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In quantum physics, all measured observables are subject to statistical uncertainties, which arise from the
quantum nature as well as the experimental technique. We consider the statistical uncertainty of the so-called
sampling method, in which one estimates the expectation value of a given observable by empirical means of
suitable pattern functions. We show that if the observable can be written as a function of a single directly
measurable operator, the variance of the estimate from the sampling method equals to the quantum-mechanical
one. In this sense, we say that the estimate is on the quantum-mechanical level of uncertainty. In contrast, if
the observable depends on noncommuting operators (e.g., different quadratures), the quantum-mechanical level
of uncertainty is not achieved. The impact of the results on quantum tomography is discussed, and different
approaches to quantum tomographic measurements are compared. It is shown explicitly for the estimation of
quasiprobabilities of a quantum state, that balanced homodyne tomography does not operate on the quantum-
mechanical level of uncertainty, while the unbalanced homodyne detection does.
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I. INTRODUCTION

The theory of measurements in quantum physics has a
long tradition. First, it requires a good understanding of the
measurement devices. In quantum optics, the foundations for
the photodetector have been established in the pioneering
works of Mandel [1], Kelley and Kleiner [2], as well as Glauber
[3]. On this basis, more elaborate measurement techniques
have been developed, such as balanced homodyne detection
[4,5], unbalanced homodyne detection [6], and eight-port
homodyne detection schemes [7,8]. All mentioned schemes
provide the possibility of collecting information to completely
characterize an arbitrary quantum state of light.

Once the experimental techniques are well known, one
needs suitable tomographic methods to convert the raw exper-
imental data into a convenient representation of the quantum
state. In case of balanced homodyne measurements, in which
one records phase-dependent quadratures, there are several
approaches which have been proposed. In [9], the so-called
inverse radon transform is applied to estimate the Wigner
function of the quantum state. This approach can also be
generalized to obtain different quasiprobability distributions,
such as the Glauber-Sudarshan P function [10]. In order to
calculate density matrices, one may choose between Fourier
techniques [11], direct sampling schemes [12–14], or more
involved maximum likelihood methods [15,16].

However, there has only been little interest in the statis-
tical properties of quantum state estimation. The theoretical
foundations have already been considered in [17], but in
particular for quantum state tomography, the statistical un-
certainties of the estimates are not examined deeply. First
examinations have been performed in [18]. The advantage
of the sampling approach is that it directly gives a simple
estimate of the statistical uncertainty of the estimated quantity
[19], which we will shortly review below. In case of the
maximum likelihood approach, statistical uncertainties can be
evaluated by the inverse of the so-called Fisher information
matrix, which requires some numerical effort [20]. Alternative
methods for the estimation of uncertainties can also be
found in [21,22].

In the present work, we compare the statistical uncertainty,
which arises in the direct sampling approach, to the quantum-
mechanical variance, which provides a lower bound set by
the quantum nature of light. In Sec. II, we consider functions
of a single observable, which can be directly measured, and
show that the variance of the corresponding pattern function
equals to the quantum-mechanical one. In Sec. III, we examine
observables for which complete quantum state tomography is
required. Explicitly, we show that sampling from balanced
homodyne detection data does not operate on the quantum-
mechanical level of uncertainty, and find that the statistical
independence of quadratures at different phases is the reason.
We also discuss the estimation of phase-space distributions in
Sec. IV, and show that the unbalanced homodyne detection
scheme provides estimates with quantum-mechanical uncer-
tainties. Section V is dedicated to an example in quantum state
tomography to illustrate the impact of the results.

II. FUNCTIONS OF A SINGLE OBSERVABLE

A. General considerations

As a first step, let us assume that we observe a single
physical quantity Â and estimate the expectation value of a
function of this observable, F̂ (Â). As F̂ (Â) is a Hermitian
operator, it can be written in its spectral decomposition,

F̂ (Â) =
∫
A

F (A)|A〉〈A|dA, (1)

where |A〉 is an eigenvector of Â with the eigenvalue A. The set
A is the set of all eigenvalues. In case of discrete eigenvalues,
the integration has to be replaced by the corresponding sum.
The eigenvectors can be chosen orthogonal,

〈A|A′〉 = δ(A − A′), (2)

where the right-hand side has to be interpreted as the Kronecker
symbol in the case of discrete eigenvalues. Furthermore, the
eigenstates provide a resolution of identity,∫

A
|A〉〈A|dA = 1̂. (3)
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Let us now consider an experiment which records a set of
N eigenvalues {Aj }Nj=1 from A as outcomes. The underlying
quantum state shall be denoted by ρ̂. Then, the empirical
expectation value of some function F (A) can be estimated
as

F̃ = 1

N

N∑
j=1

F (Aj ). (4)

The tilde indicates that this quantity is a random number,
since it is obtained from measured (and therefore random)
values {Aj }Nj=1, whose probabilities shall be denoted by p(Aj ).
Therefore, the expectation value of this random number F is
given by

F̃ =
∫
A

p(A)F (A)dA. (5)

As above, the integral has to be seen as a sum over the
probabilities if the set of eigenvalues is discrete. The key
point is now that Eq. (4) provides a good estimate for
the quantum-mechanical expectation value of the operator
F̂ (Â). The probabilities of the outcomes are connected to the
underlying quantum state by

p(A) = Tr{ρ̂|A〉〈A|}. (6)

Inserting this into Eq. (5) and applying (1), we find

F̃ = Tr{ρ̂F̂ (Â)}. (7)

Equations (4), (5), and (7) form the basis of the sampling
technique. In order to find an unbiased estimate of the
expectation value of F̂ (Â), one simply has to insert his
measurement outcomes {Aj }Nj=1 into the so-called pattern
function F (A) and calculate the empirical mean F̃ of the values
according to Eq. (4).

For the ability to make justified statements, one still needs
a measure of the uncertainty of the estimate (4). The empirical
variance of the sampling points {F (Aj )}Nj=1 is given by

σ 2
F (A) = 1

N − 1

N∑
j=1

[F (Aj ) − F̃ ]2. (8)

This number quantifies the spreading of the points F (Aj ). The
factor 1

N−1 guarantees that the estimate is unbiased, that is,

σ 2
F (A) =

∫
A

p(A)
[
F (A) − F̃

]2
dA. (9)

Practically, the estimation of the empirical variance requires
the calculation of the second moment of F (A),

F̃ (2) = 1

N

N∑
j=1

F (Aj )2. (10)

We easily see that this is exactly the sampling equation
[Eq. (4)], just with the square of the function F (A). Therefore,
and due to the orthogonality of the eigenstates |A〉, its
expectation value again equals to the quantum-mechanical one,

F̃ (2) = Tr{ρ̂F̂ 2(Â)}. (11)

The same holds for arbitrary moments of the function F (A).
As a consequence, also the quantum-mechanical variance

of F̂ (Â),

〈(�F̂ (Â))2〉 = Tr{ρ̂[F̂ (Â)]2} − [Tr{ρ̂F̂ (Â)}]2, (12)

can be estimated without bias from the set of sampling points
{F (Aj )}Nj=1:

σ 2
F (A) = 〈(�F̂ (Â))2〉. (13)

Finally, we are interested in the statistical uncertainty on the
estimate (4). From estimation theory, this is just the empirical
variance σ 2

F (A) of the sampling points, divided by the number
of measurements:

σ 2
F̃

= σ 2
F (A)/N. (14)

The factor 1/N guarantees that for an increasing number of
data points N , the uncertainty of the empirical mean value is
decreasing. For N → ∞, the latter approaches stochastically
the quantum-mechanical expectation value.

In conclusion, we may estimate the quantum-mechanical
expectation value of the operator F̂ (Â) by the sampling
equation [Eq. (4)], and the variance of F̃ is exactly expected to
match the quantum-mechanical variance 〈(�F̂ (Â))2〉, divided
by the number of data points. In this sense, we may state
that the determination of Tr{ρ̂F̂ (Â)} can be done on the
quantum-mechanical level of uncertainty. There are no other
sources of noise contributing to the uncertainty, and it is not
possible to achieve less fluctuations with classical statistical
means.

We emphasize that so far we only considered a function
of the directly measurable operator Â, making this result
possible. After briefly discussing some examples, we show that
the situation becomes completely different when we require
several noncommuting observables to estimate the expectation
value of an operator F̂ .

B. Functions of a single quadrature

As a first example, let us consider the measurement of the
quadrature operator x̂, which is frequently done in balanced
homodyne measurements. In this case, the set of eigenvalues
is given by the continuous spectrum A = R. According to the
above calculations, any function of a single quadrature can
be estimated at the quantum-mechanical level of uncertainty.
This includes all kinds of moments of the quadrature, for
instance, normally ordered ones. However, note that we only
may use a quadrature at a single phase. If we consider functions
of quadratures of different phases, the situation will become
completely different, as we will show below.

C. Functions of the photon number

Photon-number resolving detectors can record the out-
comes of the photon-number operator n̂. Here, the set of
eigenvalues is the discrete spectrum A = N. Again, we can
state that the expectation value of any function of the photon-
number operator can be estimated at the quantum-mechanical
level of uncertainty. We still note that in practice one can
only record a finite number of measurements, leading to some
uncertainty on photon-number probabilities with very low
values, which typically occur for very large photon numbers.
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However, this problem can be minimized by increasing the
number of measurements.

III. EXPECTATION VALUES FROM BALANCED
HOMODYNE DETECTION

Measurements of a single operator, such as the quadrature
or the photon number, can not characterize a quantum state
completely. For some operators, one needs more information
about the state in order to estimate some expectation value. For
instance, measurements of the quadrature distributions for all
phases in [0,π ) are informationally complete [23,24], and we
may calculate any expectation value from these measurement
outcomes. On the other hand, it has been shown that so-called
quasiprobability representations of quantum states can be
retrieved by photon-number resolved measurements, when
one displaces the quantum state in phase space before the
measurement [6]. In the following, we consider these methods
more in detail.

A. Quantum-mechanical expectation values

For having a meaningful reference, we start with the
calculation of the quantum-mechanical variance of some
operator F̂ . Here, we express it in terms of the characteristic
functions of the Wigner function of the density operator ρ̂ of
the state and of the observable F̂ . In general, the characteristic
function of the Wigner function is defined as

�F̂ (β) = Tr{F̂ D̂(β)}, (15)

with D̂(β) = eβâ†−β∗â being the well-known displacement
operator [25]. For Hermitian operators, we have the relation
�F̂ (−β) = �∗

F̂
(β). Moreover, if F̂ is the density operator

of a state, we will omit the index of �(β) throughout the
paper. Conversely, the operator may be retrieved from its
characteristic function by

F̂ = 1

π

∫
d2β �∗

F̂
(β)D̂(β). (16)

With these quantities at hand, we may calculate the expectation
value of F̂ with respect to the state ρ̂ by

Tr{ρ̂F̂ } = 1

π

∫
d2β �(β)�∗

F̂
(β). (17)

Let us now express the second moment of F̂ in terms of
characteristic functions. Inserting Eq. (16) for the operator
F̂ , we obtain

Tr{ρ̂F̂ 2} = 1

π2

∫
d2β ′

∫
d2β ′′�∗

F̂
(β ′)�∗

F̂
(β ′′)

× Tr{ρ̂D̂(β ′)D̂(β ′′)}. (18)

By applying the equality,

D̂(α)D̂(β) = D̂(α + β)eiIm(αβ∗), (19)

and writing both integrals in polar coordinates, we find the
final expression,

Tr{ρ̂F̂ 2} = 1

π2

∫
dϕ dφ db′ db′′ |b′||b′′|�(b′eiϕ + b′′eiφ)

×�∗
F̂

(b′eiϕ)�∗
F̂

(b′′eiφ)eib′b′′ sin(ϕ−φ). (20)

In our notation, the integrals over the angles ϕ,φ range from 0
to π , while the integration over b′,b′′ covers the full real line.
The variance can then be easily calculated as

Tr{(�F̂ )2} = Tr{ρ̂F̂ 2} − [Tr{ρ̂F̂ }]2. (21)

Equation (20) will be the reference for comparison with the
variance arising in sampling methods.

B. Balanced homodyne measurements

1. Sampling from balanced homodyne measurement data

Let us assume that the state ρ̂ is sent to a balanced homo-
dyne detector [4,5], recording quadrature values {xj ,ϕj )}Nj=1
at different phases ϕj ∈ [0,π ). Here, we assume that the phase
values are uniformly distributed within this interval. Then, the
quadrature xj follows the quadrature distribution p(xj ; ϕj ),
which is conditioned on the value of ϕj . The joint probability
distribution is given by p(x; ϕ)/π .

Sampling is an established technique to estimate the
expectation value of an Hermitian operator F̂ from this set
of data by an empirical mean of a suitable pattern function
f (x,ϕ),

F̃ = 1

N

N∑
j=1

f (xj ,ϕj ). (22)

Analogously to Eq. (4), this number F̃ is a random variable,
whose expectation value is given by

F̃ =
∫ ∞

−∞
dx

∫ π

0
dϕ

p(x; ϕ)

π
f (x,ϕ). (23)

The pattern function has to be designed such that this
expectation value equals to the quantum-mechanical one,

F̃ = Tr{ρ̂F̂ }. (24)

Let us now find such a suitable pattern function belonging
to the operator F̂ . The characteristic function of the state is
connected to the quadrature distribution as

�(β) =
∫ ∞

−∞
dx p

(
x; arg(β) − π

2

)
ei|β|x. (25)

Inserting this equation into Eq. (17) and writing the integration
over β in polar coordinates, we obtain

Tr{ρ̂F̂ } =
∫ ∞

−∞
dx

∫ π

0
dϕ

p (x; ϕ)

π

×
∫ ∞

−∞
db |b| eibx�∗

F̂
(ibeiϕ). (26)

From this relation, we easily see that the pattern function is
given by

f (x,ϕ) =
∫ ∞

−∞
db |b| eibx�∗

F̂
(ibeiϕ). (27)

By construction, the expectation value of this pattern function
with respect to the joint quadrature distributions p(x; ϕ)/π
always equals to the quantum-mechanical expectation value
[see Eq. (24)].

Moreover, we are interested in the empirical variance of
the single data points, which can be estimated from the
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experimental data by

σ 2
f (x,ϕ) = 1

N − 1

N∑
j=1

(f (xj ,ϕj ) − F̃ )2, (28)

being completely analogous to Eq. (8). Consequently, the
expectation value of this variance is given by

σ 2
f (x,ϕ) = [f (x,ϕ)]2 − f (x,ϕ)

2
. (29)

Finally, the variance of the estimate F̃ for the expectation value
of the operator F̂ can be obtained from

σ 2
F̃

= σ 2
f (x,ϕ)/N. (30)

This number quantifies the uncertainty of the estimate (22).
Let us now examine if we can expect the empirical variance

Eq. (29) to match the quantum-mechanical variance of the
operator F̂ . Contrarily to the procedure above, the operator
F̂ now depends on quadratures at different phases ϕ, whose
operators do not commute. For getting a deeper understanding,
we concentrate on the second moment of f (x,ϕ). By using the
inverse relation of Eq. (25),

p(x; ϕ) = 1

2π

∫ ∞

−∞
db e−ibx�(ibeiϕ), (31)

we find

f (x,ϕ)2 =
∫ ∞

−∞
dx

∫ π

0
dϕ

p(x; ϕ)

π
[f (x,ϕ)]2 (32)

= 1

2π2

∫
dx dϕ db db′ db′′ |b′||b′′|ei(b′+b′′−b)x

×�(ibeiϕ)�∗
F̂

(ib′eiϕ)�∗
F̂

(ib′′eiϕ). (33)

We substitute ϕ → ϕ − π/2 in order to remove the imaginary
unit i in the arguments of the characteristic function. A careful
analysis shows that we do not have to change the integration
domain due to the periodicity of the integrand. Moreover, the
integral over x can be evaluated as

1

2π

∫ ∞

−∞
dx ei(b′+b′′−b)x = δ(b′ + b′′ − b), (34)

which can be used to evaluate another integral in (33):

f (x,ϕ)2 = 1

π

∫
dϕ db′ db′′ |b′||b′′|�((b′ + b′′)eiϕ)

×�∗
F̂

(b′eiϕ)�∗
F̂

(b′′eiϕ). (35)

Together with Eq. (29), we find the theoretically expected
variance of the sampling method.

We stress that this equation is not directly evaluated in prac-
tice, since the underlying quadrature distribution is unknown,
and we only have a sample of quadrature measurements
{(xj ,ϕj )}Nj=1. Instead, we use the empirical variance given
in Eq. (28). However, the theoretical expectation is given by
Eq. (29) in combination with Eqs. (23) and (35) and the basis
for all following considerations.

2. Comparison with the quantum-mechanical variance

Let us compare the quantum-mechanical variance (21)
with the variance expected from the sampling method (28).
Since the first moments of the sampling method and quantum

mechanics are equal by construction, it is sufficient to examine
the second moments of f (x; ϕ) and F̂ . The expressions
from the sampling method (35) and the quantum-mechanical
calculation (20) look quite similar, but they are different: In
(35), one integration over φ is missing. A closer look reveals
that if one replaces

1

π

∫ π

0
dφ →

∫
dφδ(ϕ − φ) (36)

in the quantum-mechanical expectation (20), one finds the
expression for the pattern function (35). Obviously, since
we only observe the quadrature distribution p(x; ϕ) at a
fixed phase ϕ, and all measured quadratures for different
ϕ are stochastically independent, the “correlations” of the
quadrature distributions between different phases ϕ and φ are
not taken into consideration. This is due to the fact that p(x; ϕ)
is not the joint distribution of all quadratures, whose marginals
are the observed quadrature distributions. The definition
of the joint distribution suffers from the problem of the
noncommutativity of the corresponding quadrature operators
and is closely related to the different phase-space distributions.
As a consequence, the quantum-mechanical variance is not
equal to the empirical variance of the pattern function. In this
sense, the statistics of the balanced homodyne measurements
is not at the quantum-mechanical level, since the expectation
value of F̂ cannot be estimated with quantum-mechanical
uncertainty.

The definition of a joint probability of two quadratures
suffers from the problem of the noncommutativity of two
quadratures for different phases. In this context there appear
similar problems as the well-known ambiguity of the definition
of phase-space distributions.

We also note that the statement does not change when the
examined operator is phase insensitive, that is,

�F̂ (beiϕ) ≡ �F̂ (b). (37)

In this case, it is sufficient to record the completely phase-
diffused quadrature distribution,

ppd(x) = 1

π

∫
p(x; ϕ)dϕ, (38)

which can be easily done by choosing a uniform phase
distribution of the local oscillator coherent state. This scheme
may be practically more simple, since one does not have
to record the phase values. However, it is still necessary to
guarantee the uniform phase distribution in (38). Moreover, it
does not bring any statistical benefit, since the variance (35)
of the pattern function remains the same. Therefore, the same
number of data points is required to obtain the same statistical
precision.

Finally, we might ask if it is possible to experimentally
construct a bipartite state described by the characteristic func-
tion �(β ′ + β ′′), which appears in Eq. (20). The arguments
β ′ and β ′′ are assigned to each of the two subsystems.
If this was possible, one could use it for estimating the
quantum-mechanical variance from Eq. (20). Practically, we
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would need to measure joint quadrature distributions,

p(x1,x2; ϕ1,ϕ2) = 1

(2π )2

∫ ∞

−∞
db′

∫ ∞

−∞
db′′e−(ib′x1+b′′x2)

×�(ib′eiϕ1 + ib′′eiϕ2 ), (39)

which seems to require joint balanced homodyne measure-
ments on the bipartite state.

The problem is just that �(β ′ + β ′′) does not refer to
a physical state. This becomes clear when we examine the
covariance matrix. The required moments can be obtained by
taking the derivatives of �(β ′ + β ′′) at β ′ = β ′′ = 0. We note
that all moments of the bipartite state can be expressed in
moments of the state �(β), since

∂k

∂β ′k
∂l

∂(β ′∗)l
∂m

∂β ′′m
∂n

∂(β ′′∗)n
�(β ′ + β ′′)

∣∣
β ′,β ′′=0

= ∂k+m

∂βk+m

∂l+n

∂(β∗)l+n
�(β)

∣∣
β=0. (40)

Therefore, if the state described by �(β) has a quadrature
covariance matrix,

C1 =
(

Vx Cxp

Cxp Vp

)
, (41)

the bipartite state can be characterized by the matrix,

C2 =
(

C1 C1

C1 C1

)
. (42)

In order to describe a physical state, this matrix has to satisfy
the nonnegativity condition [26],

C2 + i � 0, (43)

where

 =
(

J 0
0 J

)
and J =

(
0 1

−1 0

)
. (44)

However, the 3 × 3 minors of C2 are always negative, for
example, ∣∣∣∣∣∣

Vx Cxp + i Vx

Cxp − i Vp Cxp

Vx Cxp Vx

∣∣∣∣∣∣ = −Vx. (45)

Therefore, Eq. (43) is violated by the covariance matrix C2 of
the bipartite characteristic function �(β ′ + β ′′), and �(β ′ +
β ′′) can never correspond to a physical quantum state, which
could be generated in an experiment. As a consequence, it
seems unfeasible to estimate the variance (20) on the quantum-
mechanical level.

3. Coherent displacement of states and operators.

Next, we consider a more general setting. First, we assume
that we look at a family of observables F (γ ), being constructed

t
r

| t
r
α

Φ0(β) Φ(β; α, t)

FIG. 1. Scheme for overlapping a signal state �0(β) with a
coherent state.

by a coherent displacement of some initial operator F̂ :

F̂ (γ ) = D̂(γ )F̂ D̂(−γ ). (46)

The characteristic function of these operators is given by

�F̂ (γ )(β) = �F̂ (β)eβγ ∗−β∗γ . (47)

Furthermore, we also apply the displacement to the state ρ̂,
but we look at a suitable experimental realization. Let us send
the initial state, described by �0(β), to a beam splitter with
real transmissivity t and reflectivity r , satisfying t2 + r2 = 1
(see Fig. 1). At the second input of the beam splitter, we
irradiate a coherent state with amplitude tα/r , described by
its characteristic function,

�coh(β) = e(tα∗/r)β−(tα/r)β∗
e−|β|2/2. (48)

The resulting output state has the characteristic function,

�(β; α,t) = �0(tβ)�coh(rβ) (49)

= �0(tβ)etα∗β−tαβ∗
e−(1−t2)|β|2/2. (50)

We have chosen the amplitude of the coherent state such that
the reflectivity does not appear in all calculations. Note that
the transmissivity t can also be used for taking the detector
quantum efficiency into account. It is well known that an
imperfect detector with efficiency η < 1 can be modeled by
first mixing the input state with a fraction of 1 − η of vacuum
and subsequently performing the measurement with an ideal
detector. The transmissivity of the corresponding beam splitter
is given by

√
η. By applying Eq. (50) on the state �(β; α,t)

with transmissivity t ′ = √
η and coherent state amplitude

α′ = 0, we find

�η(β; α,t) = �(
√

ηβ)e−(1−η)|β|2/2

= �(β; α,t
√

η). (51)

Therefore, an imperfect detector can be simply taken into
account by replacing the transmissivity t of the beam splitter
by the effective transmissivity t

√
η. In consequence, we may

consider only ideal detectors.
Of course, the expectation value of the pattern function

corresponding to F̂ (α) with respect to the new output state
is exactly the quantum-mechanical expectation again. Let us
look at the second moment of the pattern function, by inserting
Eqs. (47) and (50) into (35):

f (x,ϕ)2 = 1

π

∫ π

0
dϕ

∫ ∞

−∞
db′

∫ ∞

−∞
db′′ |b′||b′′| �0(t(b′ + b′′)eiϕ)e−(1−t2)(b′+b′′)2/2

×�∗
F̂

(b′eiϕ)�∗
F̂

(b′′eiϕ)e(b′+b′′)eiϕ (tα∗−γ ∗)−(b′+b′′)e−iϕ (tα−γ ). (52)
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We focus on the following aspect: We want to estimate the
quantum-mechanical expectation value of the operator F̂ (γ )
with respect to the initial state. For this purpose, we have two
possibilities:

(1) We do not displace the initial state and omit the beam
splitter. Mathematically, this is given by t = 1 and α = 0. The
expectation value of F̂ (γ ) is obtained by choosing the pattern
function corresponding to F̂ (γ ) (i.e., by suitable calculations
after the balanced homodyne measurement).

(2) We displace the state by α = −γ /t . The calculations
after the measurement only require the pattern function for F̂ ,
that is, we set γ = 0 in Eq. (52).

The expectation value of the sampling procedure is in both
cases the same, namely the quantum-mechanical expectation.
However, the uncertainties differ: In the second case, the initial
state enters as �0(tβ), which is the state after exposition to
losses with η = t2. Therefore, we may expect a worse result
than in the first scheme, which only depends on the perfect
state. This finding also holds when we consider imperfect
detection: If the quantum efficiency of the balanced homodyne
detector equals to ηd , we had to replace t → √

ηd in the first
case and t → t

√
ηd in the second case. Therefore, the beam

splitter which displaces the initial state introduces unavoidable
losses. This has consequences for the discussion of quantum
state tomography.

IV. RELATION TO QUANTUM STATE TOMOGRAPHY

In the case of quantum state tomography, one is interested to
find a complete representation of the quantum state. Here, we
discuss the representation with means of quasiprobabilities. In
many cases, these quasiprobabilities can be represented as the
expectation value of a displaced operator F̂ , which is phase
insensitive:

P (α) = Tr{ρ̂D̂(α)F̂ D̂(−α)}. (53)

The coefficients Fn in the Fock basis expansion of F̂ ,

F̂ =
∞∑

n=0

Fn|n〉〈n|, (54)

determine a specific quasiprobability. For instance, the Wigner
function is obtained by choosing Fn = 2/π (−1)n, while the
Q function arises from Fn = δn,0/π . More generally, the
coefficients of -ordered quasiprobabilities [27] can be written
as

n = 2

π

∫ ∞

0
db b w(b)Ln(b2), (55)

with Ln(x) being the nth Laguerre polynomial. For the family
of s-parameterized quasiprobabilities, one chooses (b; s) =
e−(1−s)b2/2; for nonclassicality quasiprobabilities one uses a
suitable nonclassicality filter [28,29].

We have discussed different techniques for estimating
expectation values of the form (53). First, we notice that
the so-called cascaded balanced homodyning technique [30]
does not provide any advantage over the standard balanced
homodyne detection. The former corresponds to method 2
described in the previous section, where one displaces the
state and estimates F̂ for γ = 0, while the latter is realized by

method 1. Obviously, the former suffers a reduction of the
quantum efficiency by the transmissivity of the first beam
splitter. This is not affected by the fact that F̂ is phase
independent, and recording of the phase values is not required
in the cascaded measurement. One can only improve the
situation by choosing a beam splitter with high transmissivity.

Second, we note that balanced homodyne measurements
followed by a sampling of quasiprobabilities does not work on
the quantum-mechanical level of uncertainty. Therefore, we
cannot expect that this scheme is optimal for this purpose.
Indeed, if one is interested in quasiprobabilities, there is
a better alternative: The unbalanced homodyne detection
technique is based on a different interpretation of Eq. (53):
First, the quantum state is displaced in the same way described
in Sec. III B3. Afterwards, the expectation value of the phase-
independent operator F̂ is sampled from photon-number
measurements. Since this only requires the measurement of
a single observable, namely the photon number, the estimation
of the quasiprobability at a specific point α is performed on
the quantum-mechanical level of uncertainty. Provided that the
balanced homodyne detector and the photon-number resolved
detector had the same quantum efficiency, we recommend
choosing the latter one, since we expect it to give better results.

Finally, we emphasize that the unbalanced scheme is
optimal for the estimation of the phase-space representation
at fixed points α, but does not cover correlations between
different points α,α′. Therefore, if one wants to estimate
quantities which require the knowledge of the quasiprobability
at different α, one cannot expect to achieve this at the quantum-
mechanical level of uncertainty as well. For instance, quadra-
ture distributions are better measured in balanced homodyne
detection schemes. In this sense, the unbalanced measurement
is optimal for the estimation of quasiprobabilities, but not
always the best in different cases.

V. EXAMPLE

To demonstrate the difference of the statistical uncer-
tainty in balanced homodyne and photon-number resolved
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FIG. 2. (Color online) Nonclassicality quasiprobability of a
squeezed state with Vx = 0.5 and Vp = 2.0.
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FIG. 3. (Color online) Standard deviation from balanced homo-
dyne measurements of the nonclassicality quasiprobability in Fig. 2.

detection, let us consider the determination of a nonclassicality
quasiprobability of a squeezed state [28,31]. Its variances are
Vx = 0.5 and Vp = 2.0, whereas the variance of the vacuum
state shall be Vvac = 1. We will apply

w(β) =
∫

ω(β ′)ω(β ′ + β/w)d2β (56)

as a filter, with ω(β) = (2/π )3/4e−|β|4 . The prefactor guaran-
tees that w(0) = 1, and the filter width is fixed with w = 1.8.
Moreover, the pattern function (27) is defined by choosing
�F̂ (β) = π−1w(β)e|β|2/2eα∗β−αβ∗

.
For the balanced homodyne detection scheme, we generate

a set of N = 100 000 data points, each consisting of a
pair (ϕj ,xj ). The phase values ϕj are uniformly distributed
in the interval [0,π ), whereas xj follows the quadrature
distribution p(x; ϕj ) conditioned on the value of ϕj . From
this simulated set of data, we sample the nonclassicality
quasiprobability together with its statistical uncertainty. For
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FIG. 4. (Color online) Standard deviation from unbalanced ho-
modyne measurements of the nonclassicality quasiprobability in
Fig. 2.
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FIG. 5. (Color online) Comparison of the results for balanced
and unbalanced homodyne tomography. The blue shaded area
corresponds to one standard deviation.

reasons of simplicity, we assume to have an ideal detector
(i.e., η = 1).

In case of the unbalanced homodyne detection scheme,
we calculate the photon-number distribution pn together with
its variance theoretically; the maximum photon number is
restricted to n = 20. Then we derive the statistical uncertainty
from the result by means of linear error propagation.

Figure 2 shows the nonclassicality quasiprobability. We
observe negativities for some real α, being signatures of
the nonclassicality of the squeezed state, the minimum is
achieved at α = 0.6 with P (0.6) = −0.31. Figures 3 and 4
show the standard deviations σb(α) and σu(α), which are ob-
tained from balanced or unbalanced homodyne measurements,
respectively. They are calculated from Eqs. (29) and (21),
each divided by the number of measurements N . Obviously,
they show a completely different behavior. The uncertainty
from balanced homodyne detection is more than a factor of
3 larger than the one from the unbalanced technique; the
exact difference depends on the point in phase space and on
the examined state. In particular, at α = 0.6, the homodyne
measurement provides σb(0.6) = 0.191, leading to an insuffi-
cient significance of the negativity of 1.6 standard deviations.
Contrarily, we have σu(0.6) = 0.010 in the unbalanced case,
leading to a significance of about 31 standard deviations.
Therefore, in case of equal quantum efficiency, the unbalanced
scheme proves to be much better than the balanced one.
Figure 5 illustrates this conclusion clearly.

VI. CONCLUSION AND OUTLOOK

We compared different approaches for estimating the
expectation value of some physical quantity with respect to
its statistical uncertainty. First, we showed that whenever one
can estimate a quantity of interest as a function of a single
operator, which can be directly measured, then the estimate
is on the quantum-mechanical level of uncertainty (i.e., the
empirical variance equals to the quantum-mechanical one).
In practice, this works for quadratures and photon-number
measurements, for instance.
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However, for many operators a direct measurement is
not known, and techniques for quantum tomography have
to be applied. We considered sampling methods, which are
applied to phase-dependent quadrature data from balanced
homodyne measurements. We show that the cascaded balanced
homodyne measurement has no statistical advantage over the
standard technique, although the first method only requires a
phase-randomized local oscillator. Moreover, both methods do
not operate on the quantum-mechanical level of uncertainty.
On the contrary, the unbalanced measurement technique can
achieve the quantum-mechanical level of uncertainty. There-
fore, the latter shall be generally the best of the considered
methods.

We also identified the main reason for the difference
between the variance from balanced homodyne measurement
and the quantum-mechanical variance: It is due to the fact
that quadratures at different phases are always measured
stochastically independently. Therefore, there seems to be a
lack of “phase correlations” in the experimental data. The

severe question is how this problem affects other quantum state
reconstruction methods, like maximum likelihood techniques
[15,16]. In particular, it is unclear if the latter method is able
to perform the estimation on the quantum-mechanical level.

Our results have direct implications to the different
approaches for reconstructing quasiprobabilities or density
matrices of states. We showed the advantage of the unbalanced
measurement with the example of a nonclassicality quasiprob-
ability of a squeezed state. Therefore, if photon-counting
devices with quantum efficiencies comparable to balanced
homodyne detectors will be available in the future, our findings
suggest to prefer the unbalanced scheme for quantum state
estimation.
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