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Optimal probe wave function of weak-value amplification
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The weak measurement proposed by Aharonov and his colleagues extracts information about a physical
quantity of the system by the postselection as shifts of the argument of the probe wave function. The more the
postselected state is orthogonal to the preselected state, the larger the shift determined by the weak value becomes.
Recently, the signal amplification by the weak measurement has been extensively studied. In the present work,
we explicitly obtain the optimal probe wave function and the amplification factor for a given weak value, which
is calculated from the experimental setup. It is shown that the amplification factor has no upper bound, in contrast
to the Gaussian probe wave function, and that the amplified signal is sharp.
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I. INTRODUCTION

Light has been widely used for highly sensitive sensing
devices, well-known examples of which are an optical biosen-
sor [1] and a single-atom addressing [2]. To obtain information
from tiny objects by using light, the optical signal should
be magnified, and various practical techniques for the signal
amplification have been developed, e.g., in Refs. [3,4].

As one of the methods of the signal amplification, the
weak-value amplification has recently been demonstrated [5].
Historically speaking, the idea of this method comes from the
weak measurement initiated by Aharonov et al. [6]. The weak
measurement was proposed as the time-symmetric quantum
measurement [7] almost without destroying a quantum state.
The measured quantity is called the weak value, which
consists of the observable and the pre- and postselected
states. Taking the postselection of the system state is the key
difference from the conventional quantum measurement. The
preselected state corresponds to the state preparation, while
the postselected one corresponds to the detection. These states
together constitute the context of a given weak measurement.
The formal description of the weak measurement in the von
Neumann interaction case was shown in Ref. [8]. While there
are many physical proposals and demonstrations to measure
the weak value by the weak measurement reviewed in Ref. [9],
we shall only consider the von Neumann interaction between
the system and the probe in this paper.

The original idea of the weak measurement was to extract
the weak value from the displacement of the probe wave
function, an example of which is shown in Fig. 1. The
significance of the weak value in the fundamental quantum
mechanics is seen in the reviews in [10–12]. However,
the purpose of the weak-value amplification is to amplify
the shift of the expectation value of the probe position.
Therefore, the coupling constant is fixed, and the weak value
varies by changing the postselected state. By using the weak
measurement, the weak-value amplification was demonstrated
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to experimentally verify the spin Hall effect of light [13,14] and
to measure the beam deflection by tilting the mirror [15–18]
and the frequencies through the prism [19] in the Sagnac
interferometer. Since the weak value can be arbitrarily large by
choosing the almost-orthogonal pre- and postselected states,
the weak-value amplification provides us with a new technique
for the signal amplification. On the other hand, the probability
should be very small in the case of the almost-orthogonal pre-
and postselected states. In order to set the large amplification,
we have to repeat the weak measurements many times or,
more practically, use an incident beam of sufficient intensity
[13,15–19], e.g., classical light [20,21]. It is theoretically
shown that the small longitudinal phase shifts can be detected
[22,23]. While there is no experimental demonstration for
the solid-state system, the charge sensing amplification using
the weak value was theoretically proposed [24]. However,
Wu and Li theoretically pointed out that the effect of the
back action is important in the weak-value amplification on
the basis of the second-order calculation [25]. The full-order
calculation is needed to study the relation between the weak-
value amplification and the measurement back action. It is
numerically shown that there exists an upper bound of the
weak-value amplification in the context of the cross-Kerr
effect [26]. Analytically, there also exists an upper bound under
the assumption that the probe wave function is Gaussian and
the observable Â satisfies Â2 = 1 [27–29]. In many optical
applications, the Â2 = 1 condition holds. Here, the intriguing
question is raised whether the weak-value amplification has
the upper bound or not in general.

In this paper, we will give an analytical expression for
the optimal probe wave function in momentum space, which
maximizes the factor of the weak-value amplification. In our
present task, we fix the coupling constant and use the weak
value of the observable Â such that Â2 = 1 is determined
from a given experimental setup. We shall explicitly show that
this optimal case has no upper bound in the amplification.
Furthermore, the signal after the quantum measurement is
sharp around the final probe position.

The rest of the present paper is organized as follows. In
Sec. II, we recapitulate the weak measurement in the weak-
and general-coupling cases under the assumption that the probe
wave function is Gaussian and the observable Â satisfies
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Â2 = 1. In Sec. III, we show the analytical expression for
the optimal probe wave function in the momentum space
and examine its properties. Our main result is derived by the
variational method to maximize the probe shift given the weak
value and the coupling constant in Sec. IV. Section V is devoted
to the summary and the discussion. In Appendix A, detailed
calculations are shown. An explicit computation of the weak
value is demonstrated in the Mach-Zehnder interferometer.
Throughout this paper, we use the unit h̄ = 1.

II. WEAK MEASUREMENT: A BRIEF REVIEW

In this section, we briefly review the weak measurement
proposed by Aharonov et al. [6]. The weak measurement is
characterized by the pre- and postselections of the system
state. We prepare the initial state |φi〉 of the system and |ψi〉
of the probe. After a certain interaction between the system
and the probe, we postselect a system state |φf 〉 and obtain
information about a physical quantity Â from the probe wave
function by the weak value

Aw := 〈φf |Â|φi〉
〈φf |φi〉 , (1)

which can generally be a complex number. More precisely,
the shifts of the position and momentum in the probe wave
function are given by the real and imaginary parts of the weak
value Aw, respectively. We can easily see from Eq. (1) that
when |φi〉 and |φf 〉 are almost orthogonal, the absolute value of
the weak value can be arbitrarily large. This leads to the weak-
value amplification, as we will explain below. As a trade-off,
the probability of obtaining a postselected state that is almost
orthogonal to the preselected state is very small. To make the
large probe shift definite, the weak measurement should be
performed many times.

For the weak measurement, the coupling interaction is taken
to be the standard von Neumann Hamiltonian,

H = gδ(t − t0)Â ⊗ p̂, (2)

where g is a coupling constant and p̂ is the probe momentum
operator conjugate to the position operator q̂. We have taken
the interaction to be impulsive at time t = t0 for simplicity. The
time evolution operator becomes e−igÂ⊗p̂. After postselection,
the probe state becomes

|ψf 〉 = 〈φf |e−igÂ⊗p̂|φi〉|ψi〉. (3)

We denote the expectation values of the initial and final probe
positions as

〈q̂〉i := 〈ψi |q̂|ψi〉
〈ψi |ψi〉 , 〈q̂〉f := 〈ψf |q̂|ψf 〉

〈ψf |ψf 〉 . (4)

The shift of the expectation value of the position is defined by

�〈q̂〉 := 〈q̂〉f − 〈q̂〉i . (5)

Similarly, we define 〈p̂〉i , 〈p̂〉f , and �〈p̂〉 by replacing q̂

with p̂ in the above equations. Here, we write ξ̃i(q) := 〈q|ψi〉
and ξi(p) := 〈p|ψi〉 as the initial probe wave functions in the
position and momentum spaces, respectively.

To see how the weak value emerges in theory, first consider
the weak-coupling case following the original work [6]. The

probe state after the postselection becomes

|ψf 〉 = 〈φf |e−igÂ⊗p̂|φi〉|ψi〉
= 〈φf |[1 − igÂ ⊗ p̂]|φi〉|ψi〉 + O(g2)

= 〈φf |φi〉 [1 − igAwp̂] |ψi〉 + O(g2)

= 〈φf |φi〉e−igAwp̂|ψi〉 + O(g2) (6)

for g|Aw| � 1. We assume that the initial probe wave function
is Gaussian:

ξ̃i(q) =
(

2W 2

π

)1/4

e−W 2q2
, (7)

where W−2 is the variance. Equation (7) gives 〈q̂〉i = 〈p̂〉i =
0. The probe wave function in the position space after the
postselection becomes

〈q|ψf 〉 ≈ 〈φf |φi〉e−igAwp̂〈q|ψi〉
= 〈φf |φi〉e−igAw(−i ∂

∂q
)
ξ̃i(q)

= 〈φf |φi〉
(

2W 2

π

)1/4

× e−W 2(q−gAw)2+(gAwW )2
, (8)

and therefore, its absolute value squared is given by

|〈q|ψf 〉|2 ≈ |〈φf |φi〉|2
(

2W 2

π

)1/2

×e−2W 2(q−gReAw)2+2(gReAwW )2
. (9)

Thus, we obtain the probe position shift �〈q̂〉 [Eq. (5)] as

�〈q̂〉 = 〈q̂〉f =
∫

dq q|〈q|ψf 〉|2∫
dq|〈q|ψf 〉|2 = gReAw, (10)

which is proportional to the real part of the weak value. By a
similar calculation, we also obtain the shift of the expectation
value of the probe momentum as

�〈p̂〉 = 〈p̂〉f = 2gW 2ImAw, (11)

which is proportional to the imaginary part of the weak
value. From Eqs. (10) and (11), we can extract the weak
value, and we can see that, as the weak value increases,
the probe position shift is amplified. This effect is called the
weak-value amplification. It is emphasized that the first-order
approximation in g and |Aw| is used in the above calculation.

Next, we look at the exact case for an arbitrary coupling
constant g. We assume that Â satisfies the property Â2 = 1. In
this case, the probe state after postselection is calculated as

|ψf 〉 = 〈φf |e−igÂ⊗p̂|φi〉|ψi〉
= 〈φf |[cos gp̂ − iÂ sin gp̂]|φi〉|ψi〉
= 〈φf |φi〉 [cos gp̂ − iAw sin gp̂] |ψi〉
= 〈φf |φi〉B(p̂)|ψi〉. (12)

Here, we have defined

B(p̂) := cos gp̂ − iAw sin gp̂ (13)

for later convenience. Choosing the Gaussian form for the
initial wave function (7), we obtain the shifts of the expectation
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FIG. 1. Mach-Zehnder interferometer with a thin slide glass and
a polarizer. The signal comes from port A. The signal detection is
taken at port D. The first and second beam splitters are PBS and the
BS, respectively. In path C, the slide glass is inserted. The polarizer,
which plays the role of postselection, is placed before the detector in
port D. The correspondence to the weak measurement is explained in
the text. The pre- and postselected states as well as the intermediate
state are explicitly given in Appendix B.

values of the position and momentum of the probe as

�〈q̂〉 = gReAw

1 + 1
2 (1 − |Aw|2)

(
e−2g2W 2 − 1

) ,

(14)

�〈p̂〉 = 2gW 2ImAwe−2g2W 2

1 + 1
2 (1 − |Aw|2)

(
e−2g2W 2 − 1

) ,

respectively [27,29]. We can extract the weak value Aw

from the shifts �〈q̂〉 and �〈p̂〉 in Eq. (14). The term (1 −
|Aw|2)[exp(−2g2W 2) − 1]/2 in the denominator of Eq. (14)
is the cause of the upper bound of the amplification in the
Gaussian-wave profile of the finite size 1/W . The term in
the denominator exhibits the measurement back action, which
comes from the full-order evaluation of B(p̂)|ψi〉 [27,29].

A simple example of the weak measurement is illustrated
by the Mach-Zehnder interferometer with a thin slide glass and
a polarizer in Fig. 1 by replacing the first beam splitter with a
polarizing beam splitter (PBS). The system consists of a path
state in the basis of |B〉 and |C〉 and a polarization state in the
basis of |H 〉 and |V 〉. Also, the probe is the displacement of
the optical axis in port D in the x direction, which is caused by
the tilted slide glass, as Fig. 1 indicates. The interaction in the
weak measurement is introduced by the slide glass tilted by a
small angle θ inserted in path C. The real part of the weak value
can be extracted by the shift �〈q̂〉, as explained in Eq. (10).
The polarization state |
〉 is injected from path A. The initial
state |φi〉 and the intermediate state |φm〉 are indicated in
Fig. 1. The tunable angle ϕ of the polarizer set in port D
controls the postselected state 〈φf |. This setup exemplifies
the two aspects of the weak measurement in general. First,
as frequently emphasized in the literature [6,10–12], we can
take information about the weak value in port D from the
weak measurement while keeping almost intact the initial
polarization state |
〉 in port E. Second, the amplification
of the small signal, which is produced by the slight tilt of the
slide glass, can be realized by the large shift �〈q̂〉 of the optical

axis tuned by the polarizer. We summarize in Appendix B the
explicit expressions for the states |φi〉, |φm〉, and |φf 〉 and
the corresponding weak values. In the subsequent sections,
we will consider general probe wave functions other than the
Gaussian wave function and look for the optimal one to obtain
the maximum shift �〈q̂〉.

III. MAIN RESULT

In what follows, we fix a specific experimental setup,
that is, the given coupling constant and the chosen pre- and
postselected states, so that we can calculate the weak value
before the experiment. Under this situation, we show the
optimal probe wave function, which gives the maximum shift,
and consider its implications and properties in this section.

The optimal probe wave function in the momentum space
is obtained as

ξi(p) =
√

g|ReAw|
π

exp
[ − i

g(|Aw |2+1)
2ReAw

p
]

cos gp − iAw sin gp

=
√

g|ReAw|
π

B−1(p) exp[−i〈q̂〉f p] (15)

when Â2 = 1 and ReAw �= 0, and the support of the function is
−π/2g � p � π/2g. The optimal probe wave function gives
〈q̂〉i = 0 and the maximum shift of the expectation value of
the probe position as

�〈q̂〉 = 〈q̂〉f = g(|Aw|2 + 1)

2ReAw

. (16)

We emphasize that the maximum shift is given only by the
weak value Aw and has no upper bound as |Aw|2 becomes
large. On the other hand, as we can see from Eq. (14), the shifts
given by the Gaussian probe wave function have the upper
bound because of the back action, as explained before. The
back-action factor is canceled out by B−1(p) in the expression
for the optimal probe wave function, (15), and therefore we
have understood the reason why the amplification has no upper
bound.

From Eqs. (12) and (15), we obtain the final probe wave
function in the momentum space as

ξf (p) := 〈p|ψf 〉√〈ψf |ψf 〉 =
√

g

π
e−i〈q̂〉f p, (17)

where the support of the function is also −π/2g � p � π/2g.
Performing the inverse Fourier transform, we obtain the final
probe wave function in the position space as

ξ̃f (q) := 〈q|ψf 〉√〈ψf |ψf 〉 =
√

2g

π

sin
[

π
2g

(q − 〈q̂〉f )
]

q − 〈q̂〉f , (18)

where the position q of the probe takes the discrete value
q = 2gn, with n being an integer because of the boundary
condition in the momentum space. Figure 2 displays the initial
and final probe wave function of the position and momentum
spaces in the optimal case. Wave function (18) is sharp in the
neighborhood of q = 〈q̂〉f , with the width O(g) for a small
coupling constant g � 1 keeping 〈q̂〉f finite in the case that
interests us most.
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(ai)

(bi)

(ar)

(br)

FIG. 2. The initial and the final probe wave functions in the
optimal case. The left and right sides display the initial and the final
probe wave functions, respectively. We set following the parameters:
the coupling constant g = 0.1 and the weak value Aw = √

3 + 2
√

3i.
The plots are the real (ar) and the imaginary (ai) parts of the probe
wave functions in the momentum space. We also depict the real (br)
and the imaginary (bi) parts in the position space. It is noted that
the probe wave function in the position space is discrete, as the dots
indicate.

As a practical remark on realizing the optimal probe
wave function, we consider a smoothing of the discontinuous
optimal probe wave function (15) at the boundary of the finite
support. For example, the smoothing function is chosen as

ξs,i(p) :=
⎧⎨
⎩

ξi(π/2g)e−(p−π/2g)s for p > π/2g,

ξi(p) for −π/2g � p � π/2g,

ξi(−π/2g)e(p+π/2g)s for p < −π/2g,

(19)

with smoothing parameter s (>0). This smoothing function
satisfies lims→∞ ξs,i(p) = ξ (p). Then, we can show by explicit
calculation that the probe shift by the smoothed function can
be arbitrarily close to the optimal one (16) for a large s. This
result for this particular example of smoothing convinces us
that a suitable smoothing does not drastically change the wave
function or the shift. As for the wave function this generally
holds [30].

It is interesting to point out that the shift has a lower bound
given by

|�〈q̂〉| = g

2

(
|ReAw| + (|ImAw|2 + 1)

|ReAw|

)

� g
√

(ImAw)2 + 1 � g. (20)

The minimum |�〈q̂〉| = g is attained when ReAw = ±1,
ImAw = 0, and therefore the postselected state coincides
with one of the eigenstates of the observable Â. In this
particular case, the weak measurement becomes the projective
measurement of the system, and the unitary operator e∓igp̂

gives the shift operator by ∓g to the probe position. It is
interesting to note that the weak measurement with the optimal
probe wave function always amplifies the signal more than the
projective measurement. We also remark that

〈q̂〉f |〈φf |φi〉| → g

2
(21)

as the postselected state |φf 〉 approaches the state orthogonal
to the preselected state |φi〉. From this limit, it is possible to
obtain the coupling constant g by extrapolation.

IV. DERIVATION OF THE MAIN RESULT

In this section, we derive the optimal probe wave function
to obtain the maximum shift using the Lagrange multiplier
method. We consider the probe wave function in the momen-
tum space. To obtain ξi(p) = 〈p|ψi〉, which gives an extremal
value of �〈q̂〉 = 〈q̂〉f − 〈q̂〉i , we set a Lagrangian as

L[ξi(p),ξ ∗
i (p),λ] := 〈q̂〉f − λ

(∫
dp|ξi(p)|2 − 1

)
, (22)

where λ is a Lagrange multiplier and the constraint condition is
the normalization condition for ξi(p). We can set 〈q̂〉i = 0 for
convenience, as we will justify subsequently. The expectation
value of the final probe position 〈q̂〉f becomes

〈q̂〉f =
∫

dp〈ψf |p〉(i ∂
∂p

)〈p|ψf 〉∫
dp〈ψf |p〉〈p|ψf 〉

= i
∫

dp[B(p)ξi(p)]∗[B(p)ξi(p)]′∫
dp|B(p)ξi(p)|2 . (23)

B(p) is defined in Eq. (13). Varying the Lagrangian L with
respect to λ, we reproduce the normalization condition for
ξi(p) as

0 = δL

δλ
=

∫
dp|ξi(p)|2 − 1. (24)

Varying L with respect to ξ ∗
i (p), we get

0 = δL

δξ ∗
i

= i[B∗(p)B ′(p)ξi(p) + |B(p)|2ξ ′
i (p)] − 〈q̂〉f |B(p)|2ξi(p)∫

dp|B(p)ξi(p)|2
− λξi(p). (25)
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This implies

ξ ′
i (p)

ξi(p)
= −B ′(p)

B(p)
− i

(
〈q̂〉f + λ|B(p)|−2

∫
dp|B(p)ξi(p)|2

)
.

(26)

Substituting Eq. (26) into Eq. (23), we find the Lagrange
multiplier λ = 0. Then performing the indefinite integration
over p in Eq. (26), we obtain the probe wave function as

ξi(p) = CB−1(p) exp[−i〈q̂〉f p], (27)

where C is the normalization constant given by

|C|2 =
(∫

dp|B(p)|−2

)−1

(28)

from Eq. (24). The expectation value of the final probe position
〈q̂〉f is to be determined below.

Hereafter, we evaluate the normalization factor C and the
shift of the expectation value of the position �〈q̂〉. To obtain
the shift �〈q̂〉, we substitute Eqs. (27) and (A1) into the
expectation value of the initial probe position 〈q̂〉i :

〈q̂〉i =
∫

dp〈ψi |p〉(i ∂
∂p

)〈p|ψi〉∫
dp〈ψi |p〉〈p|ψi〉

= i

∫
dpξ ∗

i (p)ξ ′
i (p)∫

dp|ξi(p)|2

= 〈q̂〉f − i|C|2
∫

dp
B∗(p)B ′(p)

|B(p)|4

= 〈q̂〉f − gReAw|C|2
∫

dp|B(p)|−4

− i

2
|C|2

∫
dp[|B(p)|−2]′, (29)

where the prime indicates the differentiation with respect to
p. Since the shift of the expectation value must be real valued,
we can determine the integration region which satisfies∫

dp[|B(p)|−2]′ = 0, (30)

provided that C �= 0. From the periodicity of B(p) in Eq. (13),
we can adopt −π/2g � p � π/2g as the integration region.
From Eqs. (28) and (A2), the normalization constant C

becomes

|C|2 = g|ReAw|
π

, (31)

which should not vanish. We assume ReAw �= 0 here and
below. Then with Eqs. (29) and (A3), the shift �〈q̂〉 becomes

�〈q̂〉 = 〈q̂〉f − 〈q̂〉i = g(|Aw|2 + 1)

2ReAw

. (32)

Finally, we check that the probe wave function (27) can
realize 〈q̂〉i = 0 as alluded to before. The periodicity B ′(p +
2π/g)/B(p + 2π/g) = B ′(p)/B(p) implies that

|ξi(−π/2g)|2 = |ξi(π/2g)|2, (33)

and therefore

ξi(−π/2g) = e−iπk/gξi(π/2g), (34)

where k is an arbitrary real constant. By choosing k = �〈q̂〉,
we see that 〈q̂〉i = 0 and 〈q̂〉f = k = �〈q̂〉 since Eqs. (27)
and (34) hold.

Thus, we have derived the optimal probe wave function in
the momentum space as Eq. (15) from Eqs. (27), (31), and
(32) when Â2 = 1, ReAw �= 0, and the support of the function
is −π/2g � p � π/2g. The optimal probe wave function
gives the maximum shift of the expectation value of the probe
position as Eq. (16).

V. SUMMARY AND DISCUSSION

In this paper, we have derived the optimal probe
wave function for the signal amplification from the weak
measurement. The wave function in the momentum space is
described as Eq. (15) when an observable Â of the system
satisfies Â2 = 1 and ReAw �= 0, and the support of the
probe wave function is −π/2g � p � π/2g. The weak
measurement with the optimal probe wave function gives the
maximum shift of the expectation value of the probe position
as Eq. (16), which has no upper bound as |Aw| becomes large.
The signal is sharp when we choose the optimal probe wave
function for the weak measurement.

A few remarks are in order. The weak measurement with
the optimal probe wave function amplifies the signal more than
the projective measurement. While our result (15) is restricted
to the region −π/2g � p � π/2g, we can extend the region to
−πm/2g � p � πm/2g (m ∈ N). This case gives the same
maximum shift and the same sharpness around the final probe
position. It is remarked that in the case of a sufficiently small
coupling constant g � 1, the support of the function almost
encompasses the whole momentum space. Then, the final
probe wave function in the position space behaves like the
δ function. For ReAw = 0, the stationary solution (27) is not
normalizable, so we have excluded that case.

Practically, the wave function can be engineered by using
the coupling constant g and the weak value Aw calculated
from the experimental setup. We choose the pre- and
postselected states in a given experimental setup. The value of
the coupling constant needed for the construction of the wave
function is initially chosen by a reasonable guess. We prepare
the optimal probe wave function for the chosen coupling
constant. From the discrepancy of the theoretical prediction
and the experimental data, the value of the coupling constant
is narrowed down to a more precise value by iteration. While
we showed that the signal is sharp, noise analysis is needed
for the actual experiments. To experimentally demonstrate the
optimal probe wave function, the spatial phase and amplitude
modulation for light are needed. Even with current technology,
the simultaneous spatial phase and amplitude modulation
has been done [31]. Therefore, in the near future, it may be
possible to realize the optimal probe wave function. While we
have analytically shown the unbounded signal amplification,
another practical approach would be to improve the signal-to-
noise ratio by using the finitely amplified signal [26,32].
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APPENDIX A: CALCULATION FORMULAS

When B(p) = cos gp − iAw sin gp, ReAw �= 0, and −π/2g � p � π/2g, we have used the following formulas in Sec. IV. To
calculate Eq. (29), we differentiate |B(p)|2 with respect to p as

[|B(p)|2]′ = B∗′(p)B(p) + B∗(p)B ′(p) = (−g sin gp + igA∗
w cos gp)(cos gp − iAw sin gp) + B∗(p)B ′(p)

= −g sin gp cos gp + igA∗
w(1 − sin2 gp) + igAw(1 − cos2 gp) + g|Aw|2 sin gp cos gp + B∗(p)B ′(p)

= 2igReAw + (cos gp + iA∗
w sin gp)(−g sin gp − igAw cos gp) + B∗(p)B ′(p)

= 2igReAw + 2B∗(p)B ′(p). (A1)

Then, to calculate Eqs. (31) and (32), respectively, we have used two integration formulas:

|C|−2 =
∫ π

2g

− π
2g

dp|B(p)|−2 =
∫ π

2g

− π
2g

dp

cos2 gp

1

1 + 2ImAw tan gp + |Aw|2 tan2 gp
=

∫ ∞

−∞

dx

g

1

1 + 2ImAwx + |Aw|2x2

= |Aw|2
g(ReAw)2

∫ ∞

−∞
dx

1

1 + [(ImAw + |Aw|2x)/ReAw]2
= π

g|ReAw| (A2)

and ∫ π
2g

− π
2g

dp|B(p)|−4 =
∫ π

2g

− π
2g

dp

cos4 gp

1

(1 + 2ImAw tan gp + |Aw|2 tan2 gp)2

= 1

g

∫ ∞

−∞
dx

1 + x2

(1 + 2ImAwx + |Aw|2x2)2
= |Aw|2 + 1

2(ReAw)2

∫ ∞

−∞

dx

g

1

1 + 2ImAwx + |Aw|2x2

+ 1

2g(ReAw)2|Aw|2
∫ ∞

−∞
dx

(
ImAw(|Aw|2 + 1) + [|Aw|4 + |Aw|2 − 2(ReAw)2]x

1 + 2ImAwx + |Aw|2x2

)′

= |Aw|2 + 1

2(ReAw)2

∫ π
2g

− π
2g

dp|B(p)|−2 = |Aw|2 + 1

2(ReAw)2
|C|−2. (A3)

In these derivations, we have used the substitution x = tan gp.

APPENDIX B: THE WEAK VALUE IN THE
MACH-ZEHNDER INTERFEROMETER

We give the state evolutions and the weak value in the
experimental setup shown in Fig. 1. The initial polarization
state |
〉 = a|H 〉 + b|V 〉 is separated into the horizontal state
|H 〉 and the vertical state |V 〉 by the PBS. Assuming that
state |H 〉 goes through to path B and the vertical state |V 〉 is
reflected to path C, we can express the preselected state as

|φi〉 = a|H 〉 ⊗ |B〉 + b|V 〉 ⊗ |C〉. (B1)

The intermediate state, which is the state in ports D and E after
the BS before postselection by the polarizer, is described as

|φm〉 = 1√
2

(−a|H 〉 + b|V 〉) ⊗ |D〉

+ 1√
2

(a|H 〉 + b|V 〉) ⊗ |E〉. (B2)

We note that the polarization state in port E coincides with the
initial state |
〉. The postselected state is given by the tunable
angle ϕ of the polarizer:

|φf 〉 = 1√
2

(cos ϕ|H 〉 + sin ϕ|V 〉) ⊗ |D〉. (B3)

The weak value of the projection operator |C〉〈C| to path C
for the observable of the system is calculated as

Cw = 〈φf |C〉〈C|φi〉
〈φf |φi〉 = b sin ϕ

−a cos ϕ + b sin ϕ
. (B4)

For a = cos χ and b = sin χ , the weak value becomes

Cw = − sin χ sin ϕ

cos(χ + ϕ)
. (B5)

We easily see that when χ + ϕ approaches π/2, the absolute
value of Cw gets arbitrarily large. When we set Â = 2|C〉〈C| −
1, we get Â2 = 1.
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