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Quantum computation with ultracold atoms in a driven optical lattice
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We propose a scheme for quantum computation in optical lattices. The qubits are encoded in the spatial wave
function of the atoms such that spin decoherence does not influence the computation. Quantum operations are
steered by shaking the lattice, while qubit addressability can be provided with experimentally available techniques
of changing the lattice with single-site resolution. Numerical calculations show possible fidelities above 99%
with gate times on the order of milliseconds.
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In recent years, tremendous progress has been made in
controlling and observing ultracold atoms in optical lattice
(OL) potentials [1]. One of the latest developments has been the
optical detection of atoms with single-site resolution in lattices
of increasingly smaller periodicity [2–5]. This technological
advancement allowed, e.g., for a direct observation of the
superfluid to Mott-insulator transition [6]. Along with these
detection schemes comes the possibility to control the lattice
potential with single-site resolution. Lately, this has been used
to manipulate the spin of single atoms in an OL [7].

One of the possibly most important applications of these
techniques is the implementation of a quantum computer
that would dramatically improve the computational power for
particular tasks. Compared to other possible candidate systems
for the implementation of a quantum computer, neutral atoms
in OLs have the advantage of a natural scalability to a large
number of atoms encoding qubits and a weak coupling to the
environment leading to long decoherence times [8]. Single-site
addressability of large qubit systems may be one of the last
milestones on the way to an OL quantum computer.

Many schemes proposed for quantum computation in OLs
rely on encoding the qubits by atomic spin states [9–12].
Although single-qubit operations [2] and collective two-qubit
operations [13] have been demonstrated, spin qubit states are
generally disturbed by external magnetic fields that lead to
their decoherence. This source of decoherence can be avoided
by encoding the qubits in the spatial wave function of the
ground and first excited state of bosonic atoms localized at
single sites of an OL [12,14,15]. In this Rapid Communication,
we show that a periodic modulation of the lattice position,
i.e., a shaking of the lattice, suffices to perform all quantum
operations needed for quantum computation. The shaking
of the OL can be studied in the context of Floquet theory,
showing that it effectively changes the hopping parameter of
the system [16]. This effect has been verified experimentally,
while revealing that the shaking also drives transitions from
the first to the second Bloch band [17]. Qubit addressability is
provided by manipulating the OL with single-site resolution.
This enables the selective change of the energy spacing of
specific sites and the driving of local transitions. Additional
z rotations induced by the lattice manipulation can be
canceled by refocusing schemes known from NMR quantum
control [18].

In the following, we consider a one-dimensional (1D) OL
in the x direction with a potential VL = V0 sin2(kx), assuming
tight confinement in the transversal directions. Lengths are

given in units of 1/k and energies are given in units of
the recoil energy, Er = h̄2k2/(2m). In this system of units,
the lattice spacing is d = π and the oscillator energy of the
harmonic approximation of a single lattice site is h̄ωL =
2
√

V0. Ultracold bosons in OLs are regularly described by
the Bose-Hubbard model, which uses the Wannier basis of
the first Bloch band to formulate the Hamiltonian in second
quantization [19]. In order to consider excitations to higher
Bloch bands, the basis has to be extended to include Wannier
functions wi,b(x) of sites i = 1, . . . ,N and several bands b =
1, . . . ,n. Generally, atoms in different Bloch bands are coupled
by the interaction Vint(x1,x2) = gδ(x1 − x2). By means of a
Feshbach resonance or strong transversal confinement, one
can make g sufficiently large to form a Mott-insulator state in
the first two Bloch bands with one atom per site. A lattice with
unit filling then realizes a quantum register with |0〉 encoded
by an atom in the excited state, and |1〉 encoded by one in the
ground state [see Fig. 1(a)]. In the following,

∥∥∥∥n2,1 n2,2 n2,3 · · ·
n1,1 n1,2 n1,3 · · ·

〉
(1)

shall denote a Fock state in the extended Wannier basis with
occupation number ni,j of band i and site j . If the coupling
between the bands and sites is small and no avoided crossing
appears, then all important eigenstates can be characterized by
their dominantly contributing Fock state. In this notation, the
qubits state |001〉 is encoded by the eigenstate with maximal
overlap to ‖1

0
1
0

0
1〉.

In the comoving frame of the lattice, a shaking is described
by Vsh = fshx cos(ωsht − ϕ), where ωsh is the frequency, ϕ

is the phase, and fsh(t) is the force amplitude of shaking
[20]. This perturbation leads to a coupling between Bloch
bands with symmetric and antisymmetric Wannier functions
[see Fig. 1(b)]. We note in passing that transitions between
the ground and excited states can also be achieved by
Raman transitions [21]. By means of V̂sh, one is generally
able to drive transitions between different eigenstates of the
lattice Hamiltonian Ĥ0. For this, consider a Hamiltonian
Ĥ(t) = Ĥ0 + λV̂ cos(ωt − ϕ), where Ĥ0 has two eigenstates
|ψ1〉, |ψ2〉 with eigenenergies h̄ω1 and h̄ω2, respectively. For
ω = ω2 − ω1, the full time evolution operator in the rotating
frame is given in terms of the Pauli matrices (σx,σy) as

Û (t) = exp

(
i	Rt

2
[cos(ϕ)σ̂x − sin(ϕ)σ̂y]

)
, (2)
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FIG. 1. (Color online) (a) Qubit register with atoms (circles) in
the ground (‖0

1〉 = |1〉) or excited (‖1
0〉 = |0〉) state of each lattice site.

(b) Shaking of the lattice couples predominantly ground and excited
states in each lattice site (indicated by arrows). (c) By shining a laser
with waist on the order of the lattice spacing (red shading) onto one
site, a local transition between |0〉 and |1〉 can be driven by shaking
the lattice.

where 	R = λ|〈ψ1|V̂ |ψ2〉|/h̄ is the Rabi frequency [22]. This
enables arbitrary rotations about any axis in the xy plane of
the system’s Bloch sphere. A z rotation may be driven by
combining rotations about the x and y axes.

Driving a single-qubit operation at a certain lattice site
necessitates that the energy difference between |0〉 and |1〉
differs from that of other lattice sites. This can be achieved by
shining a laser with a waist on the order of the lattice spacing
perpendicular to the lattice, as was accomplished experimen-
tally in [7]. The perturbation by this laser can be assumed
to have the Gaussian form VGauss = −γ exp[(x − x0)2/(2σ 2)].
Depending on whether the atoms are strong- or weak-field
seekers, one has γ > 0 or γ < 0 and the additional inten-
sity will enlarge or reduce the energy difference h̄(ω2 −
ω1) between the ground and excited state [see Fig. 1(c)].
By shaking with a frequency ωsh = ω2 − ω1, one is then
able to drive single-qubit rotations on the marked lattice
site.

The detuning of the energy levels leads to an additional
rotation about the z axis in the Bloch sphere of the marked and
also of neighboring qubits. Moreover, off-resonant shaking
of a lattice site can also induce a slight phase shift [18]
leading to a general dephasing of the qubits. These effects lead
predominantly to additional terms in the Hamiltonian of the
form Ŵ = ∑

j aj σ̂
(j )
z , where the Pauli z operator σ

(j )
z acts on

qubit j . If the ai’s are known, one can account for the additional
z rotations within the quantum calculation. However, one can
also cancel these rotations by applying a scheme similar to
the refocusing technique well known from NMR quantum
control [18]. Suppose an x rotation X̂

(s)
φ = exp(iφσ̂ (s)

x /2) is to
be driven on a qubit at site s. The time 2τ of the operation
is chosen such that exp(−iτas σ̂

(s)
z /2) = 1. Then, inserting a

global π rotation X̂
gl
π = exp(iπ/2

∑
j σ̂

(j )
x ) before and in the

Γ
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FIG. 2. (Color online) A laser (red shading in right image) is
positioned slightly offset from the middle between two lattice sites
so that both lattice sites are coupled and the energy of the right lattice
site is lower than the one of the left site. At a certain laser intensity,
the energy of the repulsively bound state ‖0

0
2
0〉 and the state ‖1

0
1
0〉 form

an avoided crossing (left image). It is now possible to shake the lattice
with frequency 	 resonantly to the transition |10〉 ↔ |11〉 (‖0

1
1
0〉 ↔

‖0
1

0
1〉) while the transition |00〉 ↔ |01〉 (‖1

0
1
0〉 ↔ ‖1

0
0
1〉) is off-resonant.

This enables rotations on the right target qubit conditioned by the left
control qubit.

middle of the operation does not perturb the X̂
(s)
φ rotation, but

all z rotations are canceled since X̂
gl
π has the property that

X̂
gl
π e−itŴ /h̄X̂

gl
π e−itŴ /h̄ = 1.

Together with single-qubit operations, the ability to drive a
controlled-rotation (CROT) operation between adjacent lattice
sites completes a universal gate set [23]. A CROT operation
rotates one qubit (the target qubit) if and only if another qubit
(the control qubit) is in state |1〉. The strategy to perform
this operation between neighboring qubits is to deform the
lattice such that a repulsively bound state ‖0

0
2
0〉 [24] comes into

resonance with the state |00〉 = ‖1
0

1
0〉. The coupling between

the lattice sites leads to an avoided crossing in the energy
spectrum (see Fig. 2). If we identify the left qubit with the
control qubit, any rotation like that of Eq. (2) on the right target
qubit becomes off-resonant and is inhibited if the control qubit
is initially in the excited state (|0〉).

In order to validate the proposal for single- and two-qubit
operations by a numerical study, a lattice with unit filling
described by a Wannier basis of the first three Bloch bands
with periodic boundary conditions is considered. It is assumed
that the lattice is sufficiently deep so that, as usual within the
Bose-Hubbard model, only next-neighbor hopping and onsite
interaction need to be considered. For the single-qubit rotation,
a system of two lattice sites suffices to estimate the influence
of the operation on the remaining system, and vice versa. For
studying the two-qubit operation, a third site has to be added.
The third Bloch band is included to study possible excitations
of atoms out of the qubit basis. In the following, a lattice
depth V0 = 2.7h̄ωL = 29.16 is considered. For this lattice, an
interaction strength g = 1.87 suffices to form a Mott insulator
so that all qubit states are eigenstates of the Hamiltonian.

As an example for a single-qubit operation, the NOT

operation on the right site of a two-well lattice is considered.
As stated above, the dephasing caused by terms of the form
Ŵ = a1σ̂

(1)
z + a2σ̂

(2)
z is inhibited by two global X̂

gl
π rotations.

However, the narrow-waist laser can also lead to a weak
coupling bσ̂ (1)

z · σ̂ (2)
z , which can only be canceled by more

complex sequences of refocusing pulses. To suppress this
term during the operation, the lattice depth V0 is temporarily
enlarged to V0 + δV0 before shining in the narrow-waist laser.

050304-2



RAPID COMMUNICATIONS

QUANTUM COMPUTATION WITH ULTRACOLD ATOMS IN A . . . PHYSICAL REVIEW A 85, 050304(R) (2012)

0.001

0.01

0.1

1

0 50 100 150 200 250 300

0.001

0.01

0.1

1
01 10

11
00

11 00
01

10

pulse 1 pulse 2 pulse 1 pulse 2

t units of Er

n
t

2

FIG. 3. (Color online) Admixtures of different eigenstates for
the initial states |11〉 and |01〉 during a NOT operation on the right
qubit of a two-well lattice. Pulse 1 drives an X̂gl

π rotation. Pulse 2
starts by linearly increasing the lattice depth by δV0 = 0.17V0 during
a ramping time of 5.9h̄/Er . Then the Gaussian beam with waist
σ = π/2 centered at the site of the target qubit is linearly ramped
during a time of 0.4h̄/Er to the strength γ = 2.62. After a π/2
rotation (

√
NOT) on the right qubit driven by shaking the lattice

resonantly to the energy difference between |11〉 and |10〉, δV0 and
γ are ramped off in reverse order. The simulations show a fidelity of
99.7% for a gate time of 300h̄/Er .

Both perturbations are switched on and off adiabatically and
are sufficiently small so that couplings to bands above the
third Bloch band are negligible. While the perturbations are
active, V̂sh drives resonantly in the adiabatic basis the rotation
Û = exp(i	Rtσ̂x/2) on the right site, which for 	Rt = π

is the NOT operation up to a global phase. Figure 3 shows
numerical simulations for the NOT operation including two
X̂

gl
φ operations for refocusing. For the chosen parameter set

(see caption of Fig. 3), the influence of the qubit state on the
left side is negligible and an average fidelity [25] of 99.7% is
reached. Without refocusing (not shown), the fidelity would
be only 33.2% due to dephasing.

For the CROT operation, a system of three lattice sites is
considered. The left site acts as the control qubit of an X̂(2)

π

rotation on the central target qubit. Up to a local phase, this
operation is equivalent to a controlled-NOT operation. Due to
the periodic boundary conditions, the right site is coupled to the
control and the target qubit. Example results and parameters
of the numerical simulations of the CROT operation are shown
in Fig. 4. For a gate time of 400h̄/Er , an average fidelity
of 99.4% is reached. For the evaluation of the fidelity, the
individual z rotations and those z rotations coupled to the
control qubit are neglected. This is possible since equipped
with the global X̂

gl
π and local NOT operations, these z rotation

can be easily canceled by using a refocusing scheme. Opposed
to the NOT operation, an important source of infidelity of
the CROT operation stems from the leakage to states out of
the qubit basis. Averaged over the computational basis, the
leakage probability after the operation is 0.27%. To diminish
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FIG. 4. (Color online) Admixtures of different eigenstates for
different initial states during a CROT operation on the left control qubit
at x = 0 and the central target qubit at x = π . The Gaussian beam
with waist σ = π/2 at x0 = 0.6π is linearly ramped to a strength
of γ = 0.224 during a time of 2h̄/Er . After waiting for 12h̄/Er , the
beam is linearly ramped for 16h̄/Er to the avoided crossing with
the repulsively bound state at γ = 0.204. After shaking the lattice
resonantly to the energy difference between |111〉 and |101〉, the
Gaussian beam is switched off in reverse order. For a gate time of
400h̄/Er , a fidelity of 99.4% is reached (see text).

this, one can either use techniques of leakage elimination [26]
or one has to choose a deeper lattice. This leads to weaker
coupling between the lattice sites and thus to longer gate times.
Increasing, e.g., the lattice depth V0 from 2.7h̄ωL to 2.8h̄ωL

and the gate time to 540h̄/Er reduces the leakage probability
to 0.15% and increases the fidelity by another 0.06%.

Independently of the chosen lattice depth, the time scale
h̄/Er is a crucial system parameter for the speed and accuracy
of the manipulations. In general, a large recoil energy Er =
h̄2k2/2m allows shorter time scales. For example, the NOT

operation for a 87Rb system in a d = 500 nm OL (Er = 1.5 ×
10−30 J) lasts 21 ms, while the same operation would take
0.6 ms for 7Li in a d = 300 nm lattice (Er = 5.2 × 10−29 J).

In order for the operations to be robust, any relative
energy shift of the manipulated qubit states by some external
perturbation must be small compared to the energy scale
of the Rabi oscillations h̄	R , which in our case is about
0.1Er . Since the energy differences are mainly influenced by
the lattice potential itself, its uncontrolled perturbation can
severely reduce the fidelity of the operation. Considering the
CROT operation, which is more sensitive to perturbations than
single-qubit operations, only a lattice laser intensity which
is controlled on the 10−4 level leads to negligible fidelity

TABLE I. Average fidelity of the CROToperation presented in
Fig. 4 for uncontrolled errors of the interaction strength g, the
strength of the Gaussian laser γ , and the lattice depth V0.

Parameter g γ V0

Error (%) 0.1 1 0.1 1 0.01 0.1 1
Fidelity (%) 99.4 98.1 98.9 97.3 99.2 90.9 31.4
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FIG. 5. Energy widths of the Bloch bands as a function of the
lattice depth. For shallow lattices, the band gap 2 is much smaller
than 1. When moving the lattice, this allows for Landau-Zener
transitions out of the second band, while atoms in the first band are
dragged by the lattice. At V0 = 2.7h̄ω, one may drive a transition
from the second to the fifth Bloch band with energy difference h̄	2,5,
while a transition from the first Bloch band is forbidden by a band gap.

reduction (see Table I). On the other hand, perturbations of
other parameters, such as the intensity of the Gaussian laser
beam or the interaction strength, are much less severe.

The last important ingredient for quantum computation is
the possibility to read out qubit states with high fidelity. This
can be done by removing atoms in the excited state |0〉 from the
lattice and determining subsequently the atom distribution of
the remaining atoms by fluorescence imaging with single-site
resolution. The removal of excited atoms is related to an
evaporative cooling of the system and corresponding strategies
may be applied. One method is to accelerate the lattice in
the x direction. For sufficiently deep lattices, the large gap
between the first and second Bloch bands inhibits Landau-
Zener transitions such that atoms in the ground state |1〉 are
dragged by the lattice. However, atoms in state |0〉 may tunnel

to higher Bloch bands and eventually leave the lattice [27,28].
The tunneling can be enhanced by first transferring atoms
in state |0〉 to a higher Bloch band. As shown in Fig. 5 for
the exemplary lattice depth of V0 = 2.7h̄ωL, one can drive
transitions from the second to the high-lying fifth Bloch band
by means of shaking the lattice with frequency 	2,5, while
transitions from the first Bloch band are inhibited due to a
band gap. In the fifth Bloch band, the atoms are quasifree
and leave the lattice even during slow accelerations. Lately,
a closely related scheme of a state-dependent removal of
atoms from an optical lattice has been used experimentally
for cooling a quantum gas [29], supporting the practicability
of vibrationally encoded qubits and the proposed readout
scheme.

In conclusion, a scheme for quantum computation with
bosons in 1D optical lattices was presented. The qubits
are encoded in the spatial atomic wave function, which
suppresses decoherence due to fluctuating magnetic fields. It
was shown that by shaking the lattice, one may drive single-
and controlled-qubit rotations, and how qubit dephasing can be
prevented by using refocusing pulses. The qubit readout can
be performed by removing atoms in excited states from the
lattice and determining the atom distribution by fluorescence
imaging. For gate times on the order of milliseconds, fidelities
above 99% can be reached. We believe that gate times and
fidelities can be further improved, e.g., by using optimal
control. It would be interesting to extend the approach to
a 2D OL in order to reduce the number of needed swap
operations. However, considering 7Li atoms in a d = 300 nm
lattice, already within the 1D approach, a factorization of 15
would be feasible within about 50 ms, with about 20 ms needed
for swapping operations.
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