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Efficient entanglement-length measurements for photonic-cluster-state sources
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We present a procedure for confirming the generation of long strings of photons in an entangled (cluster)
state that does not rely on complete state tomography and that works even at low collection efficiencies. The
scheme has the added advantage of being passive: it does not require switching of optical elements to perform
measurements in different bases, for instance.
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Recently, a scheme for preparing on-demand photonic
cluster state strings (a “cluster state machine gun”) was
proposed [1] and adapted to various architectures [2–5]. Such
a device would ideally allow for the production of hundreds of
entangled photons entangled in a one-dimensional cluster state
(and can be generalized to higher dimensions [6]), a technology
that would dramatically change the face of optical quantum
information processing. However, it immediately brings to the
fore the challenge of benchmarking and characterizing the
output light: How does one verify that the emitted photons
are actually entangled as expected, and how many photons
are entangled before inevitable noise destroys the quantum
correlations?

The simplest solution would be to perform a full tomogra-
phy on K photons to deduce the reduced density matrix ρK

of these K photons. From ρK one can try and calculate the
entanglement between the photons using known entanglement
measures. The problem is that given current experimental
setups, K must be quite small because of collection and
photodetection efficiencies, which reduce the number of
sequential photons that are measured.

For example, denoting by pd the probability of photon
collection and detection, the probability of detecting K

photons in a row is (pd )K . Furthermore, there are 22K variables
in the density matrix of K photons. In order to do the full
tomography, even given a good passive experimental setup,
one will need at least 22K measurements of K photons in a row
to get a measurement of every one of the variables (actually
a lot more, but this will be a lower bound). Therefore, we
get that the amount of data needed for one measurement of
each variable is bounded below by N = 22K

pK
d

, with N being

the number of photons emitted. For one photon emitted per
nanosecond with collection efficiencies of 10%, 50%, and 90%
and a measurement time of 10 s, this yields 6, 11, and 15 as
the best-case number of entangled photons in the reconstructed
cluster state.

In addition to the issues of collection efficiencies, short
(nanosecond) time scales between photons are needed for the
quantum-dot example considered in Ref. [1] to achieve min-
imal decoherence. As such, allowing active optical elements
that can be switched between photons in the setup will be very
difficult.

In this Rapid Communication we propose an experimental
setup that allows one to perform the tomography passively and

show a specific method in which the entanglement of a string of
photonic cluster states can be measured directly for up to 6, 20,
and 80 photons for the same emission or collection parameter
values mentioned above. More importantly, we will show that
from the same measurement data it is possible to indirectly
infer entanglement between several hundreds of photons, even
with standard Pauli noise rates per photon at the several percent
level.

Various methods to improve the efficiency of full tomog-
raphy for special cases have already been proposed. For
instance, since the emitted state is proposed to be close to
a pure state (the cluster state), one can use the method of
compressed sensing [7] in order to optimize the performed
tomography. This reduces the number of photons needed to
N = log2(2K )r2k , with r denoting the rank of the matrix,
and for low error rates will improve the number of entangled
photons in the tomography to 7, 14, and 23, for the same
emission or collection parameter values. As can be seen, for
our purposes this scheme clearly performs much worse than the
one we will present. At the end of this Rapid Communication
we compare our method to various other recent proposals
which also improve tomographic efficiency.

The trick will be to devise a scheme that does not require a
large number of successful detections in a row. Figure 1 shows
our proposed experimental setup for the tomography. The
emitted photons pass through two beam splitters, randomly
ending up in one of three detectors. One detector measures
circular polarization (eigenvectors denoted as |L〉, |R〉), the
second measures horizontal or vertical polarization (|H 〉, |V 〉),
and the third measures diagonal polarization (|D〉, |D̄〉). These
three polarization bases will be denoted as the Z basis, X

basis, and Y basis, respectively. The translation from one
polarization basis to another can be done by quarter-wave
plates and half-wave plates, as depicted in Fig. 1.

The experiment now proceeds as follows: photons are
emitted from the cluster-state machine gun, which can be either
a quantum dot in a microcavity [1] or any other similar setup
[2–5] which emits photons entangled in a linear cluster state.
These photons then go one by one through the beam splitters,
which act classically and just randomly direct each photon
toward a detector. Denoting by X, Y , and Z a photon measured
in the corresponding basis and by a photon which was lost
because of collection efficiency, a typical measurement result
will look like a random string of X, Y , Z, and together with
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FIG. 1. The proposed experimental setup for measuring the
entanglement length in a passive manner. The reflectivity of the
beam splitters can be adjusted so the probability of measuring
the photon in each of the Pauli bases is controllable. The default
detector polarization basis is assumed to be the horizontal and vertical
polarizations.

the measured eigenvalues:

X Z Z X Y

+1 −1 −1 +1 +1 .

In some of what follows measurements in only two bases are
needed, which can be achieved with one less beam splitter.

In order to show that this passive measurement setup
suffices to give us all the information needed for measuring
the entanglement length we make the following assumptions:
First, we presume the state of the emitted photons is trans-
lationally invariant; i.e., the state of photons i, . . . ,i + l is
identical to the state of photons j, . . . ,j + l for every i, j, l.
This amounts to assuming a continuous firing of the machine
gun for long time periods is possible but does not amount
to assuming that the error mechanisms are slow over such
periods. The second assumption is that the errors of the state
are independent Pauli errors on one or perhaps two adjacent
photons. In the proposed scheme for the pulsed optical cluster
state [1], as well as in most other setups, both these assumptions
hold; they are basically a property of the cluster state being
created.

The localizable entanglement (LE) between two particles
is a measure of the maximal possible bipartite entanglement
that can be created between them by local operations on the
other particles with which they are correlated [8,9]. In perfect
linear cluster states the distance over which the LE is nonzero
is infinite. For an imperfect linear cluster state output from
the machine gun, our goal will be to determine the distance
(number of in-between photons) over which the LE between
photons is nonzero. We define this quantity as ξE . Therefore
finding ξE > 0 gives an operational indication of whether two
particles share useful entanglement.

Imagine now that measurement of the localizable entan-
glement Eloc(k,k + l) between photon k and photon k + l,
which are l photons apart, is attempted. Denoting by M a
measurement on all the photons except photons k and k + l

(the measurement can include photons which are not really
measured but just traced out), it must hold that

Eloc(k,k + l) �
∑

s

psE
(
ρs

k,k+l

)
, (1)

with s running over the outcomes of the measurement M; ps

is the probability of said outcome, and E(ρs
k,k+l) is the entan-

FIG. 2. (Color online) The measurement sequence MC and the
cluster state stabilizers which are responsible for the entanglement
between the two unmeasured photons, k and k + l, for l = 8. The
Pauli matrices depicted in red (gray) are the stabilizers of photons k

and k + l after the measurement sequence MC .

glement between photons k and k + l, which can be deduced
from the reduced density matrix. Thus, this gives us a lower
bound on the localizable entanglement. We will be interested in
measurements that have the same entanglement for photons k

and k + l for all measurement outcomes, thus reducing Eq. (1)
to Eloc(k,k + l) � E(ρk,k+l). These measurement sequences
do not change depending on previous measurement outcomes
and can therefore be measured passively (see Ref. [10] for a
more detailed discussion). Also, because the cluster state has
translational invariance (its stabilizer group is translationally
invariant), we can denote ρl

12 = ρk,k+l for all values of l, with
ρl

12 now being the reduced density matrix for two photons
distance l apart. Equation (1) now becomes

Eloc(k,k + l) � E
(
ρl

12

)
. (2)

In order to calculate the entanglement E(ρl
12), since the

reduced density matrix will typically be mixed (as we have
traced over some of the other photons plus there is possibly
noise), we will use the entanglement of formation [11,12] for
which an explicit formula is available.

The question we now face is: what measurement sequence
M will maximize Eq. (2) and give us the best lower bound
on the LE? Since the experimental state will be a cluster state
with additional errors, let us first explain how to get the best
lower bound on the LE for the perfect cluster state.

For the ideal cluster state [13], we use the special properties
it possesses from being a stabilizer state [14], with the
stabilizers Ki = Zi−1XiZi+1. A set of Pauli measurements
denoted MC that has the property that it collapses qubits k

and k + l into a maximally entangled state (similar to the
measurement set introduced in Ref. [15]) is shown in Fig. 2.
To see why, consider a pattern of products of stabilizers of
the form K1K2K4K5K7K8 · · ·. This yields a sequence of Pauli
operators depicted as �1 in Fig. 2. If we shift this sequence one
qubit to the left (recall the state is translationally invariant), we
obtain the second form of �1 depicted. Consider also a pattern
of products of stabilizers of the form K1K3K4K6K7 · · ·, which
yields a pattern �2, also shown in Fig. 2. Both �1 and �2

must yield a value +1 when measured on the cluster state
since they are products of stabilizers, and both can be found
as subsequences of MC . From this one deduces that the
resultant state on qubits k and k + l in Fig. 2 is stabilized
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by {YZ,ZY,XX}, which are the stabilizers of a maximally
entangled state.

Even when the relevant state is not the perfect cluster state,
we will show the measurement sequence MC gives a very
good lower bound on ξE [16]. In this case, the entanglement
length will be finite but can still be large.

There are two parts to our proposal for measuring ξE . The
first involves a direct determination of (a lower bound on)
E(ρl

12) for any given l by finding appropriate sequences of
measurements in the data. The second idea is to use a more
detailed analysis of how the expectation values of certain
sequences in the data are changing with the length of the
sequence to determine the rate of various errors on the cluster
state. If the model fits (which can be verified), then very large
values of ξE can then be inferred. We refer to these as the direct
and indirect methods for inferring ξE and begin by analyzing
the direct method.

Key to our proposal is that instead of looking for the
full measurement sequence MC , as discussed above, we
can measure 〈�1〉 and 〈�2〉. That is, taking the very long
string of measurements in random bases outputted from the
experimental setup of Fig. 1, one can expect to sometimes
find instances of the sequence �1 or �2 from which these
expectations can be determined. Both of these sequences allow
for certain qubit locations to remain undetermined. That is,
such photons can be lost without detriment; we require fewer
photons in a row to be collected. As is clear from Fig. 2,

〈�1〉 = Tr
[
ρl

12(Z ⊗ Y )
] ≡ μZY ,

〈�1〉 = Tr
[
ρl

12(Y ⊗ Z)
] ≡ μYZ, (3)

〈�2〉 = Tr
[
ρl

12(X ⊗ X)
] ≡ μXX.

With these values in hand we can find a lower bound for
E(ρl

12). In fact E(ρl
12) � E(ρ̃l

12), where we define

ρ̃l
12 = 1

4 (I + μYZY ⊗ Z + μZY Z ⊗ Y + μXXX ⊗ X). (4)

That is, although the actual state of the two qubits will (since it
is imperfect cluster state) contain other terms in the density
matrix, these can only increase the possible entanglement
of the state. To see this, note that a local operations and
classical communication protocol (which cannot increase
entanglement) in which the three operators ZY,YZ, and XX

are each randomly applied to the two qubits always brings ρl
12

to the form of ρ̃l
12. Note also that not only are we not having to

perform full tomography on the l qubits to demonstrate their
entanglement, we are not even performing full tomography on
qubits k and k + l.

We now calculate the number of photons needed for a single
instance of a useful measurement sequence of length l. Both
�1 and �2 have a preferred measurement direction Y , in which
the number of measured photons increases with the length
of the sequence. Denote by pp the probability that the beam
splitter passes the photon to the Y -direction detector and by
pd the probability of photon detection. Since the probability of
getting even a start of a string is small, we can assume that the
mean number of photons needed for one instance of the string
is 1/pl , with pl being the probability of getting a sequence of

FIG. 3. (Color online) The maximum instance length for both
sequences �1 and �2, which will be measured by the direct method in
the experimental setup (depicted in Fig. 1) as a function of the pho-
todetection plus collection probability. The rate of emitted photons is
taken as one photon every nanosecond, and the measurement time is
10 s.

length l. We get that

pl = p
nm

d p
np

p

(
1 − pp

a

)nm−np

, (5)

with nm being the total number of photons measured, np being
the number of photons measured in the preferred direction (Y ),
and a being the number of detectors in the experimental setup
not in the preferred direction (a = 1 for �1, and a = 2 for
�2). Now, for each sequence, one can find the optimal value of
pp = np

nm
by derivation. Plugging this back into Eq. (5) gives

p
�1
l =

(
3

l + 1

)2 (
pd

l + 1

l + 4

) 2l+8
3

,

p
�2
l =

(
3

l − 2

)4 (
pd

l − 2

l + 4

) 2l+8
3

for l > 2.
Therefore, since the number of photons needed for a

sequence � is the corresponding 1/p�
l , the amount of time

needed for one instance of length l is τem/p�
l , with τem

being the average time for the emission of one photon
(and is proportional to Tcycle for the pulsed cluster-state
scheme). Figure 3 shows the maximum instance length for
both sequences �1 and �2, which will be measured in the
experimental setup (depicted in Fig. 1) in a reasonable time
(10 s) as a function of the photodetection plus collection
probability. This assumes τem = 1 ns for the quantum dot (or
the emission rate for other experimental emitters). We see that
for reasonable photodetection plus collection probabilities,
sequences of length greater than 15 can be measured directly.

The direct method above gives first-hand information about
the LE for the measured sequence lengths. We now describe
an indirect method for extrapolating from the same random
sequence of measurements a much higher lower bound for ξE .

To do this we need to consider the possible errors on
the linear cluster state. The two scenarios which will be
investigated are the case of single random Pauli errors and
the case of Zi ⊗ Zi+1 errors, both of which are relevant for
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the photonic-cluster-state strings [1]. In fact, as was shown
there, single-qubit Pauli errors in the emitter transfer into being
Zi ⊗ Zi+1 errors on the output photons. We should therefore
expect these pairwise Pauli errors to be the most relevant. Once
a photon is fired out, then there is no mechanism to generate
single Pauli errors on it (there is no populated bath it couples to
at optical frequencies). However, given the variety of systems
being considered to build a machine gun, it could well be that
different schemes to quantum dots do produce a small single
Pauli error rate on the photons, and so we consider this case
as well.

For single Pauli errors (i.e., each error acts as applying a
Pauli operator on a single site), with the error probability pσ , let
us understand what value one should expect for a measurement
sequence � of length l. Assuming a uniform probability for the
three different Pauli errors, for each of the measured photons,
two out of the three Pauli operators will cause � to flip sign.
This is true for any odd number of such errors. However, an
even number of such errors on the measured photons will
cancel out. Using the binomial theorem, we get that

〈�〉 = (
1 − 4

3pσ

)nm
, (6)

with nm being the total number of photons measured in
the sequence �. Therefore, in this case, the fewer photons
required to be measured for a sequence of length l, the higher
the expectation value is. Thus, all the expectation values
for the different measurement sequences will decrease as l

increases, but at different rates corresponding to the number
of measured photons for each measurement sequence. Now,
from the value for 〈�〉 for different values of l calculated from
the experimental measurement string, it is possible to extract
pσ (and see by the fit to the experimental data if this is the
right model to use).

Given pσ it is now possible to extract the localizable
entanglement for any length l and find the value of ξE . For the
large l limit, the number of photons measured in sequences �1

and �2 is nm ≈ (2/3)l. Plugging now Eq. (6) into Eq. (3) gives

μXX = μYZ = μZY = (
1 − 4

3pσ

) 2
3 l
. (7)

For the case where μXX = μYZ = μZY = α, the lowest value
of α such that the entanglement of formation is greater than
zero is α = 1

3 [17]. Using Eq. (7), for (4/3)pσ � 1 this gives

ξE = (9/8) ln 3
pσ

.
For the case of Z ⊗ Z errors, again assuming uncorre-

lated errors with a uniform error probability pZZ , we get
an expectation value for each of the sequences that again
decreases exponentially with the length l and for large l gives
〈�1,2〉 = (1 − 2pZZ)

2
3 l . As for the single Pauli error case, we

can use sequences of varying length l to infer the error rates
and then lower bound the localizable entanglement length ξE .
Assuming both a single Pauli error probability pσ and Z ⊗ Z

error probability pZZ gives

ξE = ln 3

(4/3)pZZ + (8/9)pσ

. (8)

How good is this lower bound on ξE? One possible means
to check is to compare it with the lower bound of the fidelity
of the experimental state with the ideal cluster state. Finding
the fidelity of an experimental mixed state with a close pure
state is a method frequently used in proposals for improving
quantum tomography efficiency [18–20]. Specifically, for the
cluster state, it has been shown that the lower bound on the
fidelity that can be inferred from stabilizers measurements
is f = ∑l

i ai − l + 2, with Tr(ρKi) = ai [21]. This equation
gives a maximal length ξC , for which the fidelity is nonzero.
While for a dephasing channel this is a decent lower bound,
it is easy to show that for the error models discussed above,
ξE > ξC , with the difference increasing as the errors become
smaller. For example, for pσ = 0, ξE/ξC ≈ 1.65(1 − pZZ).
Therefore, ξE for the machine-gun scheme obtained by our
proposed method will give a higher lower bound than can be
achieved by any method that relies on the inferred fidelity with
the cluster state. We see that even for high error rates it will be
possible to confirm the generation of long strings of entangled
photons.

We conclude with a few observations. There are other ways
for lower bounding the localizable entanglement. For instance,
one can use stabilizers which correspond to measuring photons
k + 1, k + 2, . . . , k + l − 1 in the X basis and the rest in the
Z basis [15,22]. Once we have an estimation for pσ and pZZ ,
this sequence gives an even tighter lower bound than Eq. (8),
especially for the case where the dominant error probability is
pZZ , where one gets

ξ ′
E = 2[ln(1 − a) − ln 2]

ln a
, (9)

with a = (1 − pZZ)2. For 2pZZ � 1, ξ ′
E ≈

− ln(2pZZ)/2pZZ , which gives a tighter lower bound
over ξE by a factor of − ln(2pZZ)/1.65. Intuitively, this
occurs because for the above measurement pattern μXX is
almost unaffected by the Z ⊗ Z errors and has constant value
for all l.

To put this into context, let us use realistic error rates (less
optimistic than presented in Ref. [1]) for the photonic cluster
state: pZZ = 0.5%, pσ = 10−4. In this case, fidelity estimation
as per Refs. [18,21] gives ξC = 98, Eq. (8) gives ξE = 162,
and Eq. (9) gives ξ ′

E = 342. Given a detection probability
of pd = 0.5, the direct method presented above will show
entanglement for over 20 photons, while full tomography will
show entanglement for only 11 photons.

Finally, one can also use the experimental measurement
string outputted from the experimental setup for other pur-
poses: reconstructing the pure quantum state with the highest
fidelity with the experimental state [18] or obtaining upper
and lower bounds on other entanglement measures [21,23].
Determining the efficiencies of these procedures as applied to
the photon machine gun is an open problem.
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