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A formulation of quantum-classical hybrid dynamics is presented which concerns the direct coupling of
classical and quantum mechanical degrees of freedom. It is of interest for applications in quantum mechanical
approximation schemes and may be relevant for the foundations of quantum mechanics, in particular, when it
comes to experiments exploring the quantum-classical border. The present linear theory differs from the nonlinear
ensemble theory of Hall and Reginatto but shares with it the fulfillment of all consistency requirements discussed
in the literature, while earlier attempts have failed in this respect. Our work is based on the representation of
quantum mechanics in the framework of classical analytical mechanics by A. Heslot, showing that notions of
states in phase space, observables, Poisson brackets, and related canonical transformations can be naturally
extended to quantum mechanics. This is suitably generalized for quantum-classical hybrids here.
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I. INTRODUCTION

The hypothetical direct coupling of quantum (QM) me-
chanical and classical (CL) degrees of freedom—hybrid
dynamics—presents a departure from QM mechanics that
has been researched for decades for practical as well as
theoretical reasons. In particular, the standard Copenhagen
interpretation has led to the unresolved measurement problem,
which, together with the fact that QM mechanics needs such
interpretation in order to be operationally well defined, may
indicate that it deserves amendments. In this context, it has
been recognized early on that a theory which dynamically
bridges the QM-CL divide should have an impact on the
measurement problem [1], besides being essential for attempts
to describe consistently the interaction between QM matter and
CL space time [2].

Numerous works have appeared in the attempt to formulate
hybrid dynamics in a satisfactory way. However, they have
generally been found to be deficient for one reason or another.
This has led to various no-go theorems accompanying a list
of desirable properties or consistency requirements (see, e.g.,
Refs. [3.,4]):

(1) Conservation of energy.

(2) Conservation and positivity of probability.

(3) Separability of QM and CL subsystems in the absence
of their interaction, recovering the correct QM and CL
equations of motion.

(4) Consistent definitions of states and observables; exis-
tence of a Lie bracket structure on the algebra of observables
that suitably generalizes Poisson and commutator brackets.

(5) Existence of canonical transformations generated by
the observables; invariance of the CL sector under canonical
transformations performed on the QM sector only, and vice
versa.

(6) Existence of generalized Ehrenfest relations (i.e., the
correspondence limit) which, for bilinearly coupled CL and
QM oscillators, are to assume the form of the CL equations of
motion (“Peres-Terno benchmark” test [5]).

“elze @df.unipi.it

1050-2947/2012/85(5)/052109(13)

052109-1

PACS number(s): 03.65.Ca, 03.65.Ta

These issues have been reviewed in recent works by Hall
and Reginatto. Furthermore, there, they have introduced the
first viable theory of hybrid dynamics that agrees with all the
points listed above [6—8]. Their ensemble theory is based on
configuration space, which entails a certain nonlinearity of the
action functional from which it is derived. This nonlinearity
leads to effects and a proposal to possibly falsify the theory
experimentally [9]. We comment on this issue in due course
(Sec. VO).

In fact, the aim of the present paper is to set up an alternative
theory of hybrid dynamics, which is based on notions of phase
space. This is partly motivated by work on related topics
of general linear dynamics and CL path integrals [10,11].
Presently, we extend the work of Heslot, who has demonstrated
that QM mechanics can entirely be rephrased in the language
and formalism of CL analytical mechanics [12]. We thus
introduce unified notions of states on phase space, observables,
canonical transformations, and a generalized QM-CL Poisson
bracket in particular. This leads to an intrinsically linear hybrid
theory, which fulfills all consistency requirements as well.

It may be worthwhile to comment on the relevance of
hybrid dynamics, even if one is not inclined to modify
certain ingredients of QM theory. There is clearly practical
interest in various forms of hybrid dynamics, in particular, in
nuclear, atomic, or molecular physics. The Born-Oppenheimer
approximation, for example, is based on a separation of
interacting slow and fast degrees of freedom of a compound
object. The former are treated as being approximately CL;
the latter, as being of a QM mechanical nature. Furthermore,
mean-field theory, based on the expansion of QM mechanical
variables into a CL part plus QM fluctuations, leads to another
approximation scheme and another form of hybrid dynamics.
This has been reviewed more generally for macroscopic QM
phenomena in Ref. [13].

In all these cases hybrid dynamics is considered as an
approximate description of an intrinsically QM mechanical
object. This can lead to new insights, for example, to an
alternative derivation of geometric forces and Berry’s phase
[14]. Such considerations are, and will become increasingly,
important for the precise manipulation of QM mechanical
objects by apparently, and for all practical purposes, CL means,
especially in the mesoscopic regime.
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Furthermore, the backreaction effect of QM fluctuations on
CL degrees of freedom might be of considerable importance,
in particular, if they originate in physically distinct ways. We
recall continuing discussions of the “semiclassical” Einstein
equation coupling the CL metric of space time to the expecta-
tion value of the energy-momentum tensor of quantized matter
fields. Can this be made into a consistent hybrid theory leaving
gravity unquantized? This has recently been re-examined, for
example, in Refs. [6,8,15,16]; various related aspects have
been discussed, for example, in Refs. [17-23].

Finally, concerning speculative ideas about the emergence
of QM mechanics from a coarse-grained deterministic dy-
namics (see, e.g., Refs. [24-26], with numerous references
to earlier work), the backreaction problem can be more
provocatively stated as the problem of the interplay of
fluctuations among underlying deterministic and emergent
QM mechanical degrees of freedom. Or, to put it differently:
Can QM mechanics be seeded?

The remainder of the paper is organized as follows. In
Sec. 1II, the results of Heslot’s work are represented, in
order to make the paper self-contained, and we frequently
refer to it in what follows. In Sec. III, we introduce hybrid
phase-space ensembles and, in particular, the QM-CL Poisson
bracket which is central to our approach; the important issue
of separability is resolved, and time evolution discussed.
In Sec. IV, hybrid dynamics is studied, incorporating QM-
CL interaction. Energy conservation and Ehrenfest relations,
especially for bilinearly coupled oscillators, are derived there.
In Sec. V, we discuss various aspects of the present theory, in
particular, the possibility of having CL-environment-induced
decoherence, the QM-CL backreaction, a deviation from the
Hall-Reginatto proposal predicted by the hybrid dynamics
developed in this paper, and the closure of the algebra of
hybrid observables. Section VI presents concluding remarks.

II. HAMILTONIAN DYNAMICS REVISITED

In Secs. IT A and II B, we briefly present some important
results drawn from the remarkably clear exposition of CL
Hamiltonian mechanics and its generalization incorporating
QM mechanics by Heslot [12]. This forms the starting point
of our discussion of the hypothetical direct coupling between
QM and CL degrees of freedom in Sec. III.

A. Classical mechanics

The evolution of a CL object is described with respect to
its 2n-dimensional phase space, which is identified as its state
space. A real-valued regular function on the state space defines
an observable, i.e., a differentiable function on this smooth
manifold.

Darboux’s theorem shows that there always exist (local)
systems of so-called canonical coordinates, commonly de-
noted (xx, px), k = 1, ...,n, such that the Poisson bracket of
any pair of observables f,g assumes the standard form [27]:

of 9g  9of dg
{f.g} = (—— - (1)

Xk: axk apk al?k axk
This is consistent with {xi,p;} = 8i, {xe,%1} = {pr.pi} =
0, k,l =1, ...,n, and reflects the bilinearity, antisymmetry,
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derivation-like product formula, and Jacobi identity which
define a Lie bracket operation, f,g — {f,g}, mapping a pair
of observables to an observable.

Compatibility with the Poisson bracket structure restricts
general transformations G of the state space to so-called
canonical transformations which do not change the physical
properties of the object under study, e.g., a translation, a
rotation, a change of inertial frame, or evolution in time. Such
a G induces a change in an observable, f — G(f), and is an
automorphism of the state space compatible with its Poisson
bracket structure if and only if, for any pair of observables f, g,

G{f.8h =1{9()).G()}- 2

Due to the Lie-group structure of the set of canonical
transformations, it is sufficient to consider infinitesimal trans-
formations generated by the elements of the corresponding Lie
algebra. Then an infinitesimal transformation G is canonical
if and only if, for any observable f, the map f — G(f) is
given by f — f' = f + {f,g}d«, with some observable g,
the so-called generator of G, and S an infinitesimal real
parameter.

Thus, for the canonical coordinates, in particular, an
infinitesimal canonical transformation amounts to

d
X = X = X + 3)
opk
, 0g
Pk = P = pr — —da, 4
8xk

employing the Poisson bracket given in Eq. (1).

This analysis shows the fundamental relation between
observables and generators of infinitesimal canonical trans-
formations in CL Hamiltonian mechanics. For example, the
energy Hcr given by the CL Hamiltonian function is the
generator of time evolution: for g = Hcr, and da = 8¢, Eqgs. (3)
and (4) are equivalent to Hamilton’s equations, considering an
infinitesimal time step &z.

B. Quantum mechanics

An important achievement of Heslot’s work is the re-
alization that the analysis summarized in Sec. Il A can be
generalized and applied to QM mechanics; in particular, the
dynamical aspects of QM mechanics thus find a description
in CL terms borrowed from Hamiltonian mechanics. Some
related ideas have been presented in Ref. [28].

1. Preliminaries

To begin with, we recall that the Schrodinger equation
and its adjoint can be obtained by requiring the variation
with respect to state vector |¥) and adjoint state vector (W],
respectively, of the following action S to vanish:

S::/dt (\I/(t)|(i8t—I:I)|\Il(t))E/dtL, (5)

which involves the self-adjoint Hamilton operator H pertain-
ing to the physical object under study. The adjoint equation
follows after a partial integration, provided the surface terms
do not contribute. This is guaranteed by the normalization
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condition,
(W(1)|W(t)) = constant = 1, (©6)

which is an essential ingredient of the probability interpretation
associated with state vectors. Adding here that state vectors
that differ by an unphysical constant phase are to be identified,
we recover that the OM mechanical state space is formed by the
rays of the underlying Hilbert space, i.e., forming a complex
projective space.

Making use of the Lagrangian L, defined as the integrand
of the above action S, we define a momentum conjugate to the
state vector,

M= 5 = i) ™
= —— = i{Y],

a|\w)
with | W) := 9,|¥), and obtain the corresponding Hamiltonian
function:

(H|lil)—L=—i(l'I|I:I|\IJ) =: H(I1,¥). )
Finally, considering Hamilton’s equations, deriving from H,
oH .
|¥V) = —— = —iH|V), 9
) [W) Tl iH|WV) )]
oH X
oIl = ——— = i({Il|H, 10
 (IT] 310 (1] (10)

we see indeed that they represent Schrodinger’s equation
and its adjoint, using (I1| = i(¥|, keeping the essential
normalization condition, (6), in mind.

2. The oscillator representation

QM mechanical evolution can be described by
a unitary transformation, |\W(¢)) = U(t — 19)|W(1p)), with
Ut — t9) = exp[—i H(t — ty)], which formally solves the
Schrodinger equation. It follows immediately that a
stationary state, characterized by H|¢p:) = E;|¢;), with
a real energy eigenvalue E;, performs a simple har-
monic motion, i.e., |¥;(¢)) = exp[—iE;(t — to)]|¥i(t)) =
exp[—iE;(t — t)]|¢;). Henceforth, we assume a denumerable
set of such eigenstates of the Hamilton operator.

Having recognized already the Hamiltonian character of the
underlying equation(s) of motion, the harmonic motion sug-
gests introducing what may be called oscillator representation
for such states. More generally, we consider the expansion of
any state vector with respect to a complete orthonormal basis,

{10}
W) =Y [0)(X; +iP)/V2, (1)

where the generally time-dependent expansion coefficients
are explicitly written in terms of real and imaginary parts,
X;, P;. Employing this expansion allows us to evaluate more
explicitly the Hamiltonian function introduced in Eq. (8), i.e.,
H = (V|H|V):

1

H = §;<¢i|ﬁ|¢j><xi —iP)(X; +iP))

= H(X;, P,). 12)
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Choosing especially the set of energy eigenstates, {|¢;)}, as
the basis for the expansion, we obtain

HOXiB) = 30 2 (B + X72); (13)
1

hence the name oscillator representation. The simple reason-
ing leading to this result clearly indicates that (X;, P;) may
play the role of canonical coordinates in the description of a
QM mechanical object and its evolution with respect to the
state space. However, several points need to be clarified, in
order to validate this interpretation.

First, with (X;, P;) as canonical coordinates and H as the
Hamiltonian function, we verify that the Schrodinger equa-
tion is recovered by evaluating |W) = > 1D ) (X; +iP)/N2
according to Hamilton’s equations of motion:

% = IH(X;,P))
0P
i . .
= =5 2 Hy(X; +iP) = (X; —iPH;il,  (14)
j
b= _OH(X;,P))
aX;

1 , .
-3 Z[Hij(xj +iP))+(X; —iP)H;], (15)
J

where H;; := (<I>,-|I-Al|d>_,-) = Hj}. Inserting these terms and
using Eq. (11) leads to |W) = —i H|W), as expected. Using H
in the special form given by Eq. (13), we see that a zero mode
with E;; = 0 automatically leads to (X;/, P;;) = constant.

Second, the constraint C := (V|¥) < 1 [cf. Eq. (6)] be-
comes

C(X;, P) = %Z(Xiz—i-Piz) < 1. (16)

1

Thus, the vector with components given by the canonical co-
ordinates (X;,P;), i = 1,...,N, is constrained to the surface
of a 2N-dimensional sphere with radius /2. This constraint
obviously presents a major difference to CL Hamiltonian
mechanics.

Following the discussion in Sec. II A, it is natural to
introduce also here a Poisson bracket for any two observables
on the spherically compactified state space, i.e., real-valued
regular functions F,G of the coordinates (X;, P;):

0F 0G 0F oG
{F.G) = Z<___‘__) (17)

[cf. Eq. (1)]. Then, as before, the Hamiltonian acts as the
generator of time evolution of any observable O, i.e.,

do
— =0,0 + {O,H}. (18)
dt
In particular, it is straightforward to verify with the help of
Egs. (14) and (15) that the constraint, Eq. (16), is conserved
under the Hamiltonian flow:
dc

- =f{cHp=o0. (19)
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Therefore, it is sufficient to impose this constraint, which
implements the normalization of the QM mechanical state,
on the initial condition of time evolution.

It remains to demonstrate the compatibility of the notion
of observable introduced here—as in CL mechanics [cf. the
discussion leading to Eq. (2) and thereafter]—with the one
adopted in QM mechanics. This concerns, in particular, the
implementation of canonical transformations and the role of
observables as their generators.

3. Canonical transformations and quantum observables

The Hamiltonian function has been introduced as an
observable in Eq. (12), which provides a direct relation to the
corresponding QM observable, namely, the expectation value
of the self-adjoint Hamilton operator. This is an indication of
the general structure to be discussed now.

Referring to Sec. III of Heslot’s work [12] for details of
the derivations, here we summarize the main points, which are
useful in the following.

a. Compatibility of unitary transformations and Poisson
structure. The canonical transformations discussed in Sec. IT A
represent automorphisms of the CL state space which are
compatible with the Poisson brackets. In QM mechanics,
automorphisms of the Hilbert space are implemented by
unitary transformations, |W') = U|W), with UU' = 010 =
1. This implies a transformation of the canonical coordinates
here, i.e., of the expansion coefficients (X;, P;) introduced in
Eq. (11):

N X;+iP;
W) = ) 19)(®i|U|D ;) ——=—
B e

B it 20)
- V2

Splitting the matrix elements U;; := (d>i|l7|<l>j) into real and
imaginary parts and separating Eq. (20) accordingly, using
orthonormality of the basis, yields the transformed coordinates
in terms of the original ones. Then a simple calculation,
employing the Poisson bracket defined in Eq. (17), shows
that {X;,ij} = §;; and {X;,X}} = {P[’,ij} =0, as before.
The fundamental Poisson brackets remain invariant under
unitary transformations. More generally, this implies [27] that
U{F,G}) ={U(F),U(G)} [cf. Eq. (2)]. Thus, unitary trans-
formations on Hilbert space are canonical transformations on
the (X, P) state space.

b. Self-adjoint operators as observables. Any infinitesimal
unitary transformation U can be generated by a self-adjoint
operator G, such that

U=1-iGsa, (1)

which will lead to the QM mechanical relation between
an observable and a self-adjoint operator, replacing the CL
construction in Sec. IT A. In fact, straightforward calculation
along the lines of item a. above, splitting matrix elements of

A

G, with G7; = Gy;, into real and imaginary parts, shows that
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in the present case we have

/ V|G |W)
Xi—> X=X+ ——"Lsa, (22)
3P,
/ NV |G|W)
P> P =P —-——""5sq. (23)
3X;

Due to the phase arbitrariness—U and U - exp(if), with
constant phase 6, are physically equivalent—the operator G is
defined up to an additive constant. This constant is naturally
chosen such that the relation between an observable G, defined
in analogy to Sec. I A, and a self-adjoint operator G can be
inferred from Eqgs. (22) and (23),

G(X;, P) = (V|G|W), (24)

by comparison with the CL result, Eqs. (3) and (4). In
conclusion, a real-valued regular function G of the state is
an observable if and only if there exists a self-adjoint operator
G such that Eq. (24) holds. Note that all QM observables are
quadratic forms in the X;’s and P;’s. This explains that there
are much fewer of them than in the corresponding CL case.

c. Commutators as Poisson brackets. Relation (24) between
observables and self-adjoint operators is linear and admits i

as unit operator, since (WV|W) =1 Therefore, the addition of
observables and multiplication by a scalar of observables are
well defined and translate into the corresponding expressions
for the operators. One may then consider the Poisson bracket,
(17), of two observables and demonstrate the important
result [12],

{F,G}=<‘I’|:T[F,G]I\I’), (25)
with both sides of the equality considered as functions of the
variables X;, P;, of course, and with the commutator defined as
usual, [I:“ ,G] := FG — GF. This shows that the commutator
is a Poisson bracket with respect to the (X, P) state space
and relates the algebra of observables, in the sense of the
CL construction of Sec. IT A, to the algebra of self-adjoint
operators in QM mechanics.

d. Normalization, phase arbitrariness, and admissible
observables. Coming back to the normalization condition

(W) < 1, which compactifies the state space [cf. the
constraint, Eq. (16)], it must be preserved under infinitesimal
canonical transformations, since it belongs to the structural
characteristics of the state space. By Eqgs. (22)—(24), an
infinitesimal canonical transformation generated by an observ-
able G leads to C(X;,P;) — C(X],P), with

G P_,-) sa

) ot 0G
C(X;,P)=CX;,P)+ Z <ﬁx-i ~3x.
j J J

+0(8a?). (26)

Therefore, a necessary condition which observables must
fulfill is the vanishing of the term o< S« here, i.e., the invariance

of the constraint under such transformations, C(X},P/) <
C(X;, P;). It is not sufficient, since the product GG, of two
observables—which fulfill this condition individually and,
therefore, their product as well—does not necessarily represent
an observable: the corresponding self-adjoint operators do
not necessarily commute, i.e., generally we have (Gl GQ)T =
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G,G1 # G1G,. Incidentally, the condition of the vanishing
second term on the right-hand side of Eq. (26) follows also
more generally, via Eq. (24), from the requirement that any
observable G is invariant under an infinitesimal phase transfor-
mation W) — |W) - exp(i86), with constant 56, G (X, P) <
G(X;, P;). Conversely, assuming this phase invariance of the
observables, we recover that Hilbert-space vectors differing by
an arbitrary constant phase are indistinguishable and represent
the same physical state.

We note that any observable G with an expansion as in
Eq. (12) automatically satisfies the invariance requirements
of item d., above, the vanishing of the second term on the
right-hand side of Eq. (26), in particular. Explicit calculation
shows

9G 3G
{C,G} :Z(a—ﬂxj - a—X]_Pj> =0, (27)
- . .

assuming that
. 1 , .
G(P.Xy) = (VIGI¥) = 5 ,ZJ:G""(X" —iP)(X; +iPy),

(28)

and where G;; := (®; |G|<I>j> = G_’]‘.l., for a self-adjoint opera-
tor G.

In conclusion, QM mechanics shares with CL mechanics an
even-dimensional state space, a Poisson structure, and a related
algebra of observables. Yet it differs essentially by a restricted
set of observables and the requirements of phase invariance
and normalization, which compactify the underlying Hilbert
space to the complex projective space formed by its rays.

III. HYBRID PHASE-SPACE ENSEMBLES

So far, we have described the Hamiltonian formalism
of CL mechanics and its generalization, which covers QM
mechanics, by adding more structure to the relevant state
space. With the Hamiltonian equations of motion at hand,
we could proceed to study the evolution and direct coupling
of CL and QM objects. However, it is convenient to study
the evolution of ensembles over the state (or phase) space
instead [10,11]. Last but not least, this will allow us to include
QM mechanical mixed states, thus generalizing beyond the
above tacitly assumed pure states.

In this section, we still neglect interactions between CL and
OM sectors of a combined system, the study of which will lead
us to truly QM-CL hybrids only in Sec. IV. We describe a QM-
CL hybrid ensemble by a real-valued, positive semidefinite,
normalized, and possibly time-dependent regular function, the
probability distribution p, on the Cartesian product state space
canonically coordinated by 2(n + N)-tuples (xi, px; Xi, P;);
we reserve variables xi,pir, k = 1,...,n for the CL sector
(cf. Sec. ITA) and variables X;,P;, i =1, ...,N for the QM
sector (cf. Sec. II B). One or the other sector of the state space
may eventually be infinite-dimensional. A physical realization
of such an ensemble can be imagined as a collection of
representatives of the combined system with different initial
conditions.
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In order to qualify as observable, the distribution p
additionally has to obey the constraint induced by the extra
structure of the QM sector of state space (see Sec. II B 3 d.).
Evaluating the expectation of the corresponding self-adjoint,
positive semidefinite, trace-normalized density operator p in
a generic state |W), Eq. (11), we have po(xg,pr; Xi, P;) =
(W]p(xk, pi)IW), and

1 . .
POk, prs Xi, P) = 5 E 0ij (X, )X — i P)(X; + i P)),
ij

(29)

with p;;(x, pi) := (il p(xk, p)| P ;) = pj;(xk, pr)- This as-
sures that p (or the marginal QM distribution obtained by
integrating over the CL variables), as the generator of a
canonical transformation, does not violate the normalization
constraint and phase invariance; in particular, it follows that
{C,p} =0 [cf. Eq. 27)].

Furthermore, positive semidefiniteness of p imposes con-
straints on any other observable G (g) of the QM (CL) sector,
which can generate a canonical transformation. Considering
infinitesimal transformations in both sectors [cf. Egs. (3) and
(4) and Eqgs. (22) and (24)], we obtain p(xi, px; Xi, P;) —
p(xy, p; PLX0), with

Pk, pis Xiy Pr) = p(xe, pis Pi, Xi)
+ (35,0 9,8 — 3y, p 0, 8)ScxcL
+ (3x,0 9p,G — 9p,p 0x,G)Sarqm
+ O(8ady .Sy dacLdogm).  (30)

Now, if and where the distribution p vanishes, also the first-
order terms o Sy, and o< Sagm have to vanish, since otherwise
o can be made to decrease below O by suitably choosing the
signs of these independent infinitesimal parameters. This is
particularly relevant for the time evolution generated by a
QM-CL hybrid Hamiltonian, discussed in Sec. I'V.

A. The probability density and marginal distributions

Finally, we remark that the relation between an observable
in (X, P) space and a self-adjoint operator, Eq. (24), can be
written as G(X;, P;) = Tr(|¥) (lII|G), which shows explicitly
the role of a QM pure state as one-dimensional projector, in this
context. In order to illuminate the meaning of the probability
density p, we may then use the representation of g in terms of
its eigenstates, p = Zj w;|j){jl, and obtain

Pk, i Xin P) = w; (e, p) Tr( W) (W] ) ()
J

= 5" wtn. pOl W) P, 31
Jj

with0 < w; < land 3 [ T(dxidp)w;(xi, pi) = 1.

We see that p(x, pr; Xi, P;), when properly normalized, is
the probability density to find in the hybrid ensemble the QM
state |W), parametrized by X;, P; through Eq. (11), together
with the CL state described by the coordinates (xi,py) of a
point in CL phase space.

The probability density allows us to evaluate expectations
of QM, CL, or hybrid observables in the usual way. Particularly
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useful also are the marginal (or reduced) distributions defined
by

per(xe, pr) =Ty /

Hj(dede)p(xkspk; Xi, Py,
8Sv(/2)

(32)

po(Xi, Pr) = f M(dxidp)pGee pis Xis P, (33)

where I'y denotes a normalization factor, to be determined
shortly, and the integration in Eq. (32) extends over the surface
of a 2N-dimensional sphere of radius ﬁ, in accordance with
Eq. (16); the integration in Eq. (33) extends over all the state
space of the CL subsystem. The convergence of the integrals
is assured by the positive semidefiniteness and normalizability
of p; the underlying assumption is that the CL subsystem
occupies essentially only a finite region of its phase space,
while the QM subsystem is constrained by the normalization
of its state.

More explicitly, using the representation given in Eq. (31),
we calculate for a state vector |W), expanded according to
Eq. (11),

peL (e pe) = D w;Cxipi) Y (1|0 ) @i |F) - T (34)
j

i1,i2

with a remaining surface integral defined by
Ly = 1";,1 / .(dX.dP.) (X, +iP,)(Xp —iPy) (35)
85w (v/2)

and evaluated as follows:

Lip = 8Ty / M.(dX.dP,) s (2 -y (X7 + Pﬂ))

i
X (Xaz + Paz)

2 / A0y /OO dRR™S(R +vV2)(R —/2))
NTy 0

= Sab, (36)

= Sab

making use of isotropy and, in particular, replacing X 2 +
P? with Za,(Xaz, + Pa,z) /N = 2/N under the integral; in the
end, we employ 2N -dimensional spherical coordinates, where
2,y denotes the spherical angle, and choose the normalization
factor appropriately:

Iy = N __M (37)
TN,y T amY
Thus, we obtain from Eq. (34) the expected simple result,
peL(Xi pi) = Y w;x, pi), (38)

J

using completeness and orthonormality of the bases.

B. Quantum-classical Poisson bracket and separability

The result of the calculation in Eq. (30) suggests introducing
a generalized Poisson bracket, when considering observables
defined on the Cartesian product state space of CL and QM
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sectors as follows:

{A,B}x :={A,B}cL + {A,B}om (39
'_Z<8A 0B 9A 88)
‘ T \Og Op, Op, Oy

+Z<%a_3_%8_B>, (40)
— \dx, dp,  Op, Ox,

for any two observables A, B. It is bilinear and antisymmetric,
leads to a derivation-like product formula, and obeys the Jacobi
identity, since the right-hand side of Eq. (40) can be written in
standard form as a single sum, after relabeling the canonical
coordinates.

Let us say that an observable “belongs” to the CL (OM)
sector if it is constant with respect to the canonical coordinates
of the QM (CL) sector. Then the generalized Poisson bracket
has the following additional important properties.

(1) Itreduces to the Poisson brackets introduced in Egs. (1)
and (17), respectively, for pairs of observables that belong
either to the CL or to the QM sector.

(2) Itreduces to the appropriate one of the former brackets
if one of the observables belongs only to either one of the two
sectors.

(3) It reflects the separability of the CL and QM sectors,
since {A,B}. = 0if A and B belong to different sectors.

The physical relevance of separability can be expressed
as the following requirement: If a canonical tranformation is
performed on the QM (CL) sector only, then all observables
that belong to the CL (OM) sector should remain unaffected.
This is indeed the case, as we demonstrate directly by
examining the behavior of the reduced CL (QM) probability
distribution under such transformations.

Performing in the QM sector, for example, an infinitesimal
canonical transformation on the integral of Eq. (32), we obtain

ocL(Xk, Pr)

N FNI/ M;(dX',d P))p(xi. pis X[ P)
885y (V2)

/ X+ BG(X,-,P,»)(S p 8G(X[,P,-)(S
= X, 5 i — o,y — — (o
P\ Xk» Pk P, 3X;

= /,O(xk,l?k;xhpi)

+ / (3x,0 3p,G — dp,p 3x,G)Sar + O(5c?)

= pcL(xk, pr) + O(a?), (41)

where we abbreviated I'y' fasw(ﬁ) [1;(dX;dP;)= [ and
used the well-known invariance of the phase-space volume
element and of the constraint surface, by Eq. (27), together with
Egs. (22)—(24); furthermore, the last equality follows from the
fact that the integral of a Poisson bracket of observables over
QM state space vanishes:

1 . 4 1 . .
/{A,B}QM=/<\IJ|;[A,B]|\D>=fTr<|w><W|l—.[A,B])

= Tr(l[A,E’] =0, (42)
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using Eq. (25), followed by a calculation similar to the one
leading from Eq. (31) to Eq. (38), via Egs. (32) and Egs. (34)—
(37). In the present case, incidentally, we have that {A, B}om =
{p,Glom = {p,G}, since G belongs to the QM sector.

Thus, we find invariance of pcp, under infinitesimal and,
hence, finite canonical transformations in the QM sector.
Consequently, the expectation of any CL observable gcp,
defined by

(gcL) :=/Hl(dxldpl)gCL(xk’pk)pCL(xk’pk)» (43)

is invariant. Similarly, one shows that pgm is invariant
under canonical transformations in the CL sector and, thus,
expectations of QM observables as well.

Separability, as demonstrated here, has been a crucial issue
in discussions of earlier attempts to formulate a consistent
QM-CL hybrid dynamics; see, for example, Refs. [3,7,15],
and references therein.

C. Time evolution of noninteracting
quantum-classical ensembles

In order to illustrate another aspect of the separability of
CL and QM sectors, as long as there is no interaction between
them, we consider the time evolution of the probability
distribution generated by the total Hamiltonian function Hy,

Hs (xx, pr; Xi, P) := Heo(xk, pr) + Hom(Xi, P),  (44)

where Hcp denotes an assumed Hamiltonian function for the
CL sector, while the Hamiltonian function Hqwm for the QM
sector has been detailed above [cf. Egs. (12) and (13)].

Based on Hamilton’s equations for both sectors and
equipped with the generalized Poisson bracket of Eq. (39),
we can invoke Liouville’s theorem to obtain the evolution
equation:

— 00 ={p,Hs}x. (45)

Clearly, this equation admits a factorizable solution
p(xe, pr; Xi, Pist) = p(xx, pr; )p(X;, Pis t), provided that the
initial condition has this property. No spurious correla-
tions are produced by the evolution, which corresponds to
{Hcr, Hom}x = 0, by construction.

In other words, the CL and QM sectors evolve inde-
pendently, as if the respective other sector was absent, and
maintain their CL or QM nature, as long as they do not interact.

IV. QUANTUM-CLASSICAL HYBRID DYNAMICS

Following the preparations in Sec. III, which concerns QM-
CL composite systems, however, without interaction of the CL
and QM sectors, we propose here the generalization to include
such a hypothetical coupling and study the consistency and
consequences of such truly hybrid systems.

This discussion concerns hybrid ensembles, or specific
hybrid states, and their dynamics. Given the generalized
Poisson bracket, introduced in Eq. (39), we have to incorporate
a hybrid interaction term Z in the total Hamiltonian function
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‘Hy, which serves as the generator of time evolution, as
before. Therefore, we replace the definition of Eq. (44), with
Hs = Hs(xk, pr; Xi, P;), with

Hs = Her(xx, po) + Hom(Xi, Pi) + Z(xk, pr; Xi, Pr).
(46)
For Hy to be an observable, it is necessary that the hybrid
interaction qualifies as observable, in particular. Further
properties of Hx are detailed in due course.

Then the evolution equation is of the same form as Eq. (45):
—a,p = {p,Hx}x, where, henceforth, the Hamiltonian func-
tion includes the interaction term Z, unless stated otherwise.
Here, the positive semidefiniteness of p holds for the same
reason as for the case of the CL Liouville equation, namely,
that the underlying dynamics is described by a Hamiltonian
flow.

A. Energy conservation

Having proposed Hy, as the generator of time evolution, it
also provides the natural candidate for the conserved energy
of the hybrid system. Since Hy, is assumed not to be explicitly
time dependent, we find [cf. with the general structure of
Eq. (18)]

dHs
dt
an immediate consequence of the antisymmetry of the gen-
eralized Poisson bracket. Note that in the absence of a CL
subsystem, this result reduces to the conservation of the
expectation of the QM Hamilton operator, as it should. More
generally, in the absence of QM-CL interactions, the CL and
QM mechanical energies simply add.

={Hs.Hs}x =0, (47)

B. Generalized Ehrenfest relations for hybrids

Here we show that the Poisson structure built into the
present theory of hybrid systems, in particular, in the form
of underlying Hamiltonian equations of motion, translates
into generalizations of Ehrenfest relations for coordinate
and momentum observables. We consider hybrid systems
described by a generic CL Hamiltonian function and a QM
mechanical Hamiltonian operator, respectively:

2
Hew = Y B+ v, (48)
k
R R
HQM = 7 + V(X), (49)

where v(x;) = v(xy,...,x,) and V denote relevant poten-
tials, together with a self-adjoint hybrid interaction operator
I (Xk» Pres X ,ﬁ); note that symmetrical (Weyl) ordering is
necessary, concerning the noncommuting operators X and P.
We set all masses equal to 1 here, for simplicity, but introduce
them explicitly in the particular case of coupled oscillators
below. By Eq. (24), this gives rise to the Hamiltonian function
Hs,
sz p? N
e = 5 o+ @5+ V@)
+ (W O pis X, PYW)

=: Her(ex, pr) + Hom(Xi, Pr) + I(xk, pr; Xi, P;), (50)
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when evaluated in a pure state |W¥), invoking the oscilla-
tor representation of Eq. (11). Correspondingly, we define
coordinate and momentum observables, in the sense of
our earlier construction in Sec. II B, pertaining to the QM
subsystem:

X(Xi, P) = (VIX|¥), P(X;,P):= (VIP|W). (51)
With these definitions in place, we proceed to determine the
equations of motion by following the rules of Hamiltonian

dynamics.
The equations of motion for the CL observables xy, py are

Xe = (X, Helx = pe + 05, Z(xk, pi; Xi, Pi),  (52)

Pr = {p. Hs)x
—0y, v(x) — 0 Z(xg, pi; Xi, Pr). (53)

Similarly, we obtain for the QM variables X;, P;, which are
not observables,

X; = (X, Hz}x
= dp Hom(Xj,Pj) + 0pL(x, pr; Xj, P}) (54)
= E; P +0pT(xr,pr; X, P)), (55)
P = (P, Hz)x
= —0x, Hom(X, Pj) — 0x,Z(xx, pr; Xj, Pj)  (56)
= —E;X; — 0x,Z(x,pr; X, P)), (57)

where Eqgs. (55) and (57) follow, if the oscillator expansion
is performed with respect to the stationary states of I:IQM [cf.
Egs. (12) and (13) in Sec. II B 2]. Notably, Egs. (52) and (53)
together with Egs. (54) and (56), or together with Egs. (55)
and (57), form a closed set of 2(n + N) equations, where
n denotes the number of CL degrees of freedom, and N
the dimension of the QM Hilbert space (assumed to be
denumerable, if not finite).

However, in distinction, the generalized Ehrenfest relations
for the QM observables X, P, defined in Eqgs. (51), are obtained
as follows:

X = {X,Hs} = (X, Hz)om = —i (V|[X, Hom + 11]¥)
=P —i(W[[X, (0, pr; X, P)1|W), (58)

P = (P, Hz}x = (P, Hs)om
= —i(V|[P,Hom + 11|¥)
= —(V|V'COIW) — i (VI[P 1(xe, pi; X, PIIW), (59)

where we used Eq. (25), in order to replace Poisson brackets
with commutators and the explicit form of I:IQM, Eq. (49); V'
denotes the appropriate first derivative of the potential function
V. Equations (58) and (59) together with Egs. (52) and (53) do
not form a closed set of equations, since the expectation of a
function of observables generally does not equal the function of
the expectations of the observables, as in Ehrenfest’s theorem
in QM mechanics [29].
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C. Bilinearly coupled oscillators

We consider here a set of CL oscillators coupled bilinearly
to one QM oscillator, choosing, for example,

1 mw?
Her = Z (Z_mkpkz + > L xkz)’ (60)
k
. 1, MQ*,
Hom = WP + - X, (61)
i = )A( Z)»kxk, (62)

where we have introduced masseks my, M, frequencies wy,<2,
and coupling constants A.

In this case, the equations of motion for the CL observables
together with the generalized Ehrenfest relations of Sec. IV B
reduce to a simple closed set of equations:

1

Xj = — Pk» (63)
my
P = —mpwlx — M X, (64)
X = ! P (65)
=P
P=—-MQPX — Zxkxk, (66)

k
with the QM observables X := (V| X|W¥) and P := (V|P|¥)
[cf. Egs. (51)]. Here, the backreaction of QM on CL subsystem
appears, as if the CL subsystem were coupled to another CL
oscillator.

In view of Egs. (63)—(66), we find that our theory passes the
“Peres-Terno benchmark™ test for interacting QM-CL hybrid
systems [5], which, so far, has been achieved only by the
configuration ensemble theory of Hall and Reginatto [6-8].

V. DISCUSSION

The proposed theory describing QM-CL hybrid systems
certainly raises a number of questions, some of which we
address here.

A. Classical-environment-induced decoherence

Well-known studies of environment-induced decoherence
describe the effects that an environment of QM degrees of
freedom has on the coherence properties of a QM subsystem
coupled to it [31,32]. In particular, the Feynman-Vernon or
Caldeira-Leggett models and, more generally, models of QM
Brownian motion have been studied in this respect [33].
Here we suggest considering the situation where the QM
environment is replaced with a CL one. We find that a CL
environment similarly can produce decoherence in a generic
model.

For simplicity, we consider a QM object characterized by a
two-dimensional Hilbert space, a “qg-bit,” which is coupled
bilinearly to a set of CL oscillators. The oscillators are
described by Eq. (60), as before. The Hamiltonian function
of the g-bit presents the simplest example of the oscillator
expansion of a QM Hamiltonian,

HXi P = %(Pﬁ +X7), (67)
i=1,2
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when expanding with respect to the energy eigenstates,
{l¢1),102)} [cf. Egs. (11)—(13)]. The bilinear QM-CL coupling

is defined by
f = 2 Zkkxk,
k

similarly as in Eq. (62); here ¥ denotes an observable of the
g-bit.

In this case, the closed set of dynamical equations of motion
becomes

(68)

X = Ppi/mi, ©9)
Pr = —miodx — M (V[E]W), (70)
X[ == E[Piv (71)

: V||
b= —Ex - S S (72)

dx, -

analogous to Egs. (52), (53), (55), and (57), respectively, and
where we have

~ 1 ~
(WIEIW) =2 D (@il SIg)(Xi — i P)IX; +iP). (73)
i,j=1,2

Equations (69) and (70) are solved by employing the
retarded Green’s function for the equation of motion of a driven
harmonic oscillator. This yields

t

X (1) = x0() — ,\k/ d

—00 mj i

SO ) 18 ws)),

(74)

with the harmonic term x,ﬁo)(t) = ay cos(wit) + by sin(wyt)
and where the real coefficients a; and by are determined by
initial conditions.

Furthermore, Eqgs. (71) and (72) can be combined into
second-order form:

Xi+ E’X; = —E; £1) ) [Re(Zi)X; —Im(Z;))X;/E ),
j=1.2
(75)

introducing the matrix elements %;; := (9|30 i) = Z;’fi, the
real and imaginary parts of which enter. Thus, we obtain
a system of N = 2 coupled oscillator equations, where the
coupling terms are nonlinear and non-Markovian through the

function

E@) =) duxi()
k

- Z [Akx,ﬁ")(t) — 22
k

X (X:($)Xj(s) + Xi(S)Xj(S)/(EiEj)):|

Z oy /’ s sin g (t — s)
—0 mpwy

i, j=1,2
(76)
by Egs. (71), (73), and (74).

Let us reduce the above model to a crudely simplified
version, neglecting presumably much of the rich dynamics
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described by Egs. (75) and (76). For sufficiently weak
coupling, we drop the non-Markovian terms, i.e., terms O(Akz.
Furthermore, we choose X1 = Xy =0and X, = ¥ = 1.
This simplifies the equations to describe two oscillators
which are symmetrically coupled to each other through a
periodic or, in the case of CL oscillators with incommensurate
frequencies, quasiperiodic function &. Under the additional
assumption of slow CL oscillators, i.e., with frequencies that
are low compared to those of the QM oscillators, the resulting
equations are solved by (i = 1,2)

X; = A; cos(2;t) + B; sin(£2;t), ()

and P, = X i/ E;; the real coefficients A;, B; are determined
by initial conditions, and, to leading nonvanishing order in &,
the characteristic frequencies are given by

£°E>
2(EP - EF)

£°F,
2(E7 - EF)
(78)

911=E1+ QQZIEQ—

Choosing, for illustration, initial conditions such that the
expansion coefficients in |¥) = )", , ¢ )/(X; + iP,-)/\/E [cf.
Eq. (11)] are real at t = 0, we obtain the off-diagonal matrix
elements of the corresponding density matrix p := |WV)(W¥| in
the form

(D11D1d2) = (B2l ple1)" = (X1 +iP)(X2 —iP2)/2
(- 1)
=R —

AE\E,
_ g2 <26i(91+92)r_ﬂe—i<sz,+szz)z)
4(EP — Ef) \ E E,
+0(EY. (79)

We note that there is a term oi£%¢ contributing to the
argument of each exponential [cf. Eqs. (78)]. This can lead
to decoherence by dephasing in the following way.

If the non-negative function £2(¢) is sufficiently irregular
(depending on the frequency distribution of environmental
oscillators), we may treat it as a random variable and average
the result of Eq. (79) correspondingly. We consider the leading
term, while the others can be dealt with similarly. Thus, writing
Q, — Q) = 8E + £%/28E, with §E := E, — E;, we have to
evaluate the dimensionless function f,

f@t) = / ” dQ P(Q)e', (80)
0

with Q = £2/28E, and where P represents the appropriately
normalized distribution of the values of 2. Now, there are
continuous distributions, such that f(¢t) — 0, for t — oo, for
example, a constant distribution over a finite range of €2, an
exponential distribution, or a Gaussian distribution. In these
circumstances, the leading term (similarly to the others) gives
adecaying contribution, i.e., & f (), to the off-diagonal density
matrix element (¢;|0|¢,), after averaging.

This indicates a decoherence mechanism which is effec-
tively quite similar to “fundamental energy decoherence,’
which was reviewed recently in Ref. [19].
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B. Quantum-classical backreaction

QM-CL backreaction, in particular, the effect of QM fluc-
tuations on the CL subsystem, has always been an important
topic for various proposals of QM-CL hybrid dynamics and its
applications. This concerns improvements of approximation
methods and applications, for example, in “semiclassical
gravity,” studying the effects of QM fluctuations of matter
on the CL metric of space time (see Refs. [2,6,8,16], with
numerous references to related work).

Our formalism consistently incorporates all QM fluctu-
ations, even if they are not explicitly visible, unlike in
many approaches where fluctuations are added by hand, in
some approximation. Presently, the QM dynamics is treated
exactly in terms of a complete set of canonical variables,
for example, (X;, P;);=;... .y in the closed set of dynamical
equations (52)—(57). As long as no approximations are applied
to these equations, their solutions allow us to evaluate exactly
all quantities which reflect the fluctuations associated with
a pure QM state |W), such as the typical variance AX? :=
(U|X2|W) — (W|X|¥)2. This follows from the fact that all OM
observables can be expanded in the oscillator representation
[recall Egs. (11), (24), and (28)], with the expansion coeffi-
cients given by the solutions of the deterministic equations.
Thus, for example, AX 2 becomes a function of the canonical
variables.

The QM variables do not fluctuate in a given pure state.
By the QM-CL Poisson brackets and ensuing equations of
motion (“Hamilton’s equations”), they are coupled to the
CL variables (observables), which, therefore, do not show
fluctuations either.

However, this admits the possibility that the initial condi-
tions of the hybrid dynamical equations, in particular, for the
QM subsystem, are determined by the fluctuating outcome of
a certain preparation or measurement. In this case, if only
statistical or conditional information about the initial state
of the system is available, the CL observables, generally,
will reflect corresponding fluctuations. For example, we can
evaluate a correlation function of CL observables to find

(xgxp) = / I (dx;dpr) xaXxppcL(Xk, Pi) 7 (Xa) (Xp),

with the help of the reduced distribution pcr. introduced in
Eq. (32). This distribution function is determined by the
solution of the Liouville equation for the full density p of
the interacting hybrid system [cf. Eq. (45)]; it could be,
furthermore, conditioned by a selected outcome of some QM
measurement(s) specifying the initial state.

C. Hybrid observables, separable interactions, and
quantum-classical Poisson brackets

It is a common feature of either QM or CL systems that
particular forms of interaction among subsystems allow the
separation of degrees of freedom into noninteracting subsets.
Generally, this is associated with the existence of symmetries
of the compound system, such as translation or rotation
invariance.

A recent study of a translation-invariant harmonic interac-
tion between a QM and a CL particle revealed that—according
to the hybrid theory proposed by Hall and Reginatto—there
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arises an irreducible coupling between center-of-mass and
relative motion [6]. This is contrary to what happens if both
particles are treated as either CL or QM mechanical and has
been traced to the inherent nonlinearity of their proposal.
The action functional, from which the equations of motion
are derived, “knows” which variables belong to the QM
and CL sectors, respectively, and mixing them by coordinate
transformations produces the coupling. Consequently, such a
system has been proposed as a prospective testing ground,
where their theory could be falsified experimentally [9].

This issue can also be examined in the light of the present
linear hybrid theory. Specializing the system of bilinearly
coupled oscillators from Sec. IV C as

I:IQM = —p% ].= Mx-1— X)z,
(81)

1
Hep := —p 2,
CL sz

we reconsider the example from Ref. [9]; here 1 denotes the
unit operator on the Hilbert space of the QM subsystem.

As before, the Hamiltonian function which generates
time evolution of the composite system, Hy := HcpL +
(‘I‘|(I:IQM + I)| W), is conserved by construction, dHy, /dt = 0
(see Sec. IV A). Furthermore, we know from Sec. IV C that
the generalized Ehrenfest equations for bilinearly coupled
oscillators in terms of the CL observables, here x and p, and
of the QM observables, X := (¥|X|¥) and P := (V| P|V),
form a closed set [cf. Egs. (63)—(66)]. These equations of
motion are nothing but Hamilton’s equations for the “CL”
Hamiltonian function:

H(x, p; X, P) := ip 2y Lpoy AMx —X)%, (82)
T om 2M ’
which implies that also HS! is conserved, HS! /dt = 0. Then it
follows that the energy carried by QM fluctuations is separately
conserved:

d( 1 5 50 S22
dt<2M(<P) (P)") + A((X7) (X>)>

d
=~ (Hz —H§) =0, (83)

where (---) = (V] - - - |¥). Note that all mixed QM-CL terms
cancel and no energy is transferred between the (fluctuations
of the) QM and the CL subsystems.

We observe that the “CL” Hamiltonian H%l is separable by
transforming the variables x, p and X, P to center-of-mass and
relative variables:

s:=MX+mx)/o, ps:=P+p, (84)

1 1
=X —x, = —P——p), 85
r X, p u(M mp) (35)

with the total and reduced masses defined by o := M +m
and u := Mm/(M + m), respectively. Thus, we find H%l =
(p2/20) + (p?/21) + Ar?, not surprisingly.

At this point, it seems worthwhile to assess the character of
these transformations with respect to the fundamental QM-CL
Poisson brackets, defined in Egs. (39) and (40) (Sec. III B),
on which our theory is based. We have {x,p}. =1 and
{X,P}. = ([X,P]/i) = 1, using Eq. (25); similarly, we find
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that the brackets of all other pairs of these variables vanish.
Thus, we may consider x, p and X, P as two pairs of canonical
phase-space coordinates. Furthermore, one may check that also
the two pairs of center-of-mass and relative variables, s, p; and
r, py, respectively, form pairs of canonical coordinates under
the QM-CL Poisson brackets. Therefore, transformations (84)
and (85) are consistent canonical transformations. An imme-
diate consequence is that the “CL Hamiltonians” describing
center-of-mass and relative motion are separately conserved
as well.

It must be emphasized that the separation of the “CL”
degrees of freedom, x,p and X, P, or of the corresponding
center-of-mass and relative variables, from the full set of
canonical variables x,p and X;,P; is an accident of the
harmonic interaction. Independently of the hybrid coupling
between a CL and a QM mechanical particle [cf. Egs. (81)],
any coupling other than constant, linear (in one dimension),
or harmonic translation-invariant coupling would not allow
such separation, even if both particles were treated QM
mechanically.

In general, the “mean-field” variables X = (X)and P =
(Pywill always couple to “correlation functions,” such as (X%,
(XP + PX), (P?), or more complicated ones, depending on
the kind of interaction. This phenomenon of QM mechanics is
not particular to hybrid dynamics.

While the separation of degrees of freedom in the case of
translation- or rotation-invariant potentials in QM mechanics
can always be completed at the operator level, the hybrid
dynamics presented here necessitates the consideration of
“CL” canonical variables on which to perform any canonical
transformations consistently with the underlying Poisson
bracket structure. This seems to limit separability to certain
potentials, as we have just seen.

We conclude that a composite system of a QM and a
CL particle with harmonic translation-invariant interaction, or
some analog of this, does not allow experimental falsification
of our formulation of hybrid dynamics. We find no coupling
between relative and center-of-mass motion, contrary to the
proposal in Refs. [6,9]. However, anharmonic interactions
need to be studied in this context and may lead to experi-
mentally accessible signatures of the linear QM-CL hybrid
dynamics.

D. The classical x almost-classical algebra
of hybrid observables

In Secs. IIA and IIB, we introduced the notions of CL and
QM observables, respectively, relevant for the considerations
of this paper. Furthermore, in Sec. III B, we introduced
the fundamental QM-CL hybrid Poisson bracket, {A, B}y :=
{A,B}cL + {A,Blom. Following Egs. (39) and (40), we
pointed out three important properties of this bracket, last
but not not least related to separability. However, we tacitly
assumed that a fourth case would not need further mention,
which can arise for two genuine hybrid observables:

Let A= A()Ck,pk; X,‘,Pi), B = B(xk,pk; X,',P,‘) be
both hybrid observables, i.e., both are quadratic forms in the
X;’s and P;’s and both are not completely independent of the
x’s and py’s. If, furthermore, one observable, say A, depends
on any pair of canonical variables, say x = xp and p = py,
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and B also depends on x or p, then the “CL part” of the bracket,
{A,B}cL, generates terms which do not qualify as observable
with respect to the QM sector.

Such terms are of the general form

3" Mg G p)(Xi — iPYX; + i P))
ii',j,j

x (Xp —iP)(Xj +iPj)
=4 ) (W[ (W|Di)M; i (xic, i) (D W) (D[ W),

ii',j,j'
(86)
where we used the oscillator expansion, Eq. (11), and
1 0A;j 0By  0A;; 0By
M; i i (X, pr) = 1 Z < 5 ! 5 L— 5 ! 5 ! >
k Xk Pk Pk Xk

using the related expansion for observables A and B [cf.
Eq. (28)].

Generally, iterations of such brackets will implicitly con-
tribute to the solution, p = p(x, pr; Xi, P;), of the evolution
equation, —d;p = {p,Hx}x , in the presence of a true hybrid
coupling, cf. Sec. IV. Thus, multiple factors involving the
state vector |W) and its adjoint, or multiple pairs like
(X; —iP;)(X; +iP;), will enter. In this way, evolution of
hybrid observables, of the density p in particular, can induce
a structural change: while continuing to be CL observables,
they do not remain QM observables (quadratic forms in X;’s
and P;’s). They fall outside of the product algebra generated
by the observables to which we confined ourselves, so far.

We note that the assumption of a product algebra covering
the observables of a hybrid system was essential for the
no-go theorem put forth in Ref. [34], which ruled out a
class of hybridization models. However, this assumption can
be criticized as being too restrictive from the QM point of
view [7]. Here we assume that

The algebra of hybrid observables is closed under
the QM-CL Poisson bracket {,}. operation—a physical
hypothesis.

Referring to the phase-space coordinates (X, P;), we define
an almost-CL observable as a real-valued regular function
of pairs of factors like (X; —iP;)(X; +iP;), such as on
the left-hand side of Eq. (86), subject to the constraint
C(X;,P)= % Zi(Xi2 + P,»Z) = 1. This normalization con-
straint [cf. Eq. (16) in Sec. II B 2] is preserved under the
evolution, since {C,Hx}x =0, in the presence of QM-CL
hybrid interaction as defined in Sec. IV.

According to this definition, QM observables (quadratic
forms in phase-space coordinates; cf. Sec. I B) form a subset
of almost-CL observables which, in turn, form a subset of
CL observables (real-valued regular functions of phase-space
coordinates; cf. Sec. I A). Furthermore, we may now say
that members of the complete algebra of hybrid observables,
generally, are CL with respect to coordinates (xi,px) and
almost CL with respect to coordinates (X;, P;).

This leads us to speculate about a physical consequence of
the enlarged CL x almost-CL algebra for interacting QM-CL
hybrids, as illustrated by the following Gedankenexperiment.
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Consider a QM together with a CL object subject to a
transient hybrid interaction. As long as the hybrid interaction
is ineffective, both objects evolve independently according to
Schrodinger’s and Hamilton’s equations, respectively. How-
ever, once they form an interacting hybrid, the corresponding
phase-space density changes from a factorized form, in the
absence of any initial correlation, to become an almost-CL-CL
hybrid observable. Even if the hybrid interaction eventually
disappears, the density possibly maintains a mixed almost-
CL-CL character. This agrees with the general structure of
the evolution equation yet needs to be understood in detailed
examples.

This outcome contradicts the naive expectation that QM
and CL objects evolve separately in QM and CL ways, after
any hybrid interaction has ceased. Two possibilities come to
mind. Either persistence of the almost-CL-CL character is a
physical effect accompanying QM-CL hybrids, if they exist,
or our description needs to be augmented with a reduction
mechanism by which evolving observables return to standard
QM or CL form (cf. Sec. II), following a hybrid interaction.
Both possibilities seem quite interesting in their own right. We
reserve this topic for future study [35].

E. Hybrid dynamics and the Wigner function approach

Suppose that a physicist unfamiliar with QM mechan-
ics were presented with the general equations of motion,
Eqgs. (52)-(57) [plus the normalization constraint, Eq. (16)].
We know that these equations present independent CL and
QM sectors, in the absence of a hybrid interaction. However,
he or she would naturally interpret them to describe the
dynamics of a composite CL object, with part of its phase
space compactified, due to the constraint. Thus, he or she finds
perfectly local dynamics. In fact, our knowledge of nonlocal
features can be traced to the definition of the canonical
coordinates and momenta X;, P;, introduced by the oscillator
representation, Eq. (11), since X;/+/2 = Re [dq ®f(q)¥(q)
and P;/v/2 =1Im [ dq ®i(q)¥(q). Therefore, spatially non-
local (and probabilistic) features enter by reference to the QM
wave function [36].

In view of this, it might be surprising that our proposed
hybrid dynamics passes the set of consistency requirements
(cf. Sec. 1), in particular, the requirement for conservation
and positivity of probability, as we have seen. This must be
contrasted with the problems that arise if one maps the QM
sector “locally” on a would-be CL phase space by using the
Wigner function approach and the corresponding version of
the von Neumann equation. The latter differs from the CL
Liouville equation by a series of corrections in powers of &
which, in turn, incorporate nonlocal features. It is well known
that they spoil the interpretation of the Wigner function as
a genuine probability distribution on phase space, since it
generally does not remain positive semidefinite (see Ref. [38]
for a comprehensive review of probability issues).

Conversely, the dynamics of CL phase-space distributions,
typically described by the Liouville equation, can be presented
in QM mechanical and, in particular, in path integral form
[10,11]. Again, the resulting would-be QM mechanical density
matrix corresponding to a CL probability distribution is,
generally, not positive semidefinite.
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In both cases, the problem is caused by the intermedi-
ate Fourier transformation, which apparently is not suited
to represent the nonlocality properties appropriately, when
formally relating phase space to Hilbert space, and vice versa.
Therefore, the Wigner function approach, which one could be
tempted to employ, in order to systematically reduce part of
a composite QM system to a CL subsystem, thus defining
a QM-CL hybrid, unfortunately violates the positivity of
probability requirement.

Similar problems were encountered in Ref. [4], where the
QM — CL reduction is attempted via coherent “minimum
uncertainty” states. In distinction, the oscillator representation
allows us to circumvent this difficulty, at the expense of
introducing the phase-space structure in an abstract way [39].

VI. CONCLUDING REMARKS

We have proposed a theory of OM-CL hybrid dynamics
in this paper. In particular, our considerations are based on
the representation of QM mechanics in the framework of CL
analytical mechanics by Heslot, who showed that notions of
states in phase space, observables, and Poisson brackets can
be naturally extended to QM mechanics [12].

Our formulation provides a generalization for the case
where QM mechanical and CL degrees of freedom are directly
coupled to each other. An important guideline has been to
satisfy the complete set of consistency conditions mentioned
in Sec. I and fulfilled, so far, only by the configuration
space ensemble theory of Hall and Reginatto [6-8]; all earlier
attempts failed on one point or the other. However, our
linear theory deviates from their nonlinear theory in that
no “spurious” coupling between center-of-mass and relative
motion is found for a two-body system with a harmonic
translation-invariant potential.

The latter issue, QM-CL backreaction, CL-environment-
induced decoherence, and completion of the algebra of
hybrid observables have been discussed in Sec. V, while
further interesting topics are left for future work. These
include the hypothetical role of hybrid dynamics in mea-
surement processes, seen as the interaction between a CL
apparatus and a QM object according to the Copenhagen
interpretation, and the effect of CL and QM degrees of freedom
on entangled and classically correlated states, respectively,
through hybrid interactions.

On the technical side, since hybrid dynamics in the present
formulation leads to a Liouville equation, as discussed, the su-
perspace path integral we have recently devised can be readily
adapted to it [10,11]. This may be particularly interesting for
applications in which hybrid dynamics is considered as an
approximation scheme for complex QM systems.

In a more speculative vein, one could wonder about the
essential difference between QM and CL state spaces seen
here, respectively, in the presence and absence of curvature
(cf. Sec. II B 2). Does a properly understood CL limit of
QM mechanics, which possibly helps with the measurement
problem [40], require a dynamical treatment of this curvature?
Conversely, is the hypothetical emergence of QM mechanics
from deterministic dynamics related to a dynamical structure
of phase space?
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