lines are indicated in the left panel of Fig. 1. The
rotation angle between x and y is θ/3, which is approximately
π/3, and the paths have to be adjusted so that y and ω2y lie on
Stokes lines. The required directions in the complex-x plane
are indicated in the right panel of Fig. 1. For the matching to
ψM (x), both y and ω2y lie away from the negative-y axis. Thus,
in this case we can use the first asymptotic approximation of
(10). This results in the matching

M1e
(2/3)y3/2 + M2e

−(2/3)y3/2 ∝ K1e
−(2/3)y3/2 + K2e

iπ/6e(2/3)y3/2
,

(12)

L

M
xL

x

M

L

2 M

2 L

0

y

FIG. 1. Matching paths in the complex-y plane (left panel) and x

plane (right panel).
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and leads to the condition
M1

M2
= K2

K1
eiπ/6. (13)

For the matching to ψL(x), ω2y again lies away from the
negative-y axis, but y lies along that axis. In that case we
use the second approximation of (10) for Ai(y). The resulting
match is

L1e
−(2/3)y3/2 + L2e

(2/3)y3/2

∝ K1
(
e−(2/3)y3/2 + ie(2/3)y3/2) + K2e

iπ/6e(2/3)y3/2
, (14)

which gives the condition

L2

L1
= i + K2

K1
eiπ/6. (15)

Combining (7), (8), (13), and (15), we obtain

e−2iIM = i + e2iIL

−i + e−2iI ∗
L

, (16)

which results in the surprisingly simple secular equation

sin (IT ) + e� cos (IM ) = 0, (17)

where � ≡ 2 Im IL.
The secular equation (17) is our main result. It was derived

explicitly for the case V (x) = igx3, but in fact it applies
without change for potentials of the form V (x) = −g(ix)2N+1

when the two relevant turning points lie in the lower-half plane.
If the relevant turning points lie in the upper-half plane, the
sign of � in Eq. (17) should be reversed. When N is an integer,
the spectrum is the same for g negative because changing the
sign of g is equivalent to changing the sign of i. Otherwise,
the spectrum is asymmetric in g.

A few words about the role of � are in order. As already
mentioned, it is the change in sign of � that produces
the interesting structure in the spectrum and determines the
location of the critical points. The significance of � = 0 is
that when � vanishes, IL is purely real and there is a purely
oscillatory path for the WKB wave function in going from
x = −1 to x = xL. There is a path connecting xL and xR

1 1

x

x x
L R

FIG. 2. (Color online) Turning points for the potential V = igx3

with a = 0.5. The two turning points used in the WKB approximation
are circled and marked xL and xR . Also shown (dashed red lines) are
the Stokes lines emanating from xL and xR .
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FIG. 3. (Color online) WKB approximation (red line) for
the real energy levels of the potential V (x) = igx3 compared with
the numerical results (blue dots). The WKB approximation and the
numerical results are virtually indistinguishable.

along which the wave function is purely oscillatory, so the
wave function is oscillatory along the entire path from −1 to
1. If there is no oscillatory path starting from x = −1 that
passes through xL, the WKB approximation fails to produce
critical points. These considerations guide us in the choice of
the appropriate turning points.

III. NUMERICAL CALCULATIONS

For V = igx3 the two relevant turning points are shown
circled in Fig. 2 for a = 0.5. We also show the Stokes lines
emanating from xL and xR along which the exponent in the
WKB approximation is purely imaginary. There is a purely
oscillatory path between xL and xR , and the continuations
towards ±1 almost pass through those points. They do so
when � = 0.

Figure 3 shows the result of (17) for the real spectrum of the
potential V = igx3 along with the numerical results obtained
by a shooting method. As can be seen, the WKB approximation
reproduces the numerical result very accurately. The spectrum
for g negative is not shown because it is identical to that for g

positive. The line of blue dots extending a little way beyond a

1 1

x

x xL R

FIG. 4. (Color online) Turning points for the potential V =
−igx5 with a = 0.5. The two turning points used in the WKB
approximation are circled and marked xL and xR . Also shown (dashed
red lines) are the Stokes lines emanating from xL and xR .
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FIG. 5. (Color online) WKB approximation (red line) for the
real energy levels of the potential V (x) = −igx5 compared with the
numerical results (blue dots). As in Fig. 3, the WKB approximation
and the numerical results are virtually indistinguishable.

critical point represents the common real part of the complex-
conjugate pair of eigenvalues. In subsequent diagrams this
line may eventually cross a curve of real eigenvalues, but this
situation does not represent a further degeneracy because at
that point two of the eigenvalues are complex and the other is
real.

Figures 4 and 5 show the corresponding results for the
potential V = −igx5. Because the relevant turning points are
above the real-x axis, we must now use e−� in Eq. (17).
Again, the WKB approximation reproduces the numerical
result extremely accurately. A general feature of the spectrum
is that as the power M of x increases, the interesting structure
occurs for higher values of g. This happens because for x in
the range −1 < x < 1, clearly xM becomes small when M is
large, so that the second term in Q becomes appreciable only
when g is large. However, we do not know precisely how the
positions of the critical points grow with M .

It seems clear that this WKB approximation will work
equally well for potentials of the form V = −(igx)2N+1, where
N is integral. The turning points chosen are probably those
closest to the x axis, but in any case they must be a pair for
which the Stokes lines from xL and xR pass through x = ±1

100 50 0 50 100
g

50

100

150

200
λ

− −

FIG. 6. (Color online) WKB approximations (red line) for the
real energy levels of the potential V (x) = −g(ix)1/2 compared with
the numerical results (blue dots). For g > 0 we use (4), while for
g < 0 we use (5) with e� replaced by e−� (see text).
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x x
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L R

0

FIG. 7. (Color online) Turning points for the potential V (x) =
−g(ix)3/2, for a = 0.7.

for some value of a. This corresponds to � = 0 and the onset
of structure in the spectrum, resulting in critical points.

We have also examined the effectiveness of the WKB
approximation for half-integral PT -symmetric potentials.
Specifically we have looked at the cases V = −g(ix)M for
M = 1/2, 3/2, and 5/2. Now we have to differentiate between
the cases g positive and g negative.

Starting with V = −g(ix)1/2, the potential is a two-sheeted
function with a cut that we take to lie along the positive
imaginary axis. There is a single turning point, which is
located at x = −ia2, but it is on different Riemann sheets
depending on the sign of g. For g < 0 the turning point is on
the first sheet; however, for g > 0 it is on the second sheet.
It is natural to take the end points x = ±1 to be on the first
Riemann sheet. Then, for g < 0 there is a straightforward
WKB path through the turning point. On the other hand, for
g > 0 the path would have to pass through the cut twice in
order to pass through the turning point. We do not know
how to implement such a path, so for g > 0 we simply use
the straightforward no-turning-point formula of (4). By its
nature this latter approximation is rather smooth and does
not reproduce the critical points that occur in the numerical
solution. The two WKB approximations and the numerical
data are presented in Fig. 6.
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FIG. 8. (Color online) WKB approximations (red line) for the
real energy levels of the potential V (x) = −g(ix)3/2 compared with
the numerical results (blue dots). For g < 0 we use (5), while for
g > 0 we use (17) with e� replaced by e−�. This fails to reproduce
the spectrum because of complications due to the cut.
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1 1

x

x xL R

FIG. 9. (Color online) Turning points for the potential V (x) =
−g(ix)5/2, for a = 0.7.

Going on to M = 3/2, the turning points are shown in
Fig. 7. There is a single turning point, marked x0, at x =
−ia2/3, and a pair of turning points, xL and xR , in the upper-
half plane. For g < 0 the single turning point x0 is on the first
sheet, and the appropriate path is one going through that point,
giving the WKB approximation of (5). As can be seen from
Fig. 8, the approximation is extremely good. For g > 0, the
single turning point is on the second sheet, while xL and xR are
on the first sheet. However, there is no Stokes lines between
them because of the presence of the cut. This explains why the
WKB approximation of (17) with e� replaced by e−� fails to
reproduce completely the numerical structure of the spectrum.

Finally we turn to M = 5/2. The relevant turning points are
shown in Fig. 9. For g > 0 the turning points xL and xR are on
the first sheet, and the appropriate path is one going through
them, giving the extremely accurate WKB approximation of
(17). For g < 0, the upper pair of turning points are on the
first sheet, but again there is no Stokes line between them
because of the presence of the cut, and consequently the WKB
approximation fails to reproduce completely the numerical
structure of the spectrum, as shown in Fig. 10.

IV. CONCLUDING REMARKS

We have derived a very simple secular equation for the
real eigenvalues of PT -symmetric Sturm-Liouville problems
where the potential is of the form V = igx2N+1 with N inte-
gral.1 This equation is derived using the WKB approximation
for a path that passes through the pair of turning points lying

1We have not considered potentials of the form V = igx2N , since
they are neither Hermitian norPT symmetric, and so will generically
have only complex eigenvalues.
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FIG. 10. (Color online) WKB approximations (red line) for the
real energy levels of the potential V (x) = −g(ix)5/2 compared with
the numerical results (blue dots). For g > 0 we use (17) with the
turning points xL and xR , while for g < 0 we use the upper pair
of turning points. This latter approximation fails to reproduce the
spectrum because of complications due to the cut.

nearest to the x axis, and supplements the equation previously
derived for a path passing through a single turning point.
For the above potentials the spectrum is symmetric in g,
so that it is only necessary to consider one sign of g. For
N = 0, 1, and 2 the spectra so obtained are extremely accurate
and show all the interesting structure, including the critical
points where two eigenvalues merge and become complex
conjugates. We anticipate that this qualitative picture will
persist for larger values of N , although we have not performed
explicit calculations.

We also considered the extension of the secular equation
to potentials with half-integral powers. In those cases the
situation is complicated by the presence of a cut, and a
straightforward application is only possible for the particular
sign of g where the relevant critical point or points lie in the
lower-half plane. Here the results are again extremely accurate.
For the other sign of g the method fails to reproduce the
complete structure of the spectrum, and an extension of
the method is needed to deal with the situation when either
the turning points are on a different sheet from the end points
±1 or the path between them is impeded by the cut.

As mentioned in the Introduction, this problem with the
linear potential V = igx occurs in a number of physical
situations, and one may speculate that the higher-power
potentials considered in this paper might also have some
physical relevance. The most likely application is in the context
of hydrodynamics, discussed in Ref. [10], where the potential
V (x) is associated with the velocity profile q(x) of the fluid.
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