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Cooling in the single-photon strong-coupling regime of cavity optomechanics
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In this Rapid Communication we discuss how red-sideband cooling is modified in the single-photon strong-
coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical
oscillator by more than its zero-point uncertainty. Using Fermi’s golden rule we calculate the transition rates
induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit
we find multiple-phonon cooling resonances for strong single-photon coupling that lead to nonthermal steady
states including the possibility of phonon antibunching. Our study generalizes the standard linear cooling theory.

DOI: 10.1103/PhysRevA.85.051803 PACS number(s): 42.50.Wk, 42.65.−k, 07.10.Cm, 37.30.+i

Introduction. In optomechanical systems mechanical de-
grees of freedom are coupled to modes of the electromagnetic
field inside an optical or microwave resonator [1,2]. Possible
applications include ultrasensitive sensing of masses, forces,
and electromagnetic fields [3], transducing quantum informa-
tion between different parts of quantum networks [4], and
exploring decoherence at larger mass and length scales [5].

For these applications it is very important to minimize
the influence of thermal fluctuations. This is why a large
part of current experimental efforts is directed at cooling the
mechanical degrees of freedom. Recently, the quantum ground
state of mechanical motion was achieved for mesoscopic
oscillators [6–8] and the zero-point motion was detected by
observing an asymmetry between phonon absorption and
emission rates, originating from the fact that an oscillator
in the quantum ground state cannot emit but only absorb
energy [9,10].

In most optomechanical setups the position of the me-
chanical oscillator linearly modulates the cavity frequency.
While the optomechanical coupling on the single-photon level
is usually much smaller than the cavity linewidth, coupling
between the fluctuations of the cavity field and the mechanical
position can be made appreciable using a strong optical drive.
For this situation a quantum theory of red-sideband cooling
has been developed in Refs. [11,12].

Several experiments [7,9,13,14] are currently approaching
the regime where the presence of a single photon displaces the
mechanical oscillator by more than its zero-point uncertainty.
Going beyond early work [15,16] novel effects in this regime
have recently been predicted, including mechanically induced
cavity resonances [17,18], multiple mechanical sidebands
[17], photon antibunching [18], non-Gaussian [17,19] or
nonclassical [20] mechanical steady states, and scattering [21]
of and interferometry [22] with single photons. However,
cooling of the mechanical oscillator in the regime of nonlinear
strong coupling has not been discussed in the literature.

In this Rapid Communication we study how the weak-
coupling cooling theory is modified in the single-photon
strong-coupling regime. Using Fermi’s golden rule we cal-
culate the transition rates caused by the coupling to the optical
field without linearizing the optomechanical interaction. In
the resolved-sideband limit we find cooling resonances if the
cavity is driven on one of the several mechanical sidebands. In

contrast to the weak-coupling regime the phonon transition
rates do not obey detailed balance. We find steady states
with nonthermal phonon number statistics including phonon
antibunching.

Our study generalizes the standard theory of red-sideband
cooling [11,12] to the regime of strong optomechanical
coupling. In the literature nonlinear cooling has been discussed
in the context of trapped ions outside the Lamb-Dicke regime
[23] and of optomechancial systems where the cavity is
coupled to the position squared of the oscillator [24].

Model. We consider the standard model of optomechanical
systems where the position of a mechanical oscillator, x̂ =
xZPF(b̂ + b̂†), is parametrically coupled to an optical cavity
mode â. The Hamiltonian reads

Ĥ0 = h̄ωRâ†â + h̄ωMb̂†b̂ + h̄gâ†â(b̂ + b̂†), (1)

where ωR is the resonator frequency, ωM is the mechanical
frequency, and g = ω′

RxZPF is the optomechanical coupling.
xZPF = √

h̄/(2MωM ) is the zero-point uncertainty, M is the
mass of the mechanical oscillator, and ω′

R = ∂ωR

∂x
is the

derivative of the resonator energy with respect to the oscillator
position x. â and b̂ are bosonic annihilation operators for the
cavity mode and the mechanical oscillator, respectively.

In order to include drive and decay we use standard input-
output theory [25]. In a frame rotating at the frequency of the
optical drive, the nonlinear quantum Langevin equations read

˙̂a = +i�â − κ

2
â − ig(b̂† + b̂)â + √

κ âin, (2)

˙̂b = −iωMb̂ − γ

2
b̂ − igâ†â + √

γ b̂in, (3)

where � = ωL − ωR is the detuning between laser ωL and
resonator frequency ωR , and γ and κ are the mechanical and
cavity damping rates. The cavity input âin = āin + ξ̂ is the sum
of a coherent amplitude āin and a vacuum noise operator ξ̂ sat-
isfying 〈ξ̂ (t)ξ̂ †(t ′)〉 = δ(t − t ′) and 〈ξ̂ †(t)ξ̂ (t ′)〉 = 0. Finally,
we assume that the mechanical bath is Markovian and has
a temperature T , i.e., 〈b̂in(t)b̂†in(t ′)〉 = (nth + 1)δ(t − t ′) and
〈b̂†in(t)b̂in(t ′)〉 = nthδ(t − t ′) with n−1

th = eh̄ωM/kBT − 1.
Multiple cooling resonances. We are interested in the

influence of a weakly driven, but strongly coupled optical
field on the mechanical oscillator. We calculate the mechanical
cooling and amplification rates induced by the optical drive
using Fermi’s golden rule and write down a set of rate equations
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for the mechanical oscillator

Ṗn = −γ nth(n + 1)Pn − γ (nth + 1)nPn

+ γ nthnPn−1 + γ (nth + 1)(n + 1)Pn+1

−
∑
m�=n

	n→mPn +
∑
m�=n

	m→nPm, (4)

where Pn is the probability of the oscillator to be in the state
with n phonons. The terms in the first two lines are due to the
coupling of the mechanical oscillator to its thermal bath with
rate γ and thermal phonon number nth. The sums in the last
line are the terms caused by the coupling to the cavity field.

In the frame rotating at the drive frequency ωL the drive
is described by the Hamiltonian Ĥ ′

1 = h̄
(â + â†) with 
 =√
κ|āin|. We seek the transition rates 	n→m�=n from the state

|n〉 with n phonons to the state |m〉 with m phonons induced
by the optical drive. We work to second order in 
 to obtain
a Fermi golden rule result [25] valid for 
 � κ where cavity
states with more than one photon can be neglected. This gives

	n→m�=n = 1

h̄2t

∫ t

0
dτ1

∫ t

0
dτ2〈n|〈i|Ĥ ′

1(τ1)|m〉〈m|Ĥ ′
1(τ2)|i〉|n〉

= κ
2

t

∫ t

0
dτ1

∫ t

0
dτ2

∫ τ1

−∞
ds1

∫ τ2

−∞
ds2

× e−(κ/2−i�̃)(τ1−s1)e−(κ/2+i�̃)(τ2−s2)

×〈i|ξ̂ (s1)ξ̂ †(s2)|i〉〈n|eX̂(τ1)e−X̂(s1)|m〉
× 〈m|eX̂(s2)e−X̂(τ2)|n〉, (5)

where �̃ = � + g2/ωM , |i〉 is the vacuum state of the optical
bath, and we used the solution to Eq. (2) in the absence of
an optical drive, as derived in the Appendix where X̂(t) is
defined as well.

Using a resolution of unity we rewrite the matrix element
〈n|eX̂(τ1)e−X̂(s1)|m〉 = ∑

k〈n|eX̂(τ1)|k〉〈k|e−X̂(s1)|m〉. For large
mechanical quality factors we only need to consider the free
mechanical evolution 〈n|eX̂(τ1)|k〉 = ei(n−k)ωMτ1Zn,k where we
have evaluated the matrix elements to be Zn,k =
(−1)(n−k+|n−k|)/2e−λ2/2λ|n−k|

√
min(n,k)!
max(n,k)!L

(|n−k|)
min(n,k)(λ

2), with the

associated Laguerre polynomials L(α)
n (x) [26] and the coupling

strength λ = g/ωM . Finally, we obtain the rates

	n→m�=n = κ
2

∣∣∣∣∣
∞∑

k=0

Zn,kZm,k

κ/2 − i[(n − k)ωM + �̃]

∣∣∣∣∣
2

. (6)

In the resolved-sideband limit ωM 
 κ only terms with k =
n − l � 0 contribute significantly for detunings �̃ ≈ −lωM ,

	n→m�=n = κ
2Z2
n,n−lZ

2
n−l,m

(κ/2)2 + (lωM + �̃)2
. (7)

Equations (6) and (7) are our main result from which we
obtain a clear physical picture of how an incident photon is
inelastically scattered off the cavity and changes the state of
the mechanical oscillator from n to m phonons. In the resolved-
sideband limit ωM 
 κ and for a drive detuned by �̃ = −lωM ,
the process of destroying l phonons when creating the cavity
photon is enhanced by the cavity susceptibility. The amplitude
for this process is proportional to the matrix element Zn,n−l =∫

dx ϕ∗
n−l(x − x0)ϕn(x), where ϕm(x) are the eigenfunctions

of the simple harmonic oscillator and x0 = −2xZPFg/ωM is
the displacement caused by a single photon. That means that
the matrix element is given by an overlap integral between
displaced harmonic oscillator wave functions in accordance
with the Franck-Condon principle. As the photon leaves the
cavity it induces a transition in the mechanical oscillator from
n − l to m phonons. This process is not resonantly enhanced
as the photon decays into the continuum of modes in free
space. This is why its amplitude is just given by the matrix
element Zn−l,m which is a function of the ratio λ2 = g2/ω2

M ,
i.e. the strength of the optomechanical interaction g relative
to the frequency of the mechanical oscillator ωM , but does
not depend on the drive detuning �. The photon in the output
field has an energy h̄ωL + (n − m)h̄ωM , i.e., it carries away
the energy of n − m phonons. In the nonresolved sideband
limit ωM � κ processes with different intermediate phonon
number n − k �= l contribute, and their amplitudes interfere
according to Eq. (6).

In Fig. 1 we plot the steady-state phonon number n̄ = 〈b̂†b̂〉
as a function of detuning � = ωL − ωR for different coupling
strengths g/ωM (a) and sideband parameters ωM/κ (b). In (a)
we observe that for weak drive and in the resolved-sideband
limit ωM 
 κ several cooling resonances appear when the
detuning matches �̃ = −lωM with l integer. For smaller
sideband parameters (b) we notice that resonances merge.

Validity of the rate equation approach. To investigate the
validity of the set of rate equations (4) we solve numerically
the quantum master equation

�̇=− i

h̄
[Ĥ ′,�] +κD[â]� + γ (1 + nth)D[b̂]� +γ nthD[b̂†]�,

(8)

with Ĥ ′ = Ĥ ′
0 + Ĥ ′

1, where D[ô]� = ô�ô† − (ô†ô� + �ô†ô)/
2 is the standard dissipator in Lindblad form and Ĥ ′

0 is the
Hamiltonian (1) in the frame rotating at the drive frequency ωL.

In Fig. 1 we plot the master equation (8) results alongside
with those from the set of rate equations (4). The agreement
between the two is excellent. The small deviations at detunings
� ≈ 0 between the rate equation and master equation results
stem from the n-photon resonances at � = −ng2/ωM [17].
In their vicinity off-diagonal elements of the density matrix
cannot be neglected and the rate equation approach fails.
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FIG. 1. (Color online) Multiple cooling resonances. Steady-state
phonon number n̄ = 〈b̂†b̂〉 (a) for g/ωM = 0.5 (red solid), g/ωM =
0.25 (green dashed) and g/ωM = 0.1 (blue dash-dotted) as well as
ωM/κ = 4 and (b) for ωM/κ = 0.5 (red solid), ωM/κ = 2 (green
dashed) and ωM/κ = 4 (blue dash-dotted) as well as g/ωM = 0.5.
Results from the set of rate equations (4) are shown as lines and those
from the quantum master equation (8) as dots. The other parameters
are ωM/γ = 1000, nth = 1, and 
/κ = 0.2.
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FIG. 2. (Color online) Validity of the rate equation approach and

phonon antibunching. (a) Mean photon number 〈â†â〉 (blue crosses)
and mean phonon number n̄ = 〈b̂†b̂〉 (red solid) as well as (b) phonon
number fluctuations F = 〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2 as a function of the drive
strength 
 for a detuning �̃/ωM = −2. Results from the set of rate
equations (4) are shown as lines and those from the quantum master
equation (8) are shown as dots and crosses. The other parameters are
ωM/κ = 4, g/ωM = 0.5, and ωM/γ = 1000.

In Fig. 2(a) we plot the mean photon and phonon number,
〈â†â〉 and n̄ = 〈b̂†b̂〉, as a function of the drive strength 
.
Driving on the second red sideband, i.e., �̃/ωM = −2, we
find that for small 
/κ the phonon number n̄ decreases
quadratically in the drive strength 
 as expected. For large

/κ the set of rate equations (4) predicts a finite minimal
phonon number determined by the optically induced rates (6).
However, in Fig. 2(a) we find that as the photon number 〈â†â〉
increases with stronger drive 
, the master equation result (8)
starts to deviate from solution of the rate equations (4).

Nonthermal steady states. The rate equations (4) in general
do not obey detailed balance and so their steady state will not
be a thermal state. In Fig. 3 we plot the mean phonon number
n̄ = 〈b̂†b̂〉 and the number fluctuations F = 〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2

as a function of detuning �. We note that the cooling power
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FIG. 3. (Color online) Nonthermal steady states. (Left) Phonon
number n̄ = 〈b̂†b̂〉 (top) and phonon number fluctuations F =
〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2 (bottom) as a function of detuning � for nth = 1
(solid red) and nth = 10 (dashed blue). (Right) Phonon number n̄

(top) and phonon number fluctuations F (bottom) as a function of the
thermal phonon number nth for �̃ = −ωM (solid red) and �̃ = −2ωM

(dashed blue). The other parameters are ωM/κ = 4, g/ωM = 0.5,

/κ = 0.2, and ωM/γ = 1000. Thin black lines show results of the
linear model (11) and (12) for 
λ/κ = 0.2.

n̄/nth of the various cooling resonances depends on the thermal
phonon number nth. This is a consequence of the nonlinear
dependence of the rates (6) on the phonon number. Close to
the cooling resonances the mechanical state clearly deviates
from a thermal state whose number fluctuations are given by
F = 2. We find both reduced F < 2 and enhanced number
fluctuations F > 2. In Fig. 3 we also plot the mean phonon
number n̄ and number fluctuations F as a function of the
thermal phonon number nth for �̃ = −ωM and �̃ = −2ωM .
The mean phonon number n̄ is a nonlinear function of the
thermal phonon number nth and the fluctuations F can change
from F < 2 to F > 2 as a function of nth. In Fig. 2(b) we find
that even phonon antibunching, i.e., F < 1, can occur.

To understand this behavior let us look at the properties of
the rate equations in more detail. For example, the resonant
one-phonon cooling 	n→n−1 and amplification 	n→n+1 rates
in the resolved-sideband limit ωM 
 κ (7) read

	n→n−1

n	1→0
=

[
L

(1)
n−1(λ2)L(0)

n−1(λ2)
]2

n2
(9)

and

	n→n+1

(n + 1)	0→1
=

[
L(1)

n (λ2)L(0)
n+1(λ2)

]2

(n + 1)2(1 − λ2)
. (10)

In the special case of weak coupling λ � 1 where one-
phonon processes are most important, since higher-order
processes are suppressed by a larger power of λ, we obtain

	n→n−1 = κ
2λ2n

(κ/2)2 + (�̃ + ωM )2
(11)

and

	n→n+1 = κ
2λ2(n + 1)

(κ/2)2 + (�̃ − ωM )2
. (12)

That means we recover the standard cooling theory [11,12]
where the rates are linear in n and n + 1, respectively, i.e., one
can write them as 	n→n−1 = n	↓ and 	n→n+1 = (n + 1)	↑.
In this case 	↓ and 	↑ simply renormalize the thermal mean
phonon number n̄ = (γ nth + 	↑)/(γ + 	↓ − 	↑). Thus, the
steady state is a thermal state with F = 2 for all detunings �

and the mean phonon number n̄ is linear in the thermal phonon
number nth. In Fig. 3 we plot the mean phonon number n̄ and
the phonon number fluctuations F for the weak-coupling limit
λ � 1. We find a single cooling resonance at �̃ = −ωM and
F = 2, indicative of a thermal state.

In general, the normalized rates (9) and (10) differ from
unity, and multiple-phonon processes 	n→m with |n − m| > 1
are important. If only a few phonons remain, further insight
can be obtained. For example, in Fig. 2(b) for 
/κ ≈ 2, only
the states with zero, one, and two phonons are important. The
two-phonon cooling process 	2→0 reduces the occupation in
the two-phonon state leading to phonon antibunching F < 1
similar to the case studied in Ref. [24]. In contrast, in Fig. 3
for nth = 1 and �̃ = −ωM , we have 	2→1/(2	1→0) < 1, i.e.,
relative to a thermal state the one-phonon state is depleted
faster than the two-phonon state which results in F > 2.

Detection. The multiple-phonon cooling and amplification
processes lead to multiple mechanical sidebands in the optical
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output spectrum [17]. This is not a proof of nonthermal states
by itself, as it can also occur, e.g., in the case of large me-
chanical amplitude motion at weak optomechanical coupling
[27]. The mean phonon number n̄ and the phonon number
fluctuations F can be obtained from the Wigner function of
the mechanical oscillator. Schemes to reconstruct the Wigner
function experimentally rely on back-action evasion [28],
coupling to a two-level system [29,30], or the time dependence
induced by short optical pulses [31].
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Appendix. To calculate the optically induced transition
rates between different phonon Fock states (5), we need an

expression for the optical field in the absence of an optical
drive. The formal solution to Eq. (2) is

â(t) = √
κ

∫ t

−∞
dτ K̂(t,τ )âin(τ ), (A1)

where K̂(t,τ )=e−(κ/2−i�)(t−τ )T [exp{−ig
∫ t

τ
ds[b̂(s)+b̂†(s)]}]

and T is the time-ordering operator. In the case of no
optical drive, āin = 0, the operator identity â†â = 0 holds,
such that b̂(t ′) = e−iωM (t ′−t)b̂(t) for times |t ′ − t | � (γ nth)−1.
This means that for times (t − τ ) � (γ nth)−1, we can express
the time-ordered exponential above as eig2(t−τ )/ωM eX̂(t)e−X̂(τ ),
where X̂(t) = g[b̂(t) − b̂†(t)]/ωM . This follows from using
the standard commutation relations for the bosonic operator b̂.
Thus, in the limit γ nth � κ , we find

â(t) = √
κ

∫ t

−∞
dτ e−(κ/2−i�̃)(t−τ )eX̂(t)e−X̂(τ )ξ̂ (τ ), (A2)

where �̃ = � + g2/ωM . This expression can also be derived
using the polaron transform [17].
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