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Searching for non-Abelian phases in the Bose-Einstein condensate of dysprosium
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The recently realized Bose-Einstein condensate of dysprosium will become a spin-8 spinor condensate at low
magnetic fields. In such a high-spin condensate, many phases with different symmetries can exist. Among them the
most interesting ones are those with non-Abelian point group symmetry. In this Rapid Communication we discuss
the variety of symmetry phases in a spin-8 condensate resulting from numerical solutions of the Hamiltonian.
We show that these symmetries can be determined uniquely from the measurements of density population on
each spin component in an ultralow magnetic field, together with the measurements of the collective modes in
the zero-field limit. This method can also be applied to Bose-Einstein condensates of other magnetic atoms, such
as Cr and Er.
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Recently Lev’s group has successfully realized the Bose-
Einstein condensate of dysprosium (Dy) [1]. Dy is a complex
lanthanide atom with a total of 10 f -shell electrons. It has
electron spin S = 2, orbital angular momentum L = 6, and
nuclear spin I = 0. The total spin J = L + S becomes J = 8
due to the Hund’s rule. The spin of Dy can be easily polarized
by an external magnetic field, which will then give rise to
strong magnetic dipolar interactions. However, it is technically
possible to reduce the magnetic fields to very low values so
that the system is essentially depolarized, as recently achieved
in the Cr condensate [2]. In this limit, the spin Hamiltonian
has rotational and gauge symmetry, G = SO(3) × U(1). Bose
condensation breaks this symmetry. The broken symmetry
state has the symmetry of a subgroup of G, which can be
either Abelian or non-Abelian. These two types of states are
known to have very different properties. For example, while
the line defects of Abelian states with different orientation
can pass through each other, such a passage is “topologically
obstructed” in non-Abelian states, in the sense that a new line
defect must be nucleated, connecting the two original ones
after they pass through each other [5]. In condensed-matter
physics, however, there are very few examples of non-Abelian
states. Biaxial nematic liquid crystal probably is the only
example [5]. Recently, it has been recognized that cyclic
state of spin S = 2 condensate [3] is a non-Abelian state [4],
and it is expected that the possibilities of non-Abelian states
will increase as S increases. High-spin Bose condensates
are therefore the most promising systems for finding more
examples of non-Abelian states.

At the zero-field limit, the actual spin ground state of
Dy is determined by nine scattering lengths that are not
yet known. It would be complicated to construct a phase
diagram with all these unknown parameters. In this Rapid
Communication, we focus on the question of non-Abelian
phases of Dy condensate and the simplest scheme to detect
them. While the non-Abelian nature of the order parameter is
fully manifested in the resulting structure after its line defects
cross each other [5], such experiments are too involved in
a cold atom setup at present. In this work, we propose a
much simpler method to determine the symmetry of a spinor
condensate. It combines the measurements of spin populations
and the Bogoliubov spectrum. The former can be achieved

with Stern-Gerlach technique while the later can be measured
by Bragg spectroscopy. Both techniques are widely used in
cold-atom experiments today.

Model. Let ψ̂m be the bosonic operator for each spin
component m, (m = −J, . . . ,J ), the Hamiltonian for Dy
(J = 8) is Ĥ = Ĥ0 + Ĥint [6,7], and

Ĥ0 =
∫

d3r
J∑

m=−J

ψ̂†
m(r)

(
−h̄2∇2

2M
− BgJ μBm

)
ψ̂m(r), (1)

Ĥint =
∫

d3r
2J∑

j=0,2,4,...

gj

j∑
m=−j

Â
†
jm(r)Âjm(r), (2)

where gj = 2πh̄2aj/M and aj is the s-wave scattering
length between a pair of bosons with total spin j , described
by the local pair operator Âjm(r) = ∑

m1
〈j,m|J,m1,J,m −

m1〉ψm1 (r)ψm−m1 (r). Bose statistics, however, implies j =
0,2, . . . ,16 only. B is a tiny magnetic field along ẑ, μB is
the Bohr magneton, and gJ = 5/4 is the Landé g factor for
Dy [8].

The energy of a condensate 〈ψm,k=0〉 = √
n0ϕm is

E =
2J∑

j=0,2,...

gjn
2
0

∑
m

|Ajm|2 − n0BgJ μB

∑
m

m|ϕm|2, (3)

whereAjm = ∑
m1

〈j,m|J,m1,J,m − m1〉ϕm1ϕm−m1 , while n0

represents the total density. While there are studies on the
scattering of two Dy atoms in a magnetic field [9,10], many
scattering lengths aj are not known at present. We therefore
perform a search of the ground state over a vast range of gj (j =
0,2, . . . ,2J ) using the imaginary time evolution method. We
have also studied the Bogoliubov spectra of these ground states
to ensure their stability, which turns out to be very useful for
determining their symmetries.

Majorana representation. A very useful way to describe
the condensate wave function {ϕm} is to use the Majorana
representation of spin states [11]. Recently, many authors
have applied this method to study Bose condensate with
high spins [4,12,13]. This representation is most conve-
niently described in terms of Schwinger bosons [13]. This
method presents the spin operators in terms of bosons â

and b̂, such that Ĵx = (â†b̂ + b̂†â)/2, Ĵy = i(â†b̂ − b̂†â)/2,
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and Ĵz = (â†â − b̂†b̂)/2. A general normalized spin state
can be written as |ϕ〉 = ∑J

m=−J ϕm|J,m〉, where |J,m〉 =
[(J + m)!(J − m)!]−1/2â†J+mb̂†J−m|0〉. Since the sum in |ϕ〉
is a homogenous polynomial of â† and b̂† of degree 2J , it can
be factorized as

|ϕ〉 =
J∑

m=−J

ϕm|J,m〉 = 1

N

2J∏
i=1

(uiâ
† + vi b̂

†)|0〉, (4)

where N is a normalization factor to ensure all |ui |2 + |vi |2 =
1. Absorbing the overall phase factor of the product into N ,
we can write ui = cos(θi/2) and vi = eiφi sin(θi/2), so that
the spinor (ui,vi) can be represented as a point on a unit
sphere denoted by a unit vector n̂i with polar angle (θi,φi).
It is straightforward to show that (i) under a spin rotation, n̂i

rotates as a Cartestian vector and (ii) under time reversal,
(ui,vi) → (v∗

i ,−u∗
i ), which implies n̂i = −n̂i . The 2J + 1

complex numbers {ϕm} (with totally 4J + 1 real variables
because of normalization) are now replaced by 2J unit vectors
n̂i plus an overall phase factor.

Symmetry-allowed states. If U is a rotational symmetry
operation, it means the state returns to itself up to an
overall phase after being operated on by U , that is, ϕm →∑

m′ Umm′ϕm′ = eiαϕm. Since the symmetry group G of Ĥ

is SO(3) × U(1), the symmetry of the ground state will be
described by one of the normal point groups E, Cn, Dn,
T , O, or Y [5]. E is the identity, corresponding to states
with no particular symmetry. Cn denotes an n-fold rotational
symmetry along certain axis. Dn contains one n-fold Cn axis
plus n two-fold C2 axes perpendicular to Cn. T , O, and
Y denote tetrahedral, octahedral, and isocahedral symmetry
respectively. The following properties are useful for our later
discussions.

(i) If the vectors {n̂i} come in (n,−n) pairs, the state is
invariant under time reversal.

(ii) A ferromagnetic state (by which we mean 〈Ĵ〉 	= 0)
breaks time reversal symmetry and can have only one Cn axis.
States with more than one Cn axis such as those with Dn, T , O,
and Y symmetry cannot be ferromagnetic, even though they
may break time reversal symmetry.

Now let us analyze all the symmetry states:
(1) E: These states have no special symmetry. They are not

found as ground states in our energy minimization.
(2) Cn: Dy has J = 8, hence 16 points n̂i on the unit sphere.

So we either have n � 16 or n = ∞. The Cn groups can be
further classified into Cnv , Cnh, and S2n [14]. We have found
several examples of Cnv symmetry. For instance, a C5v state is
shown in Fig. 1(a), in which all 16 points form three pentagons
and one point sitting at the south pole. However, examples with
only Cnh or S2n symmetry are not found [15]. We also get states
with C∞ symmetry, with q points (q < 8) collapsing into one
and other 16 − q points into the antipodal point. The case of
C∞ symmetry with q = 1 is shown in Fig. 1(b). All the states
with Cnv and C∞ symmetry break time reversal symmetry and
have ferromagnetic order.

(3) Dn: In this case, either n = ∞ or n is a finite integer such
that n � 16 for even n, and n � 7 for odd n [16]. Dn symmetry
group can be further classified into Dnd and Dnh [14]. In
Figs. 1(c) and 1(d), we show two examples of Dnd . D8d

(a) C5v (b) C∞ (c) D8d

(d) D4d (e) D14h (f) Td

(g) Td (h) T (i) Oh

FIG. 1. (Color online) Majorana representations of spin-8 states
with different symmetries. Their descriptions are given in the discus-
sion of symmetry-allowed states. The point with polar angle (θi,φi) on
the unit sphere represents the spinor (ui,vi) = (cos θi/2,eiφi sin θi/2).

consists of two octagons, one in the northern hemisphere
and the other in the southern hemisphere. D4d consists of
four squares, two in the northern hemisphere and the other
two in the southern hemisphere. In Fig. 1(e), we show an
example of Dnh. For D14h, 14 points are evenly distributed on
the equator and the other two are placed on the northern and
southern poles. While some of these states break time reversal
symmetry, such as Dnd , none of the states with Dn symmetry
are ferromagnetic. However, we do not find the “polar” state
with eight points collapsing into the northern pole and the other
eight points to the southern pole. We suspect it either does
not exist or occupies only a very limited region in the phase
diagram.

(4) T : We have found one phase with T symmetry and
another with Td symmetry [14]. They occupy a large portion of
the phase diagram. An example of the state with Td symmetry
is shown in Fig. 1(f). Four points are distributed at the vertices
of a tetrahedron. Around each tetrahedral vertex, another three
points are distributed at equal distance d from it, forming a
small regular triangle. The three vertices of this triangle lie in
the three mirror planes passing through this tetrahedral vertex.
The distance d varies with interaction and can shrink to zero,
as shown in Fig. 1(g). We have also found a phase with T

symmetry where the vertices of the triangles move away from
the mirror plane, as shown in Fig. 1(h). This transition from Td

to T is second order. Both phases T and Td break time reversal
symmetry.

(5) O: This state is described by a cube with two points at
each corner, as shown in Fig. 1(i). This state does not break
time reversal symmetry and is therefore nonmagnetic.
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(6) Y : This is impossible for Dy, as one cannot distribute
16 points on a sphere with icosahedral symmetry. On the other
hand, such a phase is possible for Er.

All the states with Dn (n finite), T , or O symmetry have
non-Abelian defects [5]. Hereafter we discuss how to detect
them experimentally.

Detecting the symmetry. We propose two measurement
schemes A and B for probing the symmetry of the system.
Scheme A is to measure the population of each spin component
after pinning a Cn axis by an ultralow magnetic field along ẑ.
We find numerically that such pinning always happens [8].
The spin wave function along ẑ must then be of the form

ϕ = (. . . ,0,α, 0, . . . ,0︸ ︷︷ ︸
n−1

,β, 0, . . . ,0︸ ︷︷ ︸
n−1

,γ,0, . . . )T (5)

for any finite n; that is, any nonvanishing component must
be separated from the next nonvanishing one by n − 1 zeros.
If n = ∞, there will be only one nonzero component. The
positions and the magnitudes of the nonvanishing components
are also different for different states. This follows from the
fact that a spin rotation along ẑ axis by 2π/n will change ϕ to
eiθϕ, hence e−i2mπ/nϕm = eiθϕm, which can only be satisfied
if ϕ takes the form of Eq. (5).

Scheme B is to detect the low-energy collective modes in
zero-field limit using Bragg spectroscopy, which is known
to be able to detect low-energy collective modes over the
range of wave vector k from 0 to

√
2mμ/h̄, where μ is the

chemical potential [17]. As explained later, for nonmagnetic
states with discrete point group symmetry, there will be a total
of four gapless Goldstone modes with linear dispersion. One
corresponds to the broken global U(1) symmetry, while the
other three correspond to broken spin rotation symmetry. If
the remaining symmetry contains only one Cn>2 axis, two
spin rotational modes will be degenerate (i.e., only three
different dispersions). If there are more than one Cn>2 axis, all
three rotational modes will be degenerate (i.e., two different
dispersions). For ferromagnetic ground states, there will be a
quadratic Goldstone mode, as already known from a previous
study of magnetism [6]. While these results are found from
explicit calculations of the Bogoliubov modes, they in fact
result from the following general considerations.

In the low-energy limit k → 0, the three spin Goldstone
modes correspond to simultaneous rotation of all vectors n̂i

along axes x̂, ŷ, and ẑ. If there is one Cn>2 axis, say, along
ẑ, such a rotation transforms the fluctuations along x̂ and ŷ to
those along x̂ ′ and ŷ ′, respectively. Due to the Cn symmetry, the
fluctuations along x̂ (ŷ) will behave the same as those along x̂ ′
(ŷ ′). On the other hand, the fluctuations along x̂ ′ or ŷ ′ are linear
combinations of those along x̂ and ŷ. It then implies these two
modes along x̂ and ŷ must be degenerate. Furthermore, if there
is another Cn>2 axis, say, along the x̂ direction, it will imply
that fluctuations along ŷ and ẑ also have the same dispersion.
Then, all three rotational modes are degenerate. These results
can be applied to different point groups as summarized in
Table I.

Procedures for differentiating different states. Following
schemes A and B, we can make the following distinctions.

(i) Distinguishing E and Cn from others: As seen in
Table I, these are the only two ferromagnetic states, and thus

TABLE I. Illustration of collective modes of different sym-
metry states. L and Q stand for modes linear and quadratic in k

respectively; “2(3) dg.” is short for two (three) degenerate modes.

Symmetry Phase mode Spin modes Distinct dispersions

E 1L 1L + 1Q 2L + 1Q

Cn 1L 1L + 1Q 2L + 1Q

Dn 1L 3L (2 dg.) 3L

T ,O 1L 3L (3 dg.) 2L

D∞ 1L 2L (2 dg.) 2L

they have quadratic Goldstone modes. The case of C5v is
show in Fig. 2(a). Thus, scheme B can distinguish them from
other states. Moreover, E and Cn can be distinguished and
determined by scheme A, as Cn has the characteristic order
parameter as shown in Eq. (5). (Note that our calculations
show that an external magnetic field always pins the Cn axis
of Cn states.)

(ii) Distinguishing Dn from D∞, T , and O: As seen in
Table I, Dn differs from T and O from the number of mode
velocities. [See also Figs. 2(b)–2(d)]. In scheme A, a very low
magnetic field pins along ẑ either the Cn or C2 axis of the
Dn symmetry, depending on the states [8]. If the C2 axis is
pinned, then we can add a small magnetic field gradient B =
B[ẑ + G0(xx̂ − zẑ)]. This is effectively equivalent to adding
an energy ε〈F 2

y 〉, with ε = h̄2G2
0/(2M) [18], which will pin

the Cn axis along either the x̂ or ŷ direction. One can then
determine n by measuring the spin population along x̂ or ŷ [8].

(iii) Distinguishing D∞, T , and O: Our calculations show
an ultralow magnetic field always pins the C3 axis of T

symmetry and pins the C4 axis of the O state. Even though our
calculations did not find the “polar” state with D∞ symmetry,
we note that if present, it can be pinned only along either the
C∞ or the C2 axis by magnetic field, which is distinct from T

and O. So by scheme A we can easily distinguish these three.
Another difference between T and O is that the T phase breaks
time reversal symmetry, while the O phase does not. Hence for
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FIG. 2. (Color online) Low-energy spectra of Bose condensates
with different symmetries. k is in units of k0 = √

2mμ/h̄ and ω is in
units of 0.1μ (μ: chemical potential). The green (red) line stands for
two (three) degenerate modes. See also Table I.
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FIG. 3. (Color online) Procedures for determining the symmetry
of different phases. Blue and red arrows denote the measurement of
collective modes and spin populations |ϕm|2 respectively.

the O phase, we have |ϕm|2 = |ϕ−m|2 in the zero-field limit,
which is a property not shared by the T phase [8].

In Fig. 3 we summarize our proposal with a flow diagram.
Following these steps, all possible (normal point group)
symmetries can be determined exactly.

Final comments. Although our discussions are for Dy, our
method of detection is applicable for all spinor condensates

such as Cr [2] and Er [19]. In our discussion, we have not
considered dipole energy. The competition between dipole
energy and spin-dependent s-wave interaction will certainly
change the energetics. However, dipolar energy is known
to depend strongly on the geometry of the trap and to
have less effect in spherical potentials. Moreover, since all
the non-Abelian states are nonmagnetic, dipolar interaction
may not have strong effects on them. In settings where
dipolar interaction becomes dominant, the system tends to
develop nonuniform spin textures as shown in the recent
experiments on 87Rb [20]. Even in such cases, the underlying
zero-field states such as those discussed here still play an
important role in determining the global equilibrium spin
textures [21].
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