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We develop a general optimization strategy for performing a chosen unitary or nonunitary task on an open
quantum system. The goal is to design a controlled time-dependent system Hamiltonian by variationally
minimizing or maximizing a chosen function of the system state, which quantifies the task success (score),
such as fidelity, purity, or entanglement. If the time dependence of the system Hamiltonian is fast enough to
be comparable to or shorter than the response time of the bath, then the resulting non-Markovian dynamics is
shown to optimize the chosen task score to second order in the coupling to the bath. This strategy can protect a
desired unitary system evolution from bath-induced decoherence, but can also take advantage of the system-bath
coupling so as to realize a desired nonunitary effect on the system.
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I. INTRODUCTION

Due to the ongoing trends of device miniaturization,
increasing demands on speed and security of data processing,
along with requirements on measurement precision in funda-
mental research, quantum phenomena are expected to play an
increasing role in future technologies. Special attention must
hence be paid to omnipresent decoherence effects. These may
have different physical origins, such as coupling of the system
to an external environment (bath) [1] or to internal degrees of
freedom of a structured particle [2], noise in the classical fields
controlling the system, or population leakage out of a relevant
system subspace [3]. Formally, their consequence is always a
deviation of the quantum state evolution (error) with respect to
the expected unitary evolution if these effects are absent [4].
In operational tasks such as the preparation, transformation,
transmission, and detection of quantum states, these environ-
mental couplings effects are detrimental and must be sup-
pressed by strategies known as dynamical decoupling [5–11],
or the more general dynamical control by modulation [12–16].

There are, however, tasks which cannot be implemented
by unitary evolution, in particular those involving a change
of the system’s state entropy [17,18]. Such tasks necessitate a
coupling to a bath and their efficient implementation and hence
require enhancement of this coupling. Examples are the use of
measurements to cool (purify) a system [19–22] or manipulate
its state [23–25], to equilibrate it [26], or harvest and convert
energy from the environment [27–31].

A general task may also require state and energy transfer
[32], or entanglement [33] of noninteracting parties via shared
modes of the bath [34,35] which call for maximizing the
shared (two-partite) couplings with the bath, but suppressing
the single-partite couplings.

It is therefore desirable to have a general framework for
optimizing the way a system interacts with its environment to
achieve a desired task. This optimization consists in adjusting a
given “score” that quantifies the success of the task, such as the
targeted fidelity, purity, entropy, entanglement, or energy by
dynamical modification of the system-bath coupling spectrum
on demand. The goal of this work is to develop such a
framework. For alternative approaches (cf. [36–40]).

The remainder of the paper is organized as follows. In Sec. II
we state the problem formally and provide general expressions
for the change of the score over a fixed time interval as operator
and matrix spectral overlap. In Sec. III we discuss a general
solution in terms of an Euler-Lagrange optimization. In Sec. IV
we apply the approach to the protection of a general quantum
gate, which requires minimizing any coupling to the bath,
whereas in Sec. V we consider the complementary case of
enhancing the system-bath coupling in order to modify the
purity (entropy) of a qubit. Open problems are outlined and an
outlook is presented in Sec. VI. Supplementary information is
provided in Appendixes A and B.

II. OVERLAP-INTEGRAL FORMALISM

A. Fixed time approach

Assume that a quantity of interest (“score”) can be written
as a real-valued function P (t) = P [�̂(t)] of the system state
�̂(t) at a given time t . This might be, for example, a measure
of performance of some input-output device that is supposed
to operate within a predefined cycle or gate time t . Depending
on the physical problem and model chosen, extensions and
generalizations are conceivable, such as a comparison of the
outcome for different t (on a time scale set by a constraint) [32],
a time average P = ∫

dτf (τ )P [�̂(τ )] with some probability
density f (τ ) [41], or a maximum P (t) = maxτ∈[0,t]P [�̂(τ )]
[42]. Here we restrict ourselves to the “fixed-time” definition
as given above. Our goal is to generate, by means of classical
control fields applied to the system, a time dependence of the
system Hamiltonian within the interval 0 � τ � t that adjusts
P (t) to a desired value. In particular, this can be an optimum
(i.e., maximum or minimum) of the possible values of P .
Assume that the initial system state �̂(0) is given. The change
to the “score” over time t , P = P (t) − P (0), is then given by
the first-order Taylor expansion in a chosen basis,

P ≈
∑
mn

∂P

∂�mn

��mn = Tr(P̂��̂), (1)
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where ��̂ = �̂(t) − �̂(0) and the expansion coefficients,(
∂P

∂�mn

)
t=0

≡ (P̂ )nm, (2)

are the matrix elements (in the chosen basis) of a Hermitian
operator P̂ , which is the gradient of P [�̂(t)] with respect
to �̂ at t = 0 [i.e., we may formally write P̂ = (∇�̂P )Tt=0 =
(∂P/∂�̂)Tt=0]. In what follows, it is P̂ which contains all
information on the score variable. Note that the transposition
applied in Eq. (2) simply allows to express the sum over the
Hadamard (i.e., entrywise) matrix product in Eq. (1) as a trace
of the respective operator product P̂��̂.

Let us illustrate this in two examples. If P is the expectation
value of an observable (i.e., Hermitian operator) Q̂, so that
P = Tr(�̂Q̂), then Eq. (2) just reduces to this observable, P̂ =
Q̂. If P is the state purity, P = Tr(�̂2), then Eq. (2) becomes
proportional to the state, P̂ = 2�̂(0). Note that the score P is
supposed to reflect the environment (bath) effects and not the
internal system dynamics.

Equation (1) implies that ��̂ and with it P are small. Hence
��̂ must refer to the interaction picture and a weak interaction,
while P [�̂(t)] should not be affected by the internal dynamics
[so that no separate time dependence emerges in Eq. (1), which
is not included in the chain-rule derivative]. In the examples
above, this is obvious for state purity, whereas an observable Q̂

might be thought of as co-evolving with the internal dynamics.
Our starting point for what follows is simply the relation

P = Tr(P̂��̂) with some Hermitian P̂ , whose origin is not
relevant.

B. Role of averaged interaction energy

Equation (1) expresses the score P as an overlap between
the gradient P̂ and the change of system state ��̂. In order
to find expressions for P in terms of physically insightful
quantities, we decompose the total Hamiltonian into system,
bath, and interaction parts,

Ĥ (t) = ĤS(t) + ĤB + ĤI, (3)

and consider the von Neumann equation of the total (system
and environment) state in the interaction picture,

∂

∂t
�̂tot(t) = −i[ĤI(t),�̂tot(t)], (4)

[ĤI(t) = Û
†
F(t)Ĥ (S)

I (t)ÛF(t), (S) denoting the Schrödinger

picture, and ÛF(t) = T+e−i
∫ t

0 dτ [ĤS(τ )+ĤB]]. Its solution can be
written as Dyson (state) expansion,

�̂tot(t) = �̂tot(0) + (−i)
∫ t

0
dt1[ĤI(t1),�̂tot(0)]

+ (−i)2
∫ t

0
dt1

∫ t1

0
dt2[ĤI(t1),[ĤI(t2),�̂tot(0)]] + . . . ,

(5)

which can be obtained either by an iterated integration of (4)
or from its formal solution,

�̂tot(t) = ÛI(t)�̂tot(0)Û †
I (t), ÛI(t) = T+e−i

∫ t

0 dt ′ĤI(t ′), (6)

by applying the Magnus (operator) expansion,

ÛI(t) = e−itĤeff (t), (7)

Ĥeff(t) = 1

t

∫ t

0
dt1 ĤI(t1)

− i

2t

∫ t

0
dt1

∫ t1

0
dt2[ĤI(t1),ĤI(t2)] + . . . , (8)

expanding in Eq. (6) the exponential ÛI = ÛI(Ĥeff) and sorting
the terms according to their order in ĤI.

We assume that, initially, the system is brought in contact
with its environment (rather than being in equilibrium with it),
which corresponds to factorizing initial conditions �̂tot(0) =
�̂(0) ⊗ �̂B. The environment is in a steady state �̂B, [�̂B,ĤB] =
0, so it is more adequate to speak of a “bath.” Tracing over the
bath in Eq. (5) then gives the change of system state ��̂ =
�̂(t) − �̂(0) over time t , which we must insert into Eq. (1).
We further assume a vanishing bath expectation value of the
interaction Hamiltonian,

〈ĤI〉B ≡ TrB(�̂BĤI) = 0̂. (9)

As a consequence, the “drift” term corresponding to the first
order in Eq. (5) vanishes, and we only consider the second-
order term as the lowest nonvanishing order approximation.
Finally, we assume that the initial system state commutes
with P̂ ,

[�̂(0),P̂ ] = 0. (10)

In the language of control theory, Tr[�̂(0)P̂ ] is a
“kinematic critical point” [43] if Eq. (10) holds, since
Tr[eiĤ �̂(0)e−iĤ P̂ ] = Tr[�̂(0)P̂ ] + iTr(Ĥ [�̂(0),P̂ ]) + O(Ĥ 2)
for a small arbitrary system Hamiltonian Ĥ . Since we consider
�̂ in the interaction picture, Eq. (10) means that the score is
insensitive (in first order) to a bath-induced unitary evolution
(i.e., a generalized Lamb shift) [34]. The purpose of this
assumption is only to simplify the expressions, but it is not
essential. Physically, one may think of a fast auxiliary unitary
transformation that is applied initially in order to diagonalize
the initial state in the eigenbasis of P̂ . Modifications to be
made if Eq. (10) does not hold are provided in Appendix B.

To lowest (i.e., second) order we then evaluate Eq. (1) for
the score change as

P = t2〈[Ĥ ,P̂ ]Ĥ 〉, Ĥ = 1

t

∫ t

0
dτ ĤI(τ ), (11)

where 〈·〉 = Tr[�̂tot(0)(·)]. This expresses the change of score
in terms of the interaction Hamiltonian, averaged in the
interaction picture over the time interval of interest. Our
scheme is summarized in Fig. 1.

C. Spectral overlap

Alternatively, Eq. (11) can be written as an overlap of
system and bath matrices, which allows a more direct physical
interpretation. To do so, we assume d-dimensional Hilbert
space, and expand the interaction Hamiltonian as a sum of
products of system and bath operators,

ĤI =
d2−1∑
j=1

Ŝj ⊗ B̂j , (12)
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(̂0)

⊗

B̂

ĤS(τ)

ĤI

ĤB

P

0 ≤ τ ≤ t score

FIG. 1. (Color online) Our control scheme. A system is brought in
contact with a bath over a fixed time interval 0 � τ � t during which
the time dependence of the system Hamiltonian ĤS(τ ) is chosen such
that a given system variable P is adjusted to a desired value at the
final time t .

in such a way that 〈B̂j 〉 = 0, which ensures that Eq. (9) is
satisfied (otherwise we may shift B̂ ′

j = B̂j − 〈B̂j 〉Î , Ĥ ′
S =

ĤS + ∑
j 〈B̂j 〉Ŝj ). Considering Eq. (12) in the interaction

picture and expanding Ŝj (t) = ∑
k εjk(t)Ŝk in terms of [Her-

mitian, traceless, orthonormalized to Tr(Ŝj Ŝk) = d δjk] basis
operators Ŝj , defines a (real orthogonal) rotation matrix ε(t)
in the system’s Hilbert space, with elements,

εjk(t) = 〈Ŝj (t)Ŝk〉id , (13)

where 〈·〉id = Tr[d−1Î (·)]. These elements of the matrix ε(t)
may be regarded as the dynamical correlation functions of
the basis operators. Analogously, we define a bath correlation
matrix �(t) with elements,

�jk(t) = 〈B̂j (t)B̂k〉B. (14)

It contains the entire description of the bath behavior in our
approximation. Finally, we define a Hermitian matrix � with
elements,

	kj = 〈[Ŝj ,P̂ ]Ŝk〉, (15)

where 〈·〉 = Tr[�̂(0)(·)]. The matrix � may be understood as
a representation of the gradient P̂ with respect to the chosen
basis operators Ŝj . Finally, we define the bath and (finite-time)
system spectra according to

G(ω) =
∫ ∞

−∞
dt eiωt �(t), (16)

εt (ω) = 1√
2π

∫ t

0
dτ eiωτ ε(τ ). (17)

This allows one to express the score, Eq. (11), as the matrix
overlap,

P =
∫∫ t

0
dt1dt2Tr[εT (t1)�(t1 − t2)ε(t2)�] (18)

=
∫ ∞

−∞
dω Tr[εt

†(ω)G(ω)εt (ω)�] (19)

= t

∫ ∞

−∞
dω Tr[Ft (ω)G(ω)]. (20)

In Eq. (20) we have used the cyclic property of the trace to write
the spectral overlap in a more compact form by combining the
rotation matrix spectra εt (ω) and the gradient representation

� to a system spectral matrix,

Ft (ω) = 1

t
εt (ω)�εt

†(ω). (21)

Analogously, Eq. (18) can be written in a more compact form
by introducing the matrix,

R(t1,t2) = εT (t1)�(t1 − t2)ε(t2). (22)

Equation (20) is a generalization of the Kofman-Kurizki
formula [12,14,44] and demonstrates that the change P over
a given time t is determined by the spectral overlap between
system and bath dynamics, analogously to dynamical control
by modulation (DCM) [15,16,45,46], or the measurement-
induced quantum Zeno and anti-Zeno control of open systems
[21,24,47]. The bath-spectral matrix G(ω) must be positive
semidefinite for all ω. If the same holds for the matrix Ft (ω),
then P is always positive. Below we will consider such a case
where P reflects a gate error and the goal is then to minimize
this error. The spectral overlap Eq. (20) can be made as small
as desired by a rapid modulation of the system, such that the
entire weight of the system spectrum is shifted beyond that
of the bath, which is assumed to vanish for sufficiently high
frequencies. Since this fast modulation may cause unbounded
growth of the system energy, a meaningful posing of the
problem requires a constraint.

In general, Ft (ω) is Hermitian but need not necessarily
be positive semidefinite, depending on the choice of score as
encoded in �. This reflects the fact that P can increase or
decrease over t . Depending on the application, our goal can
therefore also be to maximize P with positive and negative
sign. In what follows we will consider the question how to
find a system dynamics that optimizes the score.

III. EULER-LAGRANGE OPTIMIZATION

A. Role of control, score, and constraint

Our considerations in the previous section suggest defining
our control problem in terms of a triple ( f ,P ,E) consisting of
a control f , a score P , and a constraint E.

The control is a set of real parameters fl , which have
been combined to a vector f . These can either be timings,
amplitudes, and/or phases of a given number of discrete
pulses, or describe a time-continuous modulation of the
system. Here, we focus on time-dependent control, where the
fl(τ ) parametrize the system Hamiltonian as ĤS = ĤS[ f (τ )],
or the unitary evolution operator Û (τ ) = T+e−i

∫ τ

0 dτ ′ ĤS(τ ′) ≡
Û [ f (τ )]. A direct parametrization of Û avoids the need
for time-ordered integration of its exponent. The Û (τ ) thus
obtained [48] can be then used to calculate the system
Hamiltonian ĤS(τ ) = i[ ∂

∂t
Û (τ )]Û †(τ ).

Two explicit examples of the score P pertain to the
fidelity of P̂ with a given pure state F� = 〈�|�̂|�〉 (for
which P̂ = |�〉〈�|), or to the von Neumann entropy which
we can approximate (for nearly pure states) by the linear
entropy, S = −kTr(�̂ln�̂)≈ SL = k[1 − Tr(�̂2)], [for which
P̂ = −2k�̂(0)]. The latter score can be used to maximize
the fidelity with the maximally mixed state �̂ ∼Î (for which
SL becomes maximum), or to maximize the concurrence
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δPδE

δP⊥
f

E = const.

P [f
n
], δP [f

n
],

E[f
n
], δE[f

n
]

optimization

f
n+1

= f
n
± ε

×[δP − δP ·δE

(δE)2
δE]

calculation

or

measurement

f
n+1

FIG. 2. (Color online) (Left) Optimization of the score P ( f ) subject to a constraint E( f ) in control space { f } by walking along the
component δP⊥ of the gradient δP orthogonal to δE. (Right) Resulting iteration consisting in steps determined by a small parameter ε which
yields a local solution depending on the starting point f 0.

C|�AB〉 =
√

2(1 − Tr�̂2
A), �̂A = TrB|�AB〉〈�AB|, as a measure

of entanglement of a pure state |�AB〉 of a bipartite system.
If a constraint is required to ensure the existence of a

finite (physical) solution, its choice should depend on the
most critical source of error. An example is the average speed
with which the controls change, E = ∫ t

0 dτ ḟ
2
(τ ), which

depend on the control bandwidth in the spectral domain. A
parametrization-independent alternative is the mean square
of the modulation energy, E = ∫ t

0 dτ 〈(�Ĥ )2(τ )〉id , where
〈·〉id refers to a maximally mixed state and hence to a
state-independent norm, and �Ĥ is the difference between the
modulated and unmodulated (natural) system Hamiltonians.

B. A projected gradient search

We want to find controls f that optimize a score P ( f )
subject to a constraint E( f ). A numerical local optimization
can be visualized in parameter space as shown in Fig. 2.

We start at some initial point f 0 for which E( f 0) is the
desired value of the constraint. Simply following the gradient
δP would maximize or minimize P , but also change E. To
optimize P while keeping E constant, we therefore move
along the projection of δP orthogonal to δE (i.e., along
δP⊥ = δP − δP ·δE

(δE)2 δE). Since the gradients depend on f , the
iteration consists of small steps f n+1 = f n ± εδP⊥( f n), ε�
1. Assuming that neither δP nor δE vanish, the iteration will
come to a halt where δP⊥ vanishes, because the gradients are
parallel,

δP = λδE. (23)

This condition constitutes the Euler-Lagrange (EL) equation
of the extremal problem, with the proportionality constant λ

being the Lagrange multiplier. Its concrete form depends on the
choice of P and E. Since the solutions of the EL optimization
represent local optima of the constrained P , we may repeat
the search with randomly chosen f 0 a number of times and
select the best solution. The gradients at each point f n may be
obtained either from a calculation based on prior knowledge
of the bath or experimentally from data measured in real time.
A discretization of the time interval 0 � τ � t then reduces
the variational δ to a finite-dimensional vector gradient ∇.

IV. GATE PROTECTION WITH BOMEC

A. Gate error as average fidelity decline

A particular application of our formalism is decoherence
protection of a given quantum operation by bath-optimal
minimal-energy control (BOMEC) [16,48]. Consider the
implementation of a predetermined quantum gate (i.e., unitary
operation within a given “gate time” t). It is sufficient to
consider a pure input state |�〉. In the interaction picture with
respect to the desired gate operation and in the absence of bath
effects, we should therefore observe at time t the initial state
|�〉. The quantity of interest is here the fidelity 〈�|�̂(t)|�〉,
and we use the projector P̂ = �̂(0) = |�〉〈�| as the gradient
operator, so that Eq. (10) is satisfied and Eq. (11) gives the
fidelity change as the score,

P = 〈�|��̂|�〉 = −t2〈〈�|Ĥ 2|�〉 − 〈�|Ĥ |�〉2〉B, (24)

which is given by Ĥ defined in Eq. (11).
Since a quantum gate is supposed to act on an unknown

input state, we need to get rid of the dependence on |�〉. One
possibility is to perform a uniform average over all |�〉. We
may apply

〈�|Â|�〉〈�|B̂|�〉 = TrÂB̂ + TrÂTrB̂

d(d + 1)
, (25)

[49,50] which gives the average,

P = −t2 d

d + 1
〈Ĥ 2〉id , (26)

where 〈·〉id = Tr[d−1Î ⊗ �̂B(·)]. In Eq. (26) we have used
TrSĤ = 0̂, which corresponds to TrŜj = 0 in Sec. II C.
Because of this and because of Eq. (9), 〈Ĥ 〉B = 〈ĤI〉B = 0̂,
we have 〈Ĥ 〉id = 0, and Eq. (26) also describes the variance
Var(Ĥ ) = 〈Ĥ 2〉id − 〈Ĥ 〉2

id . On the other hand P̂ = −2k�̂(0)
that gives the change �S of entropy S = −kTr(�̂ln�̂) is (up
to a proportionality factor of −2k) the same as the P̂ used
here to give the change of fidelity, we have �S = −2kP .
If we define a gate error E as the average fidelity decline,
E = −P , with P given in Eq. (26), we can summarize
the following proportionalities: gate error ≡ average fidelity
decline ∼ average entropy increase (purity decline) �S ∼
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square (variance) of the average interaction energy Ĥ :

E ≡ −P = �S

2k
= t2 d

d + 1
〈Ĥ 2〉id = t2 d

d + 1
Var(Ĥ ). (27)

In the matrix representation of Sec. II C, the average over
the initial states in the matrix � defined in Eq. (15), gives
� = − d

d+1 I [using Tr(Ŝj Ŝk) = d δjk and TrŜj = 0], so that

E = d

d + 1

∫ ∞

−∞
dω Tr[εt (ω)ε†t (ω)G(ω)], (28)

in agreement with [48] [except a different normalization
Tr(Ŝj Ŝk) = 2δjk leading there to a prefactor 2

d+1 ]. From the
requirement that E � 0 must hold for any positive semidefinite
matrix εt (ω)ε†t (ω), we conclude that G(ω) must be a positive
semidefinite matrix for any ω. The task of BOMEC is then to
find a system evolution Û (τ ) (cf. the control examples in the
previous section) that minimizes E , subject to the boundary
condition that the final Û (t) is the desired gate.

B. Comparison of BOMEC with DD

It is appropriate to compare the effect of dynamical
decoupling (DD) [5,7] with that of BOMEC. DD does not
change with the bath spectrum G(ω). With an increasing
number of pulses, DD shifts the weight of the system spectrum
F(ω) toward higher frequencies, until the overlap Eq. (20)
has become sufficiently small. This is illustrated for two
different numbers of pulses of periodic DD [pulses periodic
in time (PDD)], in the upper row of Fig. 3 in the case of a
one-dimensional (1D) single qubit modulation (i.e., all pulses
are given by an arbitrary but fixed Pauli matrix).

Aperiodic DD such as UDD [7] suppress low-frequency
components (to the left of the main peak) in the system
spectrum, which retain the system-bath coupling even if the
main peak of the system spectrum has been shifted beyond
the bath cutoff frequency (Fig. 3). The plots indicate that this
suppression of low-frequency components is achieved at the
price of a smaller shift of the main peak (i.e., shifting the main
peak beyond a given cutoff requires more pulses in UDD than
in PDD). Note that optimized DD sequences with improved
asymptotics exist [10], which we will not consider here.

System modulation spectra obtained with BOMEC are
shown in Fig. 4.

The plot refers to a qubit subject to pure dephasing (i.e., Z

coupling) by a bath whose spectrum G(ω) has a Lorentzian
peak and low-frequency tail. The BOMEC optimizes Û (τ )
simultaneously for three-dimensional (3D) Pauli matrix cou-
plings to the bath (Z, Y, and X). The resulting system spectrum
F (ω) is shown for different energy constraints E which are
increased in small and equal steps. For low E, F (ω) has a
single peak on the left of the bath peak. Increasing E causes a
second peak of F (ω) to emerge on the right of the bath peak,
which continues to grow, while the peak on the left diminishes,
until for high E, only the right peak remains. Figure 4 hence
demonstrates that the spectrum F (ω) generated by BOMEC
changes continuously as E increases, but avoids overlap with
the maxima of G(ω) irrespective of E. BOMEC can therefore
be superior to all forms of DD including UDD, especially if
the bath has high cutoff but band gaps at low frequencies.

V. PURITY CONTROL OF A QUBIT

To give an example of the opposite case, where the goal is
to maximize the system-bath coupling, we apply our approach
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FIG. 3. (Color online) System modulation spectra F (ω) (scaled to 1 with respect to their maximum value, scaling of ω as in Fig. 4) generated
by two methods of DD. (Upper row) Periodic dynamical decoupling with n π pulses (PDDn); (lower row) Uhrig dynamical decoupling with
the same number of π pulses (UDDn), compared for n = 11 (left column) and n = 19 (right column) pulses.
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FIG. 4. (Color online) BOMEC minimization of the gate error
for a single qubit π gate caused by pure dephasing with a given
bath spectrum [G(ω), bold red line, scaled to 0.61 with respect to
its maximum value, scaling of ω with respect to the chosen bath
resonance, i.e., in units of the inverse bath correlation time]. The
Z components of the obtained system modulation spectra Fi(ω) are
shown for energy constraints Ei = 0.1 + 4(i − 1), i = 1,2, . . . ,101,
(thin lines, blue to green) individually scaled to 1.

of constrained optimization to the linear entropy SL = 2[1 −
Tr(�̂2)] of a qubit. [Note that here SL has been normalized to 1
by setting the coefficient k = d/(d − 1) = 2; cf. Sec. III.] We
assume an initial mixture,

�̂(0) = p|1〉〈1| + (1 − p)|0〉〈0|, (29)

of a ground (excited) state |0〉 (|1〉), where 0 � p � 0.5 is
related to SL by p = (1 − √

1 − SL)/2. With Ŝj = σ̂j denoting
for d = 2 the Pauli matrices, Eq. (29) can be written in terms of

Ĥ0 = ω0
2 σ̂3 as �̂(0) = e−βĤ0

Tr(e−βĤ0 )
= |1〉〈1|

1+eβω0
+ |0〉〈0|

1+e−βω0
, where β =

ln(p−1−1)
ω0

is the inverse temperature. Purity and temperature are
hence related via the energy scale ω0. Our goal is a constrained
optimization of �SL [i.e., P̂ = −4 �̂(0) in Eq. (2)]. Unlike the
gate error Eq. (27), �SL can be negative or positive, which can
be understood as cooling or heating, respectively.

The time evolutions resulting from a minimization of �SL

for the initial state Eq. (29) are illustrated in Fig. 5.
The optimization refers to a bath spectrum as shown

in Fig. 6. The fj shown in Fig. 5(a) are defined by
Û (τ ) = e− i

2 f3(τ )σ̂3e− i
2 f2(τ )σ̂2e− i

2 f1(τ )σ̂3 , whereas the ωj shown in
Fig. 5(b) are given by ĤS(τ ) = ∑

j ωj (τ )σ̂j . The chosen con-

straint E = 1
2

∫ t

0 dτTr(HS−Ĥ0)2(τ ) can be written in terms of

the fj as E = 1
4

∫ t

0 dt1 [ḟ1
2 + ḟ2

2 + (ḟ3 − ω0)2 + 2ḟ1(ḟ3 −
ω0) cos f2]. (Note that we have set h̄ = 1, so that the dimension
of energy becomes inverse time and hence corresponds to
that of angular frequency. By measuring time in units of
some characteristic correlation time of the bath chosen in the
plots, time, energy, and angular frequency have been made
dimensionless.) The overlap between the evolving system state
�̂(τ ) (in the Schrödinger picture) and the ground state |0〉
shown in Fig. 5(c) indicates the fast unitary system modulation

through short time population inversions without significantly
altering the state purity as verified in Fig. 5(d). This can be
visualized as fast π rotations of the state inside the Bloch
sphere, which, together with smaller rotations, here result
in the final reduction of SL(t) seen in Fig. 5(d). Figure 5(d)
also confirms that for the chosen time and coupling strength,
differences between various methods of approximation are
small.

In contrast to gate protection, no initial-state averaging
is performed here [i.e., Eq. (29) is known]. Consequently,
as Fig. 6 shows, the relevant components Fj ≡ (Ft )jj (ω) of
the system modulation spectrum contributing to the spectral
overlap Eq. (20) depend on the initial state �̂(0) via the matrix
� Eq. (15). [We assume an uncorrelated bath, i.e., Gjk(ω) = 0
for j �= k and Gj ≡Gjj (ω).] This influence is clearly visible
in case of a constant (unmodulated, i.e., free) Hamiltonian
(middle column), for which we set ω0 = 2π

t
with the final

t being in the order of the bath correlation time. Cooling
(heating) is achieved by realizing negative (positive) �SL via
maximum negative (positive) spectral overlap, as shown in the
left (right) column of Fig. 6. This is the opposite to system-bath
decoupling, where the goal is to minimize the overlap.

The plots illustrate the role of the energy constraint E:
Increasing E allows one to establish overlap with higher
frequency components of the bath spectrum. This also suggests
that for a bath spectrum with a finite frequency cutoff,
increasing E beyond a certain saturation value will not
lead to further improvement of the optimization (cf. the
general considerations in Appendix A). In the time domain,
increasing E leads to more rapid changes in the physical
Hamiltonian, however, requiring higher resolution of the
numerical treatment. On the contrary, for attempted cooling
(heating) by minimization (maximization) of �SL, a given
E may be too small to lead to negative (positive) �SL. The
obtained �SL may then be understood as “reduced heating”
(“reduced cooling”) as compared to a �SL obtained with an
unmodulated Ĥ0. This is shown in Fig. 7. The figure also
illustrates once more that the �̂(0) dependence of the spectra
shown in Fig. 6 is accompanied by a �̂(0) dependency of the
achievable change �SL for a given bath. For a maximally
mixed state in particular (p = 0.5), the matrix � Eq. (15)
vanishes and with it �SL.

A possibility to achieve negative (positive) �SL by its
minimization (maximization) even for weak modulation (i.e.,
for small E) is to adapt the temperature of the bath such that for
an undriven system Hamiltonian Ĥ0, no change is observed,
�SL = 0, which is a necessary condition for a system-bath
equilibrium. This would require nonunitary system modulation
(e.g., the effect of repeated measurements [51–53]).

VI. SUMMARY AND OUTLOOK

Peculiarity of the approach. In summary, we have con-
sidered a way of finding a time dependence of the system
Hamiltonian over a fixed time interval such that a given system
observable attains a desired value at the end of this interval. The
peculiarity of our approach is that it relies on knowledge of the
bath coupling spectrum and adapts the spectrum of the system
modulation to it. This allows one to adjust the modulation to
band gaps or peaks in the bath coupling spectrum. In contrast
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FIG. 5. (Color online) Evolution within 0 � τ � t for an optimized cooling with initial p = 0.25 of (a) effective and (b) instantaneous
controls (1, red; 2, green; and 3, blue graph shows x, y, and z component), (c) ground-state overlap of the system state, and (d) linear entropy
[upper red, middle green, and lower blue graph shows numerical integration of the time-convolutionless equation [1]), of the Nakajima-Zwanzig
equation, and second-order approximation of the solution as given in Eq. (5), respectively, which are all indistinguishable in (c)] (system-bath
coupling strength κ = 10−2, ω0 = 2π

t
, t = 10 in units of effective bath correlation time, E = 100).

to dynamic decoupling of system and bath, which can be
achieved by shifting the entire system-modulation spectrum
beyond some assumed bath cutoff frequency, an enhancement
of the coupling requires more detailed knowledge on the peak
positions of the bath spectrum. In this way, our approach may
comprise suppression and enhancement of the system-bath
coupling in a unified way for executing more general tasks
than decoherence suppression. The same approach can also be
applied to map out the bath coupling spectrum or dynamics by
measuring the coherence decay rate for different perturbation
sequences [54]. This method is particularly valuable for
extracting information on dynamics induced by a complex
environment that is otherwise inaccessible [55].

As far as the controls are concerned, we here consider
time-continuous modulation of the system Hamiltonian, which
allows for vastly more freedom compared to control that is
restricted to stroboscopic pulses as in DD [5,7,10]. We do
not rely on rapidly changing control fields that are required
to approximate stroboscopic π -pulses. These features allow
efficient optimization under energy constraint. On the other
hand, the generation of a sequence of well-defined pulses may
be preferable experimentally. We may choose the pulse timings
and/or areas as continuous control parameters and optimize

them with respect to a given bath spectrum. Hence, our
approach encompasses both pulsed and continuous modulation
as special cases.

Open issues. An open issue of the approach is the inclusion
of higher orders in the system-bath coupling, which becomes
important for strong or resonant system-bath coupling, so that
a perturbative expansion cannot be applied. This may be the
case especially when this coupling is to be enhanced in order
to achieve a nonunitary operation (e.g., cooling), since in
this case an optimization of the coupling may take us out
of the domain of validity of the approach, which stipulates
weak coupling (for control of strong coupling to a bath;
cf. [56]).

Another concern regards the initial conditions. Here we
have assumed a factorized initial state of the system and
bath. This prevents us from taking into account system-bath
interactions that may have occurred prior to that time. In
particular, if the system is in equilibrium with the bath, their
states are entangled or correlated [20,51].

An immediate problem of both higher order coupling and
system-bath correlations is that their consideration requires
knowledge of the corresponding parameters. It may be difficult
to obtain such data with sufficient experimental precision. This
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FIG. 6. (Color online) Cooling and heating of a TLS by minimization (left; a,b,c) and maximization (right; g,h,i) of the change of linear
entropy for a given bath spectrum (Gj , red) with j = 1,2,3 denoting x, y, and z component. The optimized system spectra (Fj , green) are
shown for an energy constraint E = 102 (left) and E = 103 (right) as contrasted to the unmodulated Hamiltonian Ĥ0 (i.e., for E = 0, middle;
d,e,f ) and different initial states with p = 0.001, 0.05, 0.1, . . ., 0.45, 0.499. All graphs are individually scaled to 1 with respect to their
maximum value; scaling of ω is the same as in Fig. 4.

problem becomes increasingly harder with the dimensionality
of the nonlinear open systems we wish to control (e.g., open
large-spin systems [57] or interacting spin networks [58].
Moreover, its consideration renders the theory cumbersome
and the intuition gained from the spectral overlap approach
presented here is lost. A way out is offered by replacing the
“open” iteration loop in Fig. 2 with a “closed” loop [8], where
the calculation of the score, constraint, and their gradients are

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−10
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unmod.,E = 0
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FIG. 7. (Color online) Change of linear entropy in units of the
system-bath coupling strength obtained by minimization (attempted
cooling) and maximization (attempted heating) of �SL under differ-
ent constraints E = 0,1,100 as a function of the initial p for a bath
as shown in Fig. 6.

based on actual measurements performed on the controlled
system in real time rather than on prior model assumptions (i.e.,
knowledge of bath properties). Such closed loop control would
allow efficient optimization, but at the cost of losing any insight
into the physical mechanisms behind the result obtained.

From a fundamental point of view, it is interesting to derive
analytic bounds of a desired score (under a chosen constraint)
and see if this bound can be achieved by means of some
(global) optimization (i.e., if the bound is tight). The need
for a constraint in such optimization is not obvious if the
task requires coupling enhancement, especially when the bath
spectrum has a single maximum (Appendix A).
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APPENDIX A: BOUND ESTIMATION

Our goal is to give constraint-independent upper and lower
bounds for the maximum change P = Tr(P̂��̂) that can be
achieved with a given bath and P̂ under the condition (10). We
assume that ε, �, and G(ω) are quadratic (d2−1)-dimensional
matrices. If max [TrG(ω)] < ∞, we can estimate P by
using that Tr(AB) � Tr(A)Tr(B) for positive semidefinite
matrices A, B, and applying Hölder’s inequality in the form
of

∫ ∞
−∞ dω |f (ω)g(ω)| � sup{|g(ω)|} ∫ ∞

−∞ dω |f (ω)|. Decom-
posing � = �1 − �2 into positive semidefinite matrices
�i and making use of 1

t

∫ ∞
−∞ dω εt

†(ω)εt (ω) = Î we thus
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get

−P2 � P � P1, Pi = t sup [TrG(ω)] Tr�i . (A1)

This reveals that for given t and G(ω), the bounds Pi depend
on �̂(0) and P̂ via �.

APPENDIX B: NONCOMMUTING SCORE

If Eq. (10) does not hold, the following modifications must
be made. We denote by A± = (A ± A†)/2 the (skew) Hermi-
tian part of a given matrix A = A+ + A− for convenience.
Equation (11) must be replaced with

P̃ = 2Re
∫ t

0
dt1

∫ t1

0
dt2 〈[ĤI(t1),P̂ ]ĤI(t2)〉 (B1)

= P +
∫ t

0
dt1

∫ t1

0
dt2 Tr{[�̂tot(0),P̂ ]ĤI(t2)ĤI(t1)}, (B2)

where 〈·〉 = Tr[�̂tot(0)(·)] and P is defined in Eq. (11).

Equivalently, we can write

P̃ =2
∫ t

0
dt1

∫ t1

0
dt2 Tr[R+(t1,t2)�++R−(t1,t2)�−] (B3)

= P − 2
∫ t

0
dt1

∫ t1

0
dt2 Tr[R†(t1,t2)�−], (B4)

where P is given by Eq. (18) together with Eq. (22). In the
spectral domain, the analogous expression is

P̃ = 2t Re
∫ ∞

−∞
dω Tr[Ft (ω)G(ω)] (B5)

= P − 2t

∫ ∞

−∞
dω Tr[F−(ω)G†(ω)], (B6)

where P is given in Eq. (20) and

G(ω) =
∫ ∞

0
dteiωt �(t), (B7)

is related to Eq. (16) by G(ω) = 2G+(ω).
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[36] T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke,
Rev. Math. Phys. 22, 597 (2010).

[37] R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, and J. T.
Stockburger, Phys. Rev. Lett. 107, 130404 (2011).

[38] G. Katz, D. Gelman, M. A. Ratner, and R. Kosloff, J. Chem.
Phys. 129, 034108 (2008).

[39] M. Kira and S. W. Koch, Phys. Rev. A 78, 022102 (2008).
[40] W. Yang and R.-B. Liu, Phys. Rev. B 78, 085315 (2008).
[41] J. Cai, G. G. Guerreschi, and H. J. Briegel, Phys. Rev. Lett. 104,

220502 (2010).
[42] T. Scholak, F. de Melo, T. Wellens, F. Mintert, and

A. Buchleitner, Phys. Rev. E 83, 021912 (2011).
[43] A. N. Pechen and D. J. Tannor, Phys. Rev. Lett. 106, 120402

(2011).
[44] A. G. Kofman and G. Kurizki, IEEE Trans. Nanotechnology 4,

116 (2005).
[45] G. Gordon and G. Kurizki, New J. Phys. 10, 045005 (2008).
[46] G. Gordon and G. Kurizki, Phys. Rev. A 76, 042310 (2007).
[47] A. G. Kofman and G. Kurizki, Phys. Rev. A 54, R3750 (1996);

A. G. Kofman, G. Kurizki, and T. Opatrný, ibid. 63, 042108
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