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Exploring initial correlations in a Gibbs state by application of external field
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We study the time evolution of trace distance between the quantum states which evolve from two kinds of
initial states, a correlated Gibbs state and its uncorrelated marginal state. We consider the case where a two-level
system linearly and adiabatically interacts with an infinite number of bosons. We find that the trace distance
increases above its initial value for any and all parameter settings when a weak external field is applied to the
two-level system. This indicates that we can explore the existence of initial system-environment correlations with
the breakdown of the contractivity induced by the external field.
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I. INTRODUCTION

Reduced dynamics of open systems plays an important role
in various fields, such as condensed-matter physics, quantum
optics, and quantum electrodynamics [1]. In order to describe
the reduced dynamics, an initial condition is often used
where the relevant system is statistically independent from its
environment. The uncorrelated condition was originally used
to describe NMR phenomena for systems with weak system-
environment interactions [2,3]. Besides the initial condition,
the Markovian approximation has been used to describe
the relaxation phenomena, which gives the so-called Bloch
equation [4]. Completely positive dynamical semigroups have
been devised to ascertain decay properties in the Markovian
process [5], imparting contractivity to the open system
dynamics. While dynamical semigroups became the starting
point for designing quantum information processing [6], as
experimental techniques developed to observe non-Markovian
dynamics [7], theoretical treatments for such behavior [1]
attracted much attention. The projection operator methods
have provided formulations for initially correlated systems
[8–10], but the initial correlations have been frequently ignored
[11].

The effects of initial system-environment correlations
have been discussed regarding quantum measurements
[12–24], complete positivity of dynamical maps [25–31],
non-Markovian dynamics [32–34], linear-response absorption
line shapes [35–37], and general theoretical treatments using
the projection operator methods [38]. Especially relevant
has been the finding that initial system-environment corre-
lations require extension of the conceptual framework of
open system reduced dynamics to include generalization of
contractivity [39].

The breakdown of contractivity by including initial corre-
lations has been examined by evaluating the time evolution
of the trace distance [39,40] for a finite size of environments,
which shows an increase over the initial values. Dajka et al.
compared four different distance measures, i.e., the trace
(which is equivalent to Hilbert-Schmidt distance for the
two-dimensional case), Bures, Hellinger, and quantum Jensen-
Shannon distances, and found that only the trace distance
reveals the distance increase for a system that initially cor-
relates with an infinite size of the environment [41]. However,
the correlated state in [41] requires elaborate preparation by
quantum engineering. As a correlated state, we can consider a

Gibbs state which includes an infinite size of the environment.
When we analyze NMR and ESR experiments or design
quantum information processing for condensed matter, it might
be necessary to find the system-environment correlations that
are inherent to the matter. A recent study on the transient
linear response of a matter system to a suddenly applied weak
external field showed dependence on the initial conditions,
correlated Gibbs state, and a conventional factorized state
where the relevant system and the environment stay in their
equilibrium states [42]. Conversely, one might say that the
transient linear response of a matter system is useful to detect
the initial correlations. However, in [42], it was difficult
to distinguish the effect of initial correlations except for
strong system-environment interactions and for intermediate
temperatures. In addition, within this approach, we cannot
discuss the generalization of contractivity.

In this paper, we evaluate the time evolution of trace
distance for a matter system where a two-level system interacts
with an infinite number of bosons as the environmental
system. We consider that the two-level system linearly and
adiabatically interacts with the environment and that a weak
external field is suddenly applied to the two-level system.
We show that the trace distance between the time evolution
from the Gibbs state ρSE and from an uncorrelated initial
condition clearly exhibits effects of initial correlations as an
increase in the short-time region. As opposed to [42], as an
uncorrelated initial condition, we consider the marginal state of
the Gibbs state, namely, ρS ⊗ ρE with ρS = TrEρSE and ρE =
TrSρSE , where TrS (TrE) is a partial trace over the relevant
(environmental) system. By describing an uncorrelated state
as the marginal state, the relevant system interacts with the
same environmental features as an average. We find that the
trace distance increases in the short-time region even when
the system-environment interaction is weak. This indicates
that the application of a weak external field can cause
information inaccessible at an initial time to flow into the
relevant system from its infinitely sized environment included
in the Gibbs state, and we can monitor it with the trace distance
effectively.

This paper is organized as follows. In Sec. II, we provide
our formulation to obtain the time evolution of the two-level
system which linearly and adiabatically interacts with an
infinite number of bosons under a suddenly applied weak
external field. We evaluate the induced dipole moment of
the two-level system in Sec. III and the trace distance time
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evolution from the two different initial conditions in Sec. IV.
We state our conclusions in Sec. V.

II. FORMULATION

We consider a matter system which consists of a two-level
system and its environment of an infinite number of bosons.
We assume that the system-environment interaction is linear
and adiabatic, which causes the pure dephasing phenomena to
the two-level system. The Hamiltonian of the matter system is
written as

H = HS + HE + HSE, (1)

with

HS = E1|1〉〈1| + E0|0〉〈0|,
HE =

∑
k

h̄ωkb
†
kbk, (2)

HSE =
∑

k

h̄gk(b†k + bk)|1〉〈1|,

where E0 and E1 are the energy of the lower and upper states,
respectively, of the relevant system, ωk is the frequency of the
bosonic bath mode, b

†
k and bk are its creation and annihilation

operators, and gk is the coupling strength. We study the
transient behavior of a two-level system after a sudden
application of an external field. The matter-field-interaction
Hamiltonian is given by

HP (t)=−1

2
�μ · �H θ (t)|1〉〈0|e−iωpt−1

2
�μ∗ · �H θ (t)|0〉〈1|eiωpt ,

(3)
where �μ is the transition dipole moment, �H is the amplitude
of the external field, ωp is the frequency of the external field,
and θ (t) is the step function.

In order to evaluate the time evolution of the induced
dipole moment, we use a canonical transformation in terms
of S ≡ exp[B|1〉〈1|], with B ≡ ∑

k(gk/ωk)(bk − b
†
k), since

we can eliminate the system-bath interaction from the matter
Hamiltonian in the form

H′ = S†HS = H′
S + HE, (4)

H′
S = E′

1|1〉〈1| + E0|0〉〈0|, (5)

with E′
1 ≡ E1 − h̄

∑
k(g2

k/ωk). The matter-field interaction is
transformed as

H′
P (t) = S†HP (t)S

= −1

2
�μ · �Hθ (t)|1〉〈0|e−iωptG(0) + H.c., (6)

with G(0) ≡ eB†
. From Eqs. (4)–(6), the time evolution of the

matter system takes the form

ρ(t) = U (t)ρ(0)U †(t) = Se− i
h̄
H′tV (t)ρ ′(0)V †(t)e

i
h̄
H′t S†,

(7)
where we define the transformed initial condition as ρ ′(0) and

U (t) ≡ T+ exp

[
−

(
i

h̄
Ht +

∫ t

0
dt ′

i

h̄
HP (t ′)

)]
, (8)

V (t) ≡ T+ exp

[
− i

h̄

∫ t

0
Ĥ′

P (t ′)dt ′
]

, (9)

with Ĥ′
P (t) ≡ e

i
h̄
H′tH′

P (t)e− i
h̄
H′t [43]. In the following, we

consider the application of a weak external field, which
enables us to approximate, up to first order, the matter-field
Hamiltonian in V (t) as V (t) ≈ 1 − i

h̄

∫ t

0 Ĥ′
P (t ′)dt ′.

A. Correlated initial condition: Gibbs state

As a correlated initial condition, we consider that the whole
matter system is in a Gibbs state, ρ(0) = ρSE ≡ 1

Z
exp[−βH].

Transforming the correlated initial state, we find ρ ′(0) =
1
Z

exp[−βH′
S] exp[−βHE], with Z = Tr[exp(−βH)], where

Tr is the trace operation for the total system, which gives

ρ ′(0) ≡ S†ρ(0)S = ρ ′
0|0〉〈0| + ρ ′

1|1〉〈1|, (10)

with

ρ ′
0 = e−βE0 ρ̃E

Z′
S

, ρ ′
1 = e−βE′

1 ρ̃E

Z′
S

. (11)

In Eq. (11), we define Z′
S = TrS[exp(−βH′

S)] and ρ̃E =
exp[−βHE]/ZE , with ZE = TrE exp[−βHE]. Note that the
transformation of the correlated state gives a factorized state
of the Gibbs state and the bosonic environment and endows
the two-level system with renormalized energies.

The transformed initial condition gives the elements of the
reduced statistical operator as

[TrE{U (t)ρSEU (t)} ]11 = e−βE′
1

Z′
S

,

(12)

[TrE{U (t)ρSEU (t)}]10 = i �μ · �H
2h̄

e−iωptA(corr)(t),

where we define

A(corr)(t) =
∫ t

0
dt ′e−i�ω(t−t ′)

×
(

e−βE0

Z′
S

�1(t − t ′) − e−βE′
1

Z′
S

�∗(t − t ′)

)
, (13)

with �ω ≡ (E′
1 − E0)/h̄ − ωp. In Eq. (13), we define

�1(t − t ′) ≡ 〈G†(t)G(t ′)〉 = 〈G(t ′)G†(t)〉∗, (14)

with G(t) ≡ e
i
h̄
H′t eB†

e− i
h̄
H′t , and 〈X〉 ≡ TrEρ̃EX for an arbi-

trary operator X.

B. Uncorrelated initial condition: Marginal state

As an uncorrelated initial state, we take a factorized
state, ρ(0) = ρS ⊗ ρE , which is the marginal of ρSE with
ρS = TrEρSE and ρE = TrSρSE . (Note the difference between
ρE and ρ̃E). As shown in Appendix A, the transformation of
the marginal state gives

ρ ′
0 = 1

Z′
S

e−βE0ρE, ρ ′
1 = 1

Z′
S

e−βE′
1G(0)ρEG†(0), (15)
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with ρE = 1
Z′

S

[e−βE0 ρ̃E + e−βE′
1G†(0)ρ̃EG(0)]. The elements

of the reduced statistical operator are obtained as

[TrE{U (t)ρS ⊗ ρEU (t)}]11 = e−βE′
1

Z′
S

,

(16)

[TrE{U (t)ρS ⊗ ρEU (t)}]10 = i �μ · �H
2h̄

e−iωptA(marg)(t),

where we define

A(marg)(t) =
∫ t̃

0
dt̃ ′e−i�ω̃(t̃−t̃ ′)

×
{

e−βE0

Z′
S

[
e−βE0

Z′
S

�̃1(t−t ′)+e−βE′
1

Z′
S

�̃2(t,t ′)

]

− e−βE′
1

Z′
S

[
e−βE0

Z′
S

�̃∗
2 (t,t ′)+e−βE′

1

Z′
S

�̃∗
1 (t−t ′)

]}
,

(17)

with

�2(t,t ′) ≡ 〈G(0)G†(t)G(t ′)G†(0)〉
= 〈G†(0)G(t ′)G†(t)G(0)〉∗. (18)

III. TIME EVOLUTION OF THE INDUCED
DIPOLE MOMENT

We evaluate the induced dipole moment under the applica-
tion of an external field given by

�μ(t) = Tr[( �μ|1〉〈0| + �μ∗|0〉〈1|)ρ(t)], (19)

using the formulation in the previous section. Apart from a
factor of 2 �μ( �μ∗ · �H )/h̄, we define the induced dipole moment
for the correlated initial condition as μ(corr)(t) and for the
uncorrelated marginal initial condition as μ(marg)(t). We obtain

μ(m)(t) = |A(m)(t)| cos[ωpt − φ(m)(t)], (20)

where A(corr)(t) and A(marg)(t) are defined in Eqs. (13) and
(17), respectively; φ(m)(t) is the argument of A(m)(t). Defining
the coupling spectral density as h(ω) ≡ ∑

k g2
k δ(ω − ωk), we

obtain

�1(t) = exp

(
−

∫ ∞

0
dω

h(ω)

ω2

×{[1 + 2n(ω)][1 − cos(ωt)] + i sin(ωt)}
)

(21)

and

�2(t,t ′) = �1(t − t ′)

× exp

{
−

∫ ∞

0
dω

h(ω)

ω2
2i[sin(ωt ′) − sin(ωt)]

}
.

(22)

Let us now set the spectral density to be Ohmic, i.e., h(ω) ≡
sωe−ω/ωc , with the coupling strength s and the cutoff frequency
ωc. In this case, the renormalized energy is given by E′

1 =

φ
(m

)(t~
)

t
~

A
(m

)(t~
)

t
~

m
(m

)(t~
)|

2

t
~

0.01
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FIG. 1. (Color online) Time evolution of the induced dipole
moment for kBT = 10 h̄ω0, s = 1, ωc = ω0/5, and ωp = ω0. Dashed
blue and solid orange lines represent the time evolutions of induced
dipole moment for correlated and marginal initial condition, respec-
tively. Time is scaled as t̃ = ω0t . (a) Time evolution of intensity
of dipole moment |μ(m)( t̃ )|2, (b) the time evolution of amplitude
|A(m)( t̃ )|, and (c) the time evolution of phase φ(m)( t̃ ) with m =
correlated or marginal.

E1 − h̄sωc, and we find

�2(t,t ′) = �1(t − t ′) exp{−2is[arctan(ωc t ′)
− arctan (ωc t)]}. (23)

In Fig. 1, we show the time evolution of the intensity of
the dipole moment under the application of an external field
for kBT = 10 h̄ω0, s = 1, ωc = ω0/5, and ωp = ω0. Time is
scaled as t̃ = ω0t . Dashed blue and solid orange lines represent
the time evolutions of the induced dipole moment for the
correlated and marginal initial conditions, respectively.

We find that the induced dipole moment for the correlated
initial condition approaches a stationary oscillation faster than
for the marginal initial condition. As shown in Figs. 1(b) and
1(c), the phase and amplitude of the induced dipole moment
for the marginal initial condition approach the same phase and
amplitude of the correlated initial condition. We can explain
the long-time behavior using the monotonic time dependence
of the arctan (ωc t) function. The function approaches π/2
with increasing time, which means that �2(t,t ′) approaches
�1(t − t ′) for large t . Comparison between Eqs. (13) and (17)
reveals that the induced dipole moment for the correlated initial
condition agrees with that for marginal initial condition at long
times.

The time evolutions of the induced dipole moment for lower
temperatures of kBT = h̄ω0 and kBT = h̄ω0/5 are shown in
Figs. 2 and 3, respectively. As the temperature decreases,
we find that the induced dipole moment for the correlated
initial condition approaches a stationary oscillation slower,
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FIG. 2. (Color online) Time evolution of the induced dipole
moment for kBT = h̄ω0. Other parameters and evaluated quantities
are the same as in Fig. 1.

and we find a decreased dependence of the time evolution on
the initial condition. In the above evaluation, the stationary
oscillation for the marginal initial condition coincides with
that for the correlated initial condition. This coincidence is
in contrast to the behavior seen with the factorized initial
condition, where the system and environment each stay in
equilibrium, as discussed in [42].

φ
(m

)( t~
)

t
~

A
(m

)(t~
)

t
~

m
(m

)(t~
)|

2

t
~

60

40

20

0 10

1

2

3

4

0

1.50

1.55

1.60

1.65

1.70

20

2010

30

30 3010 20

FIG. 3. (Color online) Time evolution of the induced dipole
moment for kBT = h̄ω0/5. Other parameters and evaluated quantities
are the same as in Fig. 1.

IV. TRACE DISTANCE

We found the difference between the time evolution of the
induced dipole moment from the Gibbs state of the whole
matter system and its marginal state in the previous section.
However, it might be difficult to observe the difference between
these time evolutions clearly. Moreover, we cannot discuss
contractivity from the evaluations in the previous section.

In order to clarify the effects of initial system-environment
correlations on open system dynamics, we need a sensitive
and tractable measure. Since the effects of initial correlations
appear in time evolutions where non-Markovian features
dominate, we can use the trace distance as a measure of
non-Markovianity [44,45]. The trace distance for two quantum
states expressed with trace class operators ρ1 and ρ2 is
defined as D(ρ1,ρ2) = 1

2 Tr|ρ1 − ρ2| [6]. Here we want to
obtain the distance between the reduced dynamics of the
two-level system for two kinds of initial conditions: the Gibbs
state ρ1(0) = ρSE , as a correlated initial condition, and its
marginal state ρ2(0) = ρS ⊗ ρE , as an uncorrelated initial
condition. When the trace distance increases above an initial
value, namely, D(ρ1(t),ρ2(t)) > D(ρ1(0),ρ2(0)), we deduce
that information, which is inaccessible at the initial time,
flows into the relevant system through system-environment
correlations. Moreover, this increase indicates a breakdown of
the contractivity [39].

For our model, we obtain the trace distance in the form

D(TrE[U (t)ρSEU †(t)],TrE[U (t)ρS ⊗ ρEU †(t)])

=
√

|M11|2 + |M10|2, (24)

with M = TrE[U (t)ρSEU †(t)] − TrE[U (t)ρS ⊗ ρEU †(t)].
Using Eqs. (12) and Eq. (16), we obtain the trace distance

as

D(TrE[UtρSEU
†
t ],TrE[UtρS ⊗ ρEU

†
t ]) = |M10|. (25)

We show the time evolution of the trace distance, apart from

the dimensionless quantity �μ· �H
2h̄ω0

, for Ohmic spectral density in
Fig. 4 by setting ωc = ω0/5 and ωp = ω0. Here we scaled the
time variable as t̃ (≡ ω0t).

Figures 4(a)–4(c) correspond to the trace distance time
evolution at various temperatures: kBT = 10 h̄ω0 [Fig. 4(a)],
kBT = h̄ω0 [Fig. 4(b)], and kBT = h̄ω0/5 [Fig. 4(c)]. In each
plot, we vary s as 1, 0.1, and 0.05. We find in Fig. 4(a) that
the trace distance increases in the short-time region, which
signifies the breakdown of contractivity for each value of s.
In Fig. 4(a), we also find the trace distances approach zero at
long times, which arises from the fact that the arctan (ωc t)
function in Eq. (23) monotonically approaches π/2 with
increasing time and �2(t,t ′) approaches �1(t − t ′) for large
t . For lower-temperature cases, as shown in Figs. 4(b) and
4(c), we find qualitatively similar behavior as in Fig. 4(a).
Comparing Figs. 4(a)–4(c), we find that the peak value of the
trace distance becomes larger for increasing values of s and at
intermediate temperatures.

In the above evaluations, we find that the reduced dynamics
of the matter system under a weak external field shows a
breakdown of the contractivity for any parameter setting,
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FIG. 4. (Color online) Time evolution of the trace distance for
ωc = ω0/5 and ωp = ω0 with changing temperature as (a) kBT =
10 h̄ω0, (b) kBT = h̄ω0, and (c) kBT = h̄ω0/5. In each plot, black,
red (light gray), and blue (dark gray) lines correspond to the cases of
s = 1, 0.1, and 0.05, respectively.

which allows us a method to monitor the initial system-
environment correlations in the Gibbs state.

V. CONCLUSIONS

We have studied the time evolution of a matter system
which is composed of a two-level system and a bosonic
environment of infinite size under a suddenly applied weak
external field. Assuming the system-environment interaction
to be linear and adiabatic, we evaluated the induced dipole
moment for two kinds of initial conditions: the correlated
Gibbs state and an uncorrelated marginal state. We found that
the time evolution of the induced dipole moment depends on
the initial condition. However, the difference depends on the
parameter settings and, under certain settings, may be difficult
to observe. By evaluating the trace distance in the reduced
dynamics for these two initial conditions, we found that we
can overcome the parameter dependence. The trace distance
clearly increases in the short-time region for cases of arbitrary
system-environment interactions and temperatures. In order
to obtain the increases, application of the weak external field

plays an essential role. This can be seen from the fact that the
trace distance does not change in the absence of the field, as
shown in Appendix B. This indicates that we can effectively
monitor the initial system-environment correlations in the
Gibbs state with the breakdown of the contractivity induced
by the weak external field.

APPENDIX A: DERIVATION OF EQUATION (15)

In this appendix, we explain how to obtain the marginal
initial state

ρ(0) = ρS ⊗ ρE (A1)

with ρS = TrEρSE and ρE = TrSρSE for ρSE(=
1
Z

exp[−βH]). The correlated state ρSE is rewritten as

ρSE = 1

Z
exp[−βH0]T+ exp

[
−

∫ β

0
dλeλH0HSEe−λH0

]

= 1

Z

(
e−βE0 exp[−βHE]|0〉〈0| + e−βE1 exp[−βHE]

× T+ exp

[
−

∑
k

h̄gk

∫ β

0
dλ(b†ke

h̄λωk

+ bke
−h̄λωk )

]
|1〉〈1|

)
, (A2)

where we define H0 ≡ HS + HE and use the T+ operator to
order λ from right to left. Using the relation as

exp[−βHE] T+ exp

[
−

∑
k

h̄gk

∫ β

0
dλ(b†ke

h̄λωk + bke
−h̄λωk )

]

= exp

[
−β

(
HE +

∑
k

h̄gk(b†k + bk)

)]

= G†(0) exp

[
−β

(
HE − h̄

∑
k

g2
k

ωk

)]
G(0), (A3)

we obtain

ρSE = 1

Z′
S

[e−βE0 ρ̃E|0〉〈0| + e−βE′
1G†(0)ρ̃EG(0)|1〉〈1|],

(A4)
which gives the partial trace operation on ρSE over the system
and the environment as

ρS = 1

Z′
S

(e−βE0 |0〉〈0| + e−βE′
1 |1〉〈1|), (A5)

ρE = 1

Z′
S

[e−βE0 ρ̃E + e−βE′
1G†(0)ρ̃EG(0)]. (A6)

From these, we obtain the marginal state as

ρS ⊗ ρE = 1

Z′
S

(e−βE0ρE|0〉〈0| + e−βE′
1ρE|1〉〈1|), (A7)
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which is transformed into

(ρS ⊗ ρE)′ = ρ ′
0|0〉〈0| + ρ ′

1|1〉〈1|
= 1

Z′
S

[e−βE0ρE |0〉〈0|

+ e−βE′
1G(0)ρEG†(0)|1〉〈1|]. (A8)

Equation (A8) gives Eq. (15).

APPENDIX B: THE TIME EVOLUTION OF THE TRACE
DISTANCE IN THE ABSENCE OF THE EXTERNAL FIELD

In the absence of the external field, the time evolu-
tion of the trace distance between the reduced system
is given by D(TrE[W (t)ρSEW †(t)],TrE[W (t)ρS ⊗ ρEW †(t)]),
with W (t) = exp[− i

h̄
Ht], where H is the Hamiltonian of the

matter system defined in Eq. (1). Since the Gibbs state com-
mutes with the matter Hamiltonian, we have W (t)ρSEW †(t) =
ρSE . For the marginal state, using Eq. (A8) and the canonical
transformation, we obtain

TrE[W (t)ρS ⊗ ρEW †(t)]

= TrE[e− i
h̄
HEtρ ′

0e
i
h̄
HEt |0〉〈0|

+G†(0)e− i
h̄
HEtρ ′

1e
i
h̄
HEtG(0)|1〉〈1|]

= 1

Z′
S

(e−βE0ρE|0〉〈0| + e−βE′
1ρE|1〉〈1|)

= ρS ⊗ ρE. (B1)

From these, we find that the trace distance does not evolve in
time in the absence of the external field.
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