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Quasideterministic realization of a universal quantum gate in a single scattering process
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We show that a flying particle, such as an electron or a photon, scattering along a one-dimensional waveguide
from a pair of static spin- 1

2 centers, such as quantum dots, can implement a CONTROLLED-Z gate (universal for
quantum computation) between them. This occurs quasideterministically in a single scattering event, with no
need for any postselection or iteration and without demanding the flying particle to bear any internal spin. We
show that an easily matched hard-wall boundary condition along with the elastic nature of the process are key to
such performances.
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Interfacing static qubits [1] mediated by flying particles
is a prominent paradigm in the quest for efficient ways to
implement quantum information processing (QIP) [2,3]. As
a major motivation, this is the only way to jointly address
quantum registers located far from each other, thus featuring
no direct mutual interaction (this is usually sought to favor
local addressing). Within this general framework, over the
past few years a research line has thrived around the idea that
the crosstalk between the static qubits can be mediated by
particles scattering from them [4–15].

Yet, all of such strategies unavoidably face an inherent
major drawback. For a given quantum task to be efficiently
accomplished, the link between the static objects should occur
by means of the local interaction of each static object with
a quantum flying bus. Namely, this should feature inherently
quantum motional and/or internal (pseudo) spin degrees of
freedom (DsOF). To do so, however, the coupling between the
flying and static particles will in general entangle them so as
to bring about decoherence affecting the DsOF of the static
objects. Owing to such effect, the attainment of satisfactory
figures of merit thus demands further actions to complement
the above interaction. These typically comprise iterated in-
jections of the flying particles and postmeasurements over
their DsOF [2–15]. While such bus-dynamics conditioning
generally enhances the performances, it usually comes at the
cost of making the process probabilistic and may be demanding
in practice (e.g., spin postselection of mobile electrons in
semiconducting media [16]).

Moreover, as far as scattering scenarios are concerned,
there appear to be intrinsic hindrances to accomplishing certain
tasks such as the implementation of a two-qubit quantum gate
(TQG), typically the most challenging and essential process in
most QIP architectures especially when allowing for universal
quantum computation (QC). To see this, assume that we need
to realize a TQG between a flying qubit and a scattering center
(SC) endowed with spin in a one-dimensional (1D) waveguide
[17]. Even if the dynamics is conditioned to either the reflection
or transmission channel, the resulting process lacks unitarity
(a paramount prerequisite for a TQG), unless quite specific
regimes of parameters and interaction models are addressed
[17]. Analogous considerations a fortiori hold when many

scattering centers are present and a gate involving their DsOF
is sought, which is our focus in this work. Scattering-based
scenarios thus appear as adverse arenas to perform quantum
algorithms, which arguably explains why mere entanglement
generation has been almost exclusively investigated to date
[4–15]. Nevertheless, scattering-based implementations are
attractive because of the low demand for control. One normally
just needs to set the itinerant-bus wave vector and wait for the
collision to occur, thus bypassing any interaction-time tuning
(usually a significant noise source). Further benefits such as
the resilience to relevant detrimental factors including static
disorder [13], phase noise [14], and imperfect particle-wave-
vector setting [15] have been shown. Except for the attempt in
Ref. [17], such advantages have so far been harnessed solely
for mere entanglement generation [4–15].

Here, we discover a simple strategy for the realization
of quantum gates between static qubits through a particle
scattering from them. The injection of the latter, which is not
demanded to bear any internal DOF, followed by its multiple
scattering from the SCs suffice to quasideterministically
achieve the gate in one shot. Also, neither postselection of any
kind nor repeated sending of the flying mediators is required.
For two static qubits a universal CONTROLLED-Z (CZ) gate
naturally arises, showing the effectiveness of our scheme.

Central idea. Consider a monochromatic spinless particle
f of wave vector k propagating along a 1D wire that impinges
on an array of SCs [see Fig. 1(a)]. Once multiple scattering
has occurred, and assuming in particular that the process is
elastic, f can only be found either reflected or transmitted
with wave vectors −k and k, respectively [see Fig. 2(b)]. Let
{|ν〉} be a basis of the SCs’ Hilbert space and |μ〉 one of its
elements, whereas |±k〉 are momentum eigenstates of f . Let
|�in〉 = |k〉|μ〉 be the overall system’s initial state. As f is
scattered off, the final state reads

|�f 〉 = |−k〉
∑

ν

rνμ|ν〉 + |k〉
∑

ν

tνμ|ν〉 , (1)

where rνμ (tνμ) is a reflection (transmission) probability
amplitude corresponding to the initial and final centers’ states
|μ〉 and |ν〉, respectively. Defining a reflection (transmis-
sion) operator R̂ (T̂ ) in the Hilbert space of the SCs such
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FIG. 1. (Color online) Scheme working principle. (a) f impinges
on a set of SCs in ρ. (b) After the interaction, f is either reflected
or transmitted while the SCs undergo a nonunitary quantum map.
(c) With a perfect mirror beyond the centers, f can be only back
reflected and the unitary R̂ is applied to the SCs.

that 〈ν|R̂|μ〉 = Rνμ = rνμ (〈μ|T̂ |ν〉 = Tνμ = tνμ), Eq. (1)
can be arranged as |�f 〉 = | − k〉R̂|μ〉 + |k〉T̂ |μ〉. Tracing
over f , the final SC’s density operator reads R̂|μ〉〈μ|R̂† +
T̂ |μ〉〈μ|T̂ †. Thus when the centers are initially in an
arbitrary (in general mixed) state ρ their final state is
given by

ρ ′ = R ρR† + TρT†. (2)

The normalization condition
∑

ν(|rνμ|2 + |tνμ|2) = 1 ∀μ en-
tails R̂†R̂ + T̂ †T̂ = 1, where 1 is the identity operator of the
SCs’ Hilbert space. We would like the scattering process to
implement a multiqubit gate, which is unitary, between the
SCs. In general, this is not the case, as is evident from Eq. (2),
showing that the SCs undergo instead a quantum map [1]
comprising reflection and transmission channels.

Such hindrance can be overcome in a very natural fashion
by simply inserting beyond the centers a perfect mirror [see
Fig. 1(c)]. As this introduces a hard-wall boundary condition
(BC) preventing f from trespassing the right end, this way
the transmission channel is in fact fully suppressed. Hence,
tνμ ≡ 0 and (2) reduces to

ρ ′ = R ρR†,

where now R̂R̂† = R̂†R̂ = 1; that is, in the presence of the
mirror R̂ becomes a unitary gate. Thereby, for a monochro-

FIG. 2. (Color online) Setups implementing our scheme. (a) An
electron along a quantum wire with double quantum dots (DQDs).
(b) A photon along a waveguide with �-type atomlike systems. The
right end of the wire or waveguide behaves as a perfect mirror.

matic wave packet such gate is deterministically implemented
whenever f scatters from the centers. Remarkably, this holds
regardless of the specific scattering potential. Rather, this
affects only the type of achieved gate.

Having illustrated how a hard-wall BC guarantees the
process unitarity, it is now natural to wonder whether there
exist elastic one-channel scattering processes allowing for
multiqubit gates that are universal for QC [1]. We show that
this is indeed the case. With this aim, we first focus on a simple
paradigmatic setting, setup A, comprising two spin- 1

2 centers,
that is, two qubits [1], each coupled to a massive particle
embodying f . We identify a regime such that a CZ gate,
universal for QC [1], naturally arises. We next address setup B,
comprising multilevel atomlike systems and photons, which
is within experimental reach in several scenarios [18–22]. We
show that this can work as an effective emulator of setup A.

Setup A. This setting [see Fig. 2(a)] comprises two identical
spin- 1

2 scattering centers, 1 and 2, lying along a semi-infinite
wire along the x axis at x = x1 and x = x2, respectively,
each coupled to a scattering particle f of mass m. The
wire ends at x = x3. Let {|0〉i ,|1〉i} be an orthonormal basis
for the ith center (i = 1,2). In practice, one can consider
a semiconducting quantum wire or a carbon nanotube [23]
where an electron populating the lowest subband can undergo
scattering from two double quantum dots (DQDs) [24] to
which it is electrostatically coupled. As shown in Fig. 2(a),
each single-electron DQD is in |0〉 (|1〉) if the upper (lower)
dot is occupied, hence implementing an effective qubit [24]
(tunneling between the upper and lower dots is negligible).
Also, the electrostatic coupling is negligible for state |1〉. The
Hamiltonian is thus modeled as (we set h̄ = 1 throughout)

Ĥ = p̂2

2m
+ �δ(x − x1) |0〉1〈0| + �δ(x − x2) |0〉2〈0|, (3)

where p̂ = −i d/dx is the momentum operator of f , while
� is the height of each contact potential scattering centered at
x = xi (i = 1,2) [25]. Note that the scattering potential in (3) is
dispersive because it cannot induce either 1 or 2 to flip between
|0〉 and |1〉. Upon scattering, each initial SCs’ state |α1α2〉12

(αi = 0,1) simply but crucially picks up its own phase shift.
It is trivially checked that for a given state α ≡ {α1,α2}Ĥ
takes the effective form Ĥα = p̂2

2m
+ ∑

i=1,2 �δαi0 δ(x − xi).
The problem thus reduces to a particle scattering from spinless
potentials. We label with rα the f ’s reflection probability
amplitude corresponding to Ĥα , where the subscript here
specifies both the initial and final centers’ state (these coincide
owing to the dispersive interaction). Likewise, in the DQDs
computational basis {|00〉,|01〉,|10〉,|11〉} R necessarily has
the diagonal form R = diag(r00,r01,r10,r11).

Adopting a standard procedure, to derive rα we assume
that f is left-incoming and seek the stationary state �α(x)
fulfilling Ĥα�α(x) = k2/(2m)�α(x) of the form �α(x) =
�α+(x) + �α−(x) with (for simplicity we drop the dependance
on α whenever unnecessary)

�+(x) = 1√
2π

{θ (−x) + a1[θ (x) − θ (x − x2)]

+ a2θ (x − x2)}eikx, (4)
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�−(x) = 1√
2π

{r θ (−x) + b1 [θ (x) − θ (x − x2)]

+ b2θ (x − x2)}e−ikx, (5)

where k > 0, θ (x) is the Heaviside step function and we set
x1 = 0. Due to Eqs. (4) and (5), �+(x) [�−(x)] represents
the right-propagating (left-propagating) part of �(x). Note
that �(x) is specified by the five α-dependent coefficients
{r,a1,b1,a2,b2}. These are found by requiring that �(x) and
its derivative with respect to x � ′(x) match the five BCs:

�(x−
i ) = �(x+

i ) (i = 1,2), �(x3) = 0, (6)

�� ′|xi
= 2m �δαi0 �(xi) (i = 1,2) . (7)

Equations (6) ensure the matching of the wave function
at the centers’ locations (first two) and the hard-wall BC
owing to the end of the wire at x = x3 (latter equation).
Equations (7) are standard constraints on the discontinuity
of � ′(x) at the centers’ positions �� ′|xi

= � ′(x+
i ) − � ′(x−

i )
due to the δ potentials in (3) [they are derived by integrating
the Schrödinger equation (SE) corresponding to Ĥα over an
infinitesimal range across x = x1 and x = x2]. By solving the
linear system (6)–(7) we end up with

rα = − exp{2i arg [exp(ikx31) + 2γ δα20[cos kx21

+ (i − 2γ δα10) sin kx21] sin kx32 − 2γ δα10 sin kx31]},
(8)

where xij = xi − xj and γ = m�/k. As expected, this yields
|rα| = 1 regardless of all the parameters and α; namely, f is
reflected back with certainty. Consider the regime

kx21 = nπ, kx32 = (n′ + 1/2) π, γ � 1, (9)

where n and n′ are arbitrary integers. Replacing Eqs. (9) in (8)
and using kx31 = kx32 + kx21, we end up with

r00 = r01 = r10 = −r11 = −1, (10)

which yields the gate matrix R = diag(1,1,1, − 1) (up to an
irrelevant global phase factor), that is, the well-known CZ
gate [1]. This proves that a single scattering process can
implement a universal TQG. Intuitively, unlike Ref. [17] here
the geometry secures unitarity, leaving the physical parameters
free to be tuned so as to match a CZ.

Setup B. In this setting [see Fig. 2(b)] f is a photon propa-
gating along a 1D waveguide, having geometry analogous to
setup A, and scattering from two three-level atomlike systems.
Each “atom” i = 1,2 has a �-type energy-level configuration
consisting of a twofold-degenerate ground doublet spanned
by states {|g0〉,|g1〉} and an excited state |e〉 [see Fig. 2(b)].
Hence, a two-photon Raman transition between |g0〉 and
|g1〉 can occur through absorption and re-emission of a
scattering photon. Assuming a linear photon dispersion law
ω = υk with ω the photon energy and υ the group velocity,
the free-field Hamiltonian in the waveguide reads [27,28]
Ĥf = −i

∑
d=±

∫
dx υd ĉ

†
d (x)∂xĉd (x) with υ+ = −υ− = υ

and ĉ
†
+(x) [ĉ†−(x)] as the bosonic operator creating a right (left)

propagating photon at x. The free atomic Hamiltonian reads
Ĥa = ω0

∑
i=1,2 |e〉i〈e|, where ω0 is the energy gap between

|e〉 and the ground doublet. The field-ith atom coupling

is modeled as [28] Ĥf i = J
∫

dx δ(x − xi) [ĉ(x)Ŝ†
i + H.c.]

(under the usual rotating-wave approximation), where ĉ(x) =
ĉ+(x) + ĉ−(x) annihilates a photon at x regardless of its
propagation direction, J is the rate associated with each
transition |gj 〉i ↔ |e〉i (∀j = 0,1), and Ŝ

†
i = ∑

j |e〉i〈gj |. The

full Hamiltonian thus reads Ĥ = Ĥf + Ĥa + Ĥf 1 + Ĥf 2. It
is convenient to use as the basis of each ground doublet the
symmetric and antisymmetric combinations of the two ground
states |φ±〉i = (|g0〉i ± |g1〉i)/

√
2. As |φ−〉i is a dark state [28],

that is, Ŝ
†
i |φ−〉i = 0, the atomic raising operator takes the

effective form Ŝ
†
i ≡ √

2|e〉i〈φ+|. Thus the Raman process does
not couple |φ+〉 and |φ−〉. It should be clear now that by taking
|0〉 = |φ+〉 and |1〉 = |φ−〉 for each atom, as long as these are
initially in the ground doublet, setup B in fact possesses all
the key features of A. Indeed, if the ith atom is in |1〉i = |φ−〉i
the corresponding potential Ĥf i vanishes. If in |0〉i , it may
undergo a second-order transition |0〉i → |e〉i → |0〉i so as
to eventually pick up a phase shift once f is scattered off.
To make rigorous such considerations, we next prove that the
reflection coefficients are again, with due replacements, given
by Eq. (8) as for setup A.

Ĥ conserves the total number of excitations. Thus, fol-
lowing a standard approach [27,28], we seek one-excitation
stationary states of the form

|�α〉 =
∑
d=±

∫
dx ψαd (x)ĉ†d (x)|vac〉|α1α2〉12

+ ε1|vac〉|eα2〉12 + ε2|vac〉|α1e〉12, (11)

where ψα±(x) have a form analogous to Eqs. (4) and (5), thus
being specified by parameters {r,a1,a2,b1,b2}, {εi} are excited-
state amplitudes, and |vac〉 is the field vacuum state. Thus, for
given α|�α〉 is specified by the seven complex amplitudes
{r,a1,a2,b1,b2,ε1,ε2} and obeys the SE Ĥ |�α〉 = υk|�α〉.
Projecting this onto c

†
±(x)|vac〉|α1α2〉 gives (we henceforth

omit subscript α)

∓iυψ ′
±(x) + J̃

∑
i=1,2

δαi0εiδ(x − xi) = υk ψ±(x), (12)

where J̃ = √
2J is the rate associated with the transition

|0〉 ↔ |e〉. Further projection of the SE onto |vac〉|eα2〉 and
|vac〉|α1e〉 immediately yields that for each i = 1,2 εi =
J̃ δαi0ψ(xi)/(υk − ω0). Replacing these in Eq. (12), we are
left with {ψ(x),ψ±(x)} only

∓iυψ ′
±(x) + J̃ 2/(υk − ω0)

∑
�=1,2

δα�0ψ(x�)δ(x − x�)

= υk ψ±(x). (13)

Subtracting now the equation for ψ− from the ψ+’s one
yields −iψ ′(x) = k[ψ+(x) − ψ−(x)], which trivially entails
that −i�ψ ′|x�

= k(�ψ+|x�
− �ψ−|x�

) holds as well for each
� = 1,2. Each �ψ±|x�

on the right-hand side of the above
can be evaluated by integrating Eq. (13) over an infinitesimal
interval across x = x� (� = 1,2), which straightforwardly
yields �ψ±|x�

= ∓(i/υ)J̃ 2/(υk − ω0)δα�0ψ(x�). Thereby

�ψ ′|x�
= 2

k

υ

J̃ 2

υk − ω0
δα�0 ψ(x�) (� = 1,2). (14)
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This is identical to Eq. (7) once we set

� = J̃ 2

υk − ω0
(15)

and note that, due to the parabolic dispersion law, in setup A
m = k/υ.

As ψ(x), besides Eq. (14), must fulfill conditions analogous
to Eqs. (6) due to the common geometry of setups A and B,
we conclude that amplitudes {rα} for setting B are identical to
Eq. (8) with the effective mass and potential height given by
k/υ and (15), respectively. In passing, note that |rα|2 = 1,
showing that if f is absorbed it will be re-emitted with
certainty (each atom behaves as an effective qubit encoded
in {|g0〉,|g1〉}). It is now evident that setup B can be used
as an emulator of A, thereby allowing for occurrence of the
CZ gate [cf. Eq. (10)] under conditions (9). Interestingly, the
requirement γ = �/k � 1 now in fact becomes the resonance
condition (RC) υk � ω0. This agrees with [27], where it was
shown that the reflectivity of an atomic scatterer becomes
unitary in this limit. Also, although of a different nature, the
first two requirements in Eq. (9) are RCs: The CZ gate thus
stems from a combination of RCs. As anticipated, setup B
can be experimentally implemented in several different ways,
including photonic-crystal waveguides with defect cavities
[18], semiconducting (diamond) nanowires with embedded
QDs (nitrogen vacancies) [19,20], optical or hollow-core fibers
interacting with atoms [21], and microwave (MW) transmis-
sion lines coupled to superconducting qubits [22]. In particular,
highly efficient coupling between the dot and the fundamental
waveguide mode has been recently achieved in tapered InP
nanowires with embedded InAsP QDs [20]. Interestingly, it
was recently shown [26] that a hard-wall BC analogous to ours

[cf. Fig. 2(b)] can benefit MW photodetection. It is also worth
mentioning that some features of our scheme are reminiscent
of Refs. [29] and [30].

Gate working condition. In practice, the incoming f has a
narrow but finite uncertainty �k around a carrier wave vector
k0 fulfilling (9). As R is k dependent, we assessed its resilience
against deviations from k0 by using the process fidelity F as
a figure of merit [31]. In a representative case, �k � 5%k0

yields F � 95%. Also, �k affects the gate duration �τ

according to �τ ∼ 1/(υ�k) [31], which entails a minimum
time �τmin ∼ 10 (υk0)−1. If Td is the system’s decoherence
time, the gate works reliably when �τmin � Td, and hence the
working condition reads Td � 10 (υk0)−1. This is matched in
realistic instances [31].

Conclusions. We have shown a strategy to quasideterminis-
tically carry out multiqubit gates between static qubits through
single flying buses scattering from them. This is effective
without demanding postselection of any kind or iteration. The
possibility of naturally implementing a universal CZ gate has
been proven in two different setups including 1D photonic
waveguides coupled to atomlike qubits. We believe this work
can set a significant milestone for future advancements in
the area of distributed QIP as well as in the emerging field
of quantum optics in 1D waveguides. The design of a full
quantum computing architecture, implementing single-qubit
operations besides the proposed multiqubit gates, will be the
subject of a future comprehensive work [32].
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